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DISCUSSION: LOCAL RADEMACHER COMPLEXITIES AND
ORACLE INEQUALITIES IN RISK MINIMIZATION

BY XIAOTONG SHEN AND LIFENG WANG

University of Minnesota

Koltchinskii is to be congratulated for developing a unified framework. This
elegant framework is general and allows a user to apply it directly instead of deriv-
ing bounds in each risk minimization problem. In the past decade, the problem of
risk minimization has been extensively studied in function estimation and classifi-
cation. In function estimation, it has been investigated using the empirical process
technique under the name of minimum contrast or sieve estimation in, for instance,
[2, 3, 9, 12, 13, 15]. In classification, it has been studied in a similar fashion; cf. [1,
6, 10, 11]. The general framework derived in this article yields an upper bound
of the excess risk through local Rademacher complexities. When applying such a
framework to a specific problem, attention is necessary with regard to the specific
problem structure that may matter greatly.

Our discussion will be focused on in two aspects: (1) the role that the variance
and mean play, particularly in classification, and (2) practicability of an empirical
complexity.

1. The role of variance and mean.

1.1. Variance–mean relationship and the margin condition. As noted in the
paper, one key idea to recover the optimal rate of convergence is to bound the
local complexity E supf ∈F : P(f −f̄ )≤δ |(Pn − P)(f − f̄ )| instead of the global

one. This is achieved by bounding Var(f − f̄ ), or sufficiently the second mo-
ment P(f − f̄ )2, by the mean P(f − f̄ ). Such a variance–mean relationship was
essentially used in [9] in a slightly more general form of

Var
(
f (X) − f̄ (X)

) ≤ a
[
E

(
f (X) − f̄ (X)

)]2β(1)

for some constants a > 0 and β > 0, where an iterative improvement approach is
employed to derive fast rates of convergence by exploring supA |(Pn −P)(f − f̄ )|
over local sets A. This is analogous to the fixed point approach used in the present
paper.

In what follows, we argue that (1) is more fundamental than the popular mar-
gin (low noise) assumption (cf. [10]) commonly used in classification, result-
ing in fast rates of convergence. In classification, (1) summarizes not only the
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local behavior of the optimal decision function near its classification boundary
but also the global behavior of the optimal decision function, whereas the mar-
gin assumption describes only the former. To be more specific, consider Tsy-
bakov’s classification example as discussed in Section 6.1 of the present pa-
per. Following the notation of [10], denote Z to be the input/output pair (X,Y )

with X ∈ Rd and Y = 0,1. Let G∗ = {G ⊂ Rd} be a class of classification sets.
Now define f = fG to be I (Y �= I (X ∈ G)), which is the 0–1 classification er-
ror loss for the set G ∈ G∗ given Z. Easily, it can be seen that the margin as-
sumption (A1) in [10] implies (1) with β = 1

2κ
, and assumption (A2) there im-

plies the L2(P ) bracketing entropy of F = {fG :G ∈ G∗} to be of order ε−2ρ

with 0 < ρ < 1. Then an application of Theorem 2 of Shen and Wong [9] with
α = 1/2, β = 1/(2κ) and r = 2ρ yields the rate of convergence of the excess risk
ρ(f

Ĝn
, fG∗), or the Bayesian regret, n−1/(4α−min(α,β)(2−r)) = n−κ/(2κ+ρ−1), which

agrees with the result of Tsybakov [10] and the present paper. Here ρ(fG,fG∗) =
ρ(f, f̄ ) = E(fG(Z) − fG∗(Z)) with f̄ = fG∗(Z) defined by the optimal classifi-
cation set G∗. This example indicates that (1) is actually weaker than the margin
assumption (A1). Furthermore, (1) continues to be a key assumption for risk mini-
mization in classification even when (A1) breaks down, as in linear SVM with the
hinge loss. This is because in this case f̄ no longer approximates the Bayes rule in
the sense of [10].

1.2. Variance–mean relationship in margin-based classification. Consider an
equivalent version of (1) in regression and classification,

Var
(
l(Y, f (X)) − l(Y, f̄ (X))

) ≤ a
[
E

(
l(Y, f (X)) − l(Y, f̄ (X))

)]2β
,(2)

where (X,Y ) is an observation pair, l is a loss function and f is a parameter in F .
The present paper nicely illustrates the importance of the variance–mean re-

lationship in least squares regression in which β = 1/2 in (2). In classification,
however, the situation is much more complex. As illustrated in [14], (2) may de-
pend on the choice of loss functions and F . For simplicity, we assume y = ±1
as opposed to 0,1 in what follows. For ψ-learning [8], l(y, f (x)) = I [yf (x) <

0]+(1−yf (x))I [0 ≤ yf (x) < 1], (2) holds with β = 1/(2κ), where κ is the expo-
nent given assumption (A1). As a result, the aforementioned fast rate n−κ/(2κ+ρ−1)

in Section 1.1 can be realized by ψ-learning, provided that the bracketing L2 en-
tropy of the class of candidate classification sets induced by decision functions is
of order ε−2ρ for 0 < ρ < 1. For SVM, l(y, f (x)) = [1 − yf (x)]+ and hence (2)
is met with β = 1/2 generally for a finite-dimensional linear space F . However,
when F is sufficiently rich, β = 1/2 for the separable case but is essentially 0 for
the nonseparable case.

1.3. Variance–mean relationship when the candidate function class F is large.
Another phenomenon worthwhile mentioning is that (1) may not be useful for im-
proving the excess risk bound when F is very large. For instance, when the metric
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entropy of F is of the order ε−2ρ with ρ = 1, a rate n−1/2 logn can be realized
(Theorem 2 of [9]), where β in (1) does not enter into the rate expression. This is
in contrast to the fast rate obtained in Section 1.2. A situation like this occurs in the
L1-norm SVM variable selection with the number of candidate variables d greatly
exceeding that of the sample size n, where F = {f = θT x :‖θ‖1 ≤ s, θ ∈ Rd}
with a tuning parameter s > 0, and the entropy of F is of order of (logd)ε−2. This
leads to a rate of (n−1 logd)1/2 log(n(logd)−1) (cf. [14]), as long as d grows no
faster than exp(n).

2. Empirical complexity as a way of model selection. With regard to model
selection, the author advocates a model selection criterion through penalization
that mimics an oracle inequality of some type (Section 5), which is an upper bound
of the excess risk. The selection criterion, or a data-dependent upper bound, esti-
mates the oracle inequality. For a model selection criterion constructed in this man-
ner, several important issues remain. First, an oracle (upper) inequality through a
concentration inequality could be rough in the sense that the difference between the
upper bound and the actual excess risk is large, although it dramatically simplifies
the process of estimating the excess risk. Consequently, the optimal model selected
by the model selection criterion may be inaccurate due to the bias introduced by an
imprecise upper bound of the excess risk, particularly in the finite-sample situation.
This phenomenon has been noted in [5] when AIC and BIC are compared against
Vapnik’s structural risk minimization via a penalty based on the VC-dimension,
with respect to the accuracy of prediction. Second, it appears rather difficult to
track the constants in the penalties theoretically and empirically. Theoretically,
π̃n(k) and K̃ in the oracle inequality may be imprecise in that many “numerical
constants” are suited for the purpose. Then can these terms be optimally deter-
mined? Empirically, it seems unnecessary that π̃n(k) and K̃ be precisely estimated
by π̂(k) and K̂ ; even an inconsistent estimator can give the desired result. While a
rate of convergence result is useful in providing insight into the problem of model
selection, estimation of an overly simplified oracle inequality may not be precise
enough to determine all required constants—further developments may be needed.

The foregoing discussion brings up an interesting and important point: how to
balance mathematical tractability and the accuracy of risk estimation. We now turn
our attention to covariance penalties in the framework of model selection via penal-
ization, which directly estimates the risk/loss based on optimal predictive estima-
tion. Covariance penalties that are approximately unbiased for estimating the risk
are shown to be more precise in prediction than their competitor cross-validation
in [4]. A general construction of covariance penalties can be found in [4, 7] in a
family of Q-error losses including the Kullback–Leibler loss and the 0–1 classifi-
cation error loss. General estimation methods for covariance penalties include the
bootstrap and data perturbation. In contrast, covariance penalties are less tractable
theoretically than the penalties in an oracle inequality.
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