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DISCUSSION: LOCAL RADEMACHER COMPLEXITIES AND
ORACLE INEQUALITIES IN RISK MINIMIZATION

BY GILLES BLANCHARD AND PASCAL MASSART

Fraunhofer FIRST, Berlin and Université de Paris-Sud

These last years, much attention has been paid to the construction of model se-
lection criteria via penalization. Vladimir Koltchinskii has to be congratulated for
providing a theory reaching a level of generality that is sufficiently high to recover
most of the recent results obtained on this topic in the context of statistical learn-
ing. Thanks to concentration inequalities and empirical process theory, we are now
at a point where the problem of understanding what is the order of the excess risk
for the empirical minimizer on a given model is elucidated. Koltchinskii’s paper
provides several ways of expressing that this excess risk can be sharply bounded by
quantities depending on the complexity of the model in various senses. The most
prominent relies on Rademacher processes, which Vladimir Koltchinskii himself
pioneered in introducing in statistics. We even know that these upper bounds on
the excess risk are often unimprovable (see the lower bounds in [6], e.g.).

The same machinery used to analyze the excess risk can be applied to produce
penalized criteria and to establish oracle-type risk bounds for the so-defined penal-
ized empirical risk minimizer. The problem of defining properly penalized criteria
is particularly challenging in the classification context, since it is connected to
the question of defining optimal classifiers without knowing in advance the “noise
condition” of the underlying distribution [(8.2) of the discussed paper]. This con-
dition determines the attainable rates of convergence and is a topic attracting much
attention in the statistical learning community at this moment (see the numerous
references in the discussed paper).

What we would like to discuss is the gap between the theory and the practice
of model selection. Of course, the existence of a gap between the methods which
are analyzed in theory, and those which are used in practice, is in some sense
unavoidable. Our purpose here is to express our perception of the current situation
regarding this gap, and to propose some ideas which could contribute to reducing
it.

As a starting point for our discussion, we would like to briefly analyze the be-
havior of the so-called hold-out selection procedure. This procedure should be seen
as some primitive version of the V -fold cross-validation method, which is proba-
bly the most commonly used model selection method in practice, in the context of
statistical learning. One advantage of hold-out is that it is very easy to study from
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a mathematical point of view. The point we want to make here is simple, but rich
of teachings in this context: hold-out is actually a selection method that is adaptive
to the classification noise condition. This property of the hold-out procedure does
not seem to be widely known. Since the proof is short and disarmingly simple, we
reproduce it here (as inspired by [5], Chapter 8, where more general results for
hold-out are also proved).

1. Hold-out adapts to the noise condition. Our analysis is based on the fol-
lowing selection theorem among a finite collection of functions, which can be
seen as a very elementary and basic version of Theorem 6 of the discussed paper.
In what follows, we stick to Vladimir Koltchinskii’s notation and conventions; in
particular, we use (5.3) to express the (unknown) noise conditioning [see also the
related equation (8.2)].

1.1. A basic selection result.

THEOREM 1. Let {fm,m ∈ M} be a finite collection of real-valued mea-
surable functions defined on some measurable space X and with |M| ≥ 2. Let
ξ1, . . . , ξn be some i.i.d. random variables with common distribution P and de-
note by Pn the empirical probability measure based on ξ1, . . . , ξn. Assume that
|fm − fm′ | ≤ 1 for every m,m′ ∈ M. Assume furthermore that Pfm ≥ 0 for every
m ∈ M.

Let ϕ be a convex function on [0,+∞) with ϕ(0) = 0 and such that ϕ(x)/x2 is
nondecreasing; denote by ϕ∗ the convex conjugate of ϕ. Assume

Pfm ≥ ϕ
(√

Pf 2
m

)
for every m ∈ M.(1)

Consider some random variable m̂ such that

Pnfm̂ = inf
m∈M

Pnfm.

Then, for every ε ∈ (0,1), the following exponential bound holds for every positive
real number x:

P

[
Pfm̂ > Cε inf

m∈M
Pfm + C′

ε(x + ln |M|)
(

4

ε
ϕ∗

(
1√
n

)
+ 1

3n

)]
≤ e−x,(2)

where Cε = 1+ε
1−ε

, C′
ε = (1 − ε)−1.

In particular, the following control in expectation is valid:

E[Pfm̂] ≤ Cε inf
m∈M

E[Pfm] + C′
ε ln(e|M|)

(
4

ε
ϕ∗

(
1√
n

)
+ 1

3n

)
.(3)

PROOF. Let m be such that

Pfm = inf
m′∈M

(Pfm′).
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Notice that by definition of m̂, Pnfm̂ ≤ Pnfm. Hence,

Pfm̂ = (P − Pn)fm̂ + Pnfm̂ ≤ Pnfm + (P − Pn)(fm̂)

≤ Pfm + (P − Pn)(fm̂ − fm).
(4)

Setting for every m′ ∈ M, σ 2
m′ = Pf 2

m′ , it follows from Bernstein’s inequality that
for every m′ ∈ M and every positive number y, the following holds except on a set
of probability less than e−y :

(P − Pn)(fm′ − fm) ≤
√

2y

n
(σm + σm′) + y

3n
.

By the union bound, choosing y = ln |M| + x, and using (1), this implies that,
except on some set �x with probability less than e−x ,

(P − Pn)(fm̂ − fm) ≤
√

2y

n

(
ϕ−1(Pfm̂) + ϕ−1(Pfm)

) + (ln |M| + x)

3n
.(5)

Let ϕ∗ be the convex conjugate of ϕ; we then have√
2y

n
(ϕ−1(Pfm)) ≤ ϕ

(√
εϕ−1(Pfm)

) + ϕ∗
(√

2y

εn

)
≤ εPfm + 2y

ε
ϕ∗

(
1√
n

)
,

with a similar inequality for m̂. For the last inequality above, we have used the
assumption that ϕ(x)/x2 is nondecreasing, which readily implies that ϕ∗(x)/x2

is nonincreasing, along with the fact that ε ≤ 1 and 2y/ε ≥ 1. Combining this
inequality with (5) and (4) yields

(1 − ε)P (fm̂) ≤ (1 + ε)P (fm) + (x + ln |M|)
(

4ε−1ϕ∗
(

1√
n

)
+ 1

3n

)
. �

1.2. An oracle inequality for hold-out. Let us now describe and study the
hold-out procedure. Assume that we observe N + n random variables with com-
mon distribution P depending on some parameter g∗ to be estimated. The first
N observations ξ ′

1, . . . , ξ
′
N are used to build some preliminary collection of esti-

mators {ĝm}m∈M and we use the remaining observations ξ1, . . . , ξn to select some
estimator ĝm among the collection {ĝm}m∈M . We more precisely consider here the
situation described in Section 7 of the paper, where there is some (bounded) loss
or contrast

� :T × R → [0,1]
which is well adapted to our estimation problem of g∗ in the sense that the expected
loss E[� • g] = E[�(Y, g(X))] achieves a minimum at g∗ when g varies in G. We
denote the relative expected loss as

L(g,g∗) = E[� • g − � • g∗] for all g ∈ G.
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For bounded regression or binary classification, we can take, for example,

�(y, x) = (y − x)2;
then g∗(x) = P(Y = 1|X = x) (resp. g∗ = b∗, the Bayes classifier) is indeed the
minimizer of E[(Y − t (X))2] over the set of measurable functions g taking their
values in [0,1] (resp. {0,1}). We can now apply Theorem 1, conditionally on the
training sample ξ ′

1, . . . , ξ
′
N , to the collection of functions

{fm = (� • ĝm − � • g∗),m ∈ M}.
Define, as in the theorem, m̂ as a minimizer of the empirical risk Pn(� • ĝm)

over M. If ϕ satisfies the weak regularity assumptions of Theorem 1 and is such
that

sup
L(g,g∗)≤ε

‖� • g − � • g∗‖2,P ≤ ϕ−1(ε),(6)

we derive from (3) that conditionally on ξ ′
1, . . . , ξ

′
N , one has for every ε ∈ (0,1)

E[L(ĝm̂, g∗)|ξ ′] ≤ Cε inf
m∈M

L(ĝm, g∗) + C′
ε ln(e|M|)

(
4

ε
ϕ∗

(
1√
n

)
+ 1

3n

)
.(7)

The striking feature of this result is that the hold-out selection procedure provides
an oracle-type inequality involving the modulus of continuity ϕ−1 which is not
known in advance. This is especially interesting in the classification framework for
which ϕ can vary greatly according to the difficulty of the classification problem.
The main issue is therefore to understand whether the term ϕ∗(n−1/2)(1 + ln |M|)
appearing in (7) is indeed a remainder term or not. We cannot exactly answer
this question in general because it is hard to compare δn := ϕ∗(n−1/2) with
infm∈M L(ĝm, g∗). However, if ĝm is itself an empirical risk minimizer over some
model Gm, we can compare δn with infm∈M θm,N , where θm,N is an upper bound
(up to a constant) for the expectation of the excess risk within model Gm. More
precisely, taking for instance ε = 1/2, we derive from (7) that for some constant κ

E[�(ĝm̂, g∗)] ≤ 3 inf
m∈M

(
L(Gm,g∗) + κθm,N

) + ln(e|M|)(16δn + (3n)−1)
,(8)

where L(Gm,g∗) = infg∈Gm L(g, g∗). Now, using the notation and method de-
scribed in Section 3 of the discussed paper, we obtain as a value for θm,N the
(largest) fixed point of the function

Ū
(m)
N (δ) = K

(
φm,N(δ) + D(δ)N−1/2 + N−1)

,

where φm,N is a nondecreasing function which more or less plays the role of a
modulus of continuity of the empirical process (P ′

N −P)(�•g) over the model Gm.
If N and n are of the same order of magnitude, say N = n to be as simple as
possible, then Ū

(m)
n (δ) ≥ KD(δ)n−1/2 ≥ K ′ϕ−1(δ)n−1/2, where we have assumed

that (6) is sharp up to a constant. Therefore, θm,n is surely larger (again up to
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constant factor) than the solution δ̃n of ϕ(δ) = δn−1/2. Since ϕ is a nonnegative
convex function with ϕ(0) = 0, elementary considerations then show that δ̃n ≥ δn.

In fact, θm,n will typically turn up much larger in magnitude (as a function of n)
than δn, since the fixed point equation for θm,n also involves the function φm,n,
which measures in some way the complexity of model m. Finally, the factor ln |M|
appearing above should also be considered minor if we assume, for instance, that
|M| ≤ nk for some k ≥ 0. In conclusion, except in very pathological situations, the
quantity δn ln |M| really plays the role of a remainder term in (8).

2. Data-driven penalties.

2.1. A sober assessment of the current state of the art. It is, in some sense,
somewhat disappointing to discover that a very crude method like hold-out is
working so well. This is especially true in the classification framework, where
it is indeed painstakingly difficult to design penalties that are adaptive to the noise
condition. Recent work on the topic, involving local Rademacher penalties for in-
stance, provides at least some theoretical solutions to the problem; but they system-
atically involve unknown constants—either because the numerical values coming
from the theory are overpessimistic, or, worse, because these constants also depend
on nuisance parameters related to the unknown distribution (e.g., the infimum of
the density of explanatory variables).

We therefore end up in the following delicate situation:

• From a theoretical point of view, we are not in a position to justify that conve-
niently penalized model selection methods (or more generally, model selection
methods that use the entire sample for the estimation within each model) could
improve over the simple hold-out solution.

• From a practical point of view, the penalization method does not provide a
“ready-to-use” solution and remains far from being competitive with relatively
simple methods that are widely used in practice. We have in mind in particular
V -fold cross-validation.

At this stage, two natural and connected questions emerge:

• Is there some room left for penalization methods?
• How should penalties be calibrated to design efficient procedures?

There is at least one strong reason for which, despite the arguments developed
above, one should retain interest in penalization methods: for independent but not
identically distributed observations (we typically think of Gaussian regression on
a fixed design), hold-out (for theory) or cross-validation (for practice) may break
or become irrelevant.

Another issue is that, intuitively, one would expect that hold-out leads to the
loss of a factor 2 because of the sample halving process. Unfortunately, much
looser constants appear when applying the more elaborate theoretical tools needed
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to tackle penalization, where the entire sample is used for the estimation within
each model. These larger constants drown out the initial factor 2 advantage over
hold-out, so that the theory may currently not be precise enough to distinguish this
effect.

In other words, since the opponents are strong, beating them remains possible
but requires one to calibrate penalties sharply. This leads us to the second question
raised above. We would now like to provide some ideas that can contribute to
answering this last question, partly based on theoretical results which are already
available and partly based on heuristics and thoughts which lead to some empirical
rules and new theoretical problems.

2.2. A rule of thumb for calibrating penalties from the data. A general idea
consists in guessing what is the right penalty to be used from the data itself. Let us
roughly describe the type of results which been proved in the Gaussian framework
in [2]. In several contexts (such as variable selection, e.g.), it is possible to prove
lower bounds for penalties (meaning that lower penalties will lead to asymptotic
inconsistency). Moreover, a close inspection of oracle inequalities shows that ap-
proximately optimal values for the penalty are linked to minimal values within a
factor 2. We can therefore retain from this Gaussian theory the rule of thumb:

“optimal” penalty = 2 × “minimal” penalty.(9)

Interestingly, the minimal penalty can be evaluated from the data: when the penalty
is not heavy enough, one systematically chooses models with very large dimen-
sion. It remains to double this minimal penalty to produce the desired (nearly) opti-
mal one. This strategy allows one to design a data-driven penalty without knowing
in advance the level of noise in Gaussian regression. In the context of change point
detection, this data-driven calibration method for the penalty has been successfully
implemented and tested by Lebarbier (see [3]).

In the non-Gaussian case, we believe that this procedure remains valid, but the-
oretical justification remains an open problem. As already mentioned earlier, this
problem is especially challenging in the classification context, since it is connected
to the question of defining optimal classifiers without knowing in advance the noise
condition of the underlying distribution.

2.3. Akaike’s heuristics revisited. In order to better understand the above rule
of thumb and understand why it could be extended to non-Gaussian frameworks,
it is instructive to come back to the original ideas of model selection via penaliza-
tion, that is, Mallows’s or Akaike’s heuristics (see [4] and [1]). Both are based on
the principle of unbiased estimation of the risk (at least asymptotically as far as
Akaike’s heuristics is concerned). Our idea is to adapt this principle to a nonas-
ymptotic view of the question, for which one could hope to use concentration
inequalities rather than limit theorems to validate the heuristics.
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Let us consider, in each model Gm, some minimizer gm of g → E[�•g] over Gm

(assuming that such a point does exist). Defining for every m ∈ M,

b̂m = Pn(� • gm − � • g∗) and v̂m = Pn(� • gm − � • ĝm),

minimizing some penalized criterion Pn(� • ĝm) + pen(m) over M amounts to
minimizing b̂m − v̂m + pen(m). The point is that b̂m is an unbiased estimator of
the bias term L(gm,g∗). With concentration arguments in mind, one can hope that
minimizing the above quantity will be approximately equivalent to minimizing
L(gm,g∗) − E[v̂m] + pen(m). Since the purpose of the game is to minimize the
risk E[L(ĝm, g∗)], an ideal penalty would therefore be

pen(m) = E[v̂m] + E[L(ĝm, gm)].
In Mallows’s CP case, � is the square loss, the models Gm are linear and E[v̂m] =
E[L(ĝm, gm)] are explicitly computable (at least if the level of noise is assumed
to be known). For Akaike’s penalized log-likelihood criterion, this is similar, at
least asymptotically. More precisely, in Akaike’s heuristics, � is the (minus) log-
likelihood and one uses the fact that E[v̂m] ≈ E[L(ĝm, gm)] ≈ Dm/(2n), where
Dm stands for the number of parameters defining model Gm.

Of course, we do not want to take into consideration the second approximation,
which is typically asymptotic and relies on the specific choice of the log-likelihood
loss, as well as on regularity conditions of the parametric models, that we certainly
do not want to assume here. Our guess, however, is that one can trust the first
approximation E[v̂m] ≈ E[L(ĝm, gm)] in a more general situation. If one believes
in the validity of this approximation, then a good penalty is 2E[v̂m], or equivalently
(having still in mind concentration arguments) 2v̂m. This, in some sense, explains
the rule of thumb which is given in the preceding section: the minimal penalty
is v̂m, while the optimal penalty should be v̂m + E[L(ĝm, gm)], and their ratio is
approximately equal to 2 [note that Akaike’s criterion itself may be interpreted by
formula (9), the minimal penalty being taken as Dm/(2n) and the optimal penalty
as Dm/n]. As mentioned above, the interesting point is that, even though v̂m is not
observable, we can guess the minimal penalty from the data anyway. One way to
do this in practice is to search a minimal penalty of the form pen(m) = αDm and
estimate α by choosing the smallest value for which the corresponding penalized
criterion does not lead to selecting “very large” models. Of course, concentration
arguments will work only if the list of models is not too rich. In practice, this
means that, starting from a given list of models, one has first to decide to penalize
in the same way the models which are defined by the same number of parameters.
Then one considers a new list of models (GD)D≥1, where for each integer D, GD

is the union of those among the initial models which are defined by D parameters
and then applies the preceding heuristics to this new list.
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3. Conclusion. Caricaturing a little, we could say that at this point, we have
a beautiful, yet not very useful, theory—at least, this is the conclusion to which
a person mainly interested in practical applications could come. Hold-out is our
nemesis for theory, as is cross-validation for practice. Moreover, note that hold-
out is also known to be quite unstable in practice—this is the reason why cross-
validation is preferred—which widens the gap theory/practice yet a little more.

An optimistic way to look at this, though, is to say that we are only half-way
climbing the slope, and that many interesting problems are open to future research
efforts. Obviously, there are at least two directions of research. The first one con-
sists in designing proper data-driven penalties which are ready to be used in prac-
tice and theoretically efficient (we have tried to give some ideas in this direction in
the preceding section). In the spirit of the above results on hold-out, the second one
consists in studying in depth the theoretical properties of V -fold cross-validation.
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