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ASYMPTOTICALLY MINIMAX BAYES PREDICTIVE DENSITIES

BY MIHAELA ASLAN

Yale University

Given a random sample from a distribution with density function that de-
pends on an unknown parameter θ , we are interested in accurately estimating
the true parametric density function at a future observation from the same
distribution. The asymptotic risk of Bayes predictive density estimates with
Kullback–Leibler loss function D(fθ ||f̂ ) = ∫

fθ log (fθ /f̂ ) is used to exam-
ine various ways of choosing prior distributions; the principal type of choice
studied is minimax. We seek asymptotically least favorable predictive densi-
ties for which the corresponding asymptotic risk is minimax. A result resem-
bling Stein’s paradox for estimating normal means by maximum likelihood
holds for the uniform prior in the multivariate location family case: when the
dimensionality of the model is at least three, the Jeffreys prior is minimax,
though inadmissible. The Jeffreys prior is both admissible and minimax for
one- and two-dimensional location problems.

1. Introduction. There has been a historical dispute between the classical es-
timative density functions and the Bayesian predictive density functions in mea-
suring the goodness-of-fit of the density estimate. For both the frequentist and
Bayesian approaches to prediction inference, the choice of the prior is a serious
matter either asymptotically or for finite samples. In this paper, we examine the
asymptotic behavior of Bayes predictive density estimates under Kullback–Leibler
loss. These asymptotics are used to describe various ways of choosing prior distri-
butions; the principal type of choice studied is minimax. Admissibility questions
are also addressed for various families of densities.

Suppose we are given a random sample xn = (x1, x2, . . . , xn) of n independent,
identically distributed observations with respect to a probability density fθ (·) =
f (·|θ), θ ∈ � ⊆ Rp , that depends on an unknown, p-dimensional parameter. In
the Bayesian approach, we assume some density h(·) over � to represent our prior
knowledge of θ . A future observation xn+1 from the same distribution is predicted
by using a density f̂ (·|xn), which is called a predictive density. We are interested
in a density estimation problem where the actual parameter to be estimated is the
density at the next observation f (xn+1|θ), given the true, unknown parameter θ =
(θ1, θ2, . . . , θp).
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A natural loss function used to measure the distance between the two densities
for the next observation, fθ and f̂ , is the Kullback–Leibler divergence,

D(fθ ||f̂ ) =
∫

log
f (xn+1|θ)

f̂ (xn+1|xn)
f (xn+1|θ) dxn+1,

which is positive unless f (xn+1|θ) coincides with f̂ (xn+1|xn). This measure de-
pends on θ and the particular sample xn observed. While not being a distance due
to lack of symmetry, the Kullback–Leibler divergence produces standard results
and consistent density estimates and, in general, leads to a more tractable problem
than other loss functions (the L1 distance, for example). From the Bayesian point
of view, the Kullback–Leibler loss has historically been the main tool for obtaining
noninformative priors; Jeffreys [9] used its invariance properties and local behav-
ior as a Euclidean square of a distance function as a starting point in constructing
and proposing the prior that carries his name.

The Jeffreys prior density with respect to the p-dimensional Lebesgue measure,

J (θ) ∝ det1/2((Lij (θ))i,j=1,...,p),

where (Lij (θ))i,j=1,...,p is the information matrix Pθ [−∂2/∂θi ∂θj logfθ ] and Pθ

represents the expectation with respect to fθ , plays an important role in our frame-
work. Inferences around the Jeffreys density are very suitable here, especially in
invariance-related problems. It is asymptotically least favorable under entropy risk
[5], and for α = 1

2 , belongs to the family of relatively invariant priors proposed by
Hartigan [7],{

∂ logh

∂θj

= ∑
i,r

L−1
i,r Pθ

[
α

∂logfθ

∂θj

∂logfθ

∂θi

∂logfθ

∂θr

+ ∂2logfθ

∂θj ∂θi

∂2logfθ

∂θj ∂ θr

]}
α

.

This family of prior densities is not equivalent to the family of all relatively invari-
ant priors and we will refer to it as the α-family (or α-class).

The risk function is the expected Kullback–Leibler loss with respect to fθ . We
consider this to be our measure of the goodness-of-fit of f̂ (xn+1|xn) to the un-
known f (xn+1|θ):

R(θ , f̂ ) = Pθ (D(fθ ||f̂ )) =
∫ ∫

log
f (xn+1|θ)

f̂ (xn+1|xn)
f (xn+1|θ)f (xn|θ) dxn+1 dxn.

We also consider as our density estimate the Bayes predictive density for the next
observation based on the prior h(θ) and the data xn,

fh(xn+1|xn) =
∫

f (xn+1|θ)h(θ |xn) dθ,

where h(θ |xn) is the posterior density obtained by using the Bayes product for-
mula,

h(θ)f (xn|θ)∫
h(θ)f (xn|θ) dθ

.
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Thus, under Kullback–Leibler loss, the predictive Bayes density estimate for the
next observation is just the posterior density of the next observation.

For samples of finite size, Aitchison [1] shows that when a specific prior density
h(θ) is given, any estimative density f̂ (xn+1|xn) is inferior, in Kullback–Leibler
risk, to the Bayes predictive density fh(xn+1|xn). From the asymptotic point of
view, Komaki [10] gives an asymptotic expression for the Bayesian predictive dis-
tribution and shows that in the multidimensional curved exponential family case,
the estimative distributions, given asymptotically efficient estimators, can be im-
proved to predictive distributions that asymptotically coincide with the Bayesian
predictive distributions.

Following the program of Hartigan [8] for finding the maximum likelihood prior
density, we are searching for a prior distribution corresponding asymptotically to
the minimax risk, as the number of observations n from fθ increases to ∞. We use
asymptotic expansions of Kullback–Leibler risk functions in which the first order
term p

2n
is the same for all estimative and Bayes predictive densities, given any

continuously twice differentiable positive prior density; we allow prior densities to
have infinite total mass

∫
� h(θ) dθ = ∞.

Finding asymptotically minimax Bayes predictive density estimates is usually
a hard task for general statistical settings, especially with infinite parameter spaces.
Choosing prior density functions for which the asymptotic risk is minimax mainly
reduces to solving very complicated differential equations in many dimensions,
which may or may not have solutions. Even in noninvariant settings, by concen-
trating on a smaller class of priors with useful invariance properties (such as a
class of relatively invariant priors), these differential equations become much sim-
pler and we are sometimes able to arrive at minimax solutions.

The main idea of this paper is to describe a searching algorithm for least fa-
vorable priors which starts by looking for minimax solutions among relatively in-
variant priors in the α-class. We compare different predictive density estimates by
looking at the smaller order terms in the asymptotic risk. These 1

n2 terms involve
expressions in both the likelihood and the prior. Thus, choosing one density esti-
mate over another reduces mainly to choosing prior density functions that improve
on the asymptotic risk. Admissibility and minimaxity questions are expressed in
terms of certain differential operators; the answers to these questions are then de-
termined by the existence of solutions to different partial differential equations.

Algorithm scheme.

1. Compute asymptotic risk expressions of the form

A

n
+ B

n2 + · · · :
• A is the same constant for all estimative and Bayes predictive densities.
• Different density estimates compete through the 1

n2 term, which depends on
the likelihood and the prior.
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2. Find priors leading to asymptotically minimax density estimates:

• Start by searching in a smaller class of priors and find those priors for which
the asymptotic risk is constant in the parameter (in other words, find the
optimum in a wide class of possible estimates).

• Prove that the priors with the smallest constant risk are least favorable: show
that they cannot be uniformly beaten over all priors by solving a differential
equation in the parameter (in other words, show that this optimum is also the
optimum among all possible estimates).

This method is not restricted to relatively invariant priors in the α-class or to in-
variant statistical problems. The α-class merely represents a good “set of guesses”
for an optimal estimate in the minimax sense. The methodology can be generalized
to various distribution functions and, hence, to general statistical settings which do
not present any symmetries or invariance properties.

One important application of this method is to the general location model: a re-
sult resembling Stein’s paradox for estimating normal means by maximum like-
lihood holds for the uniform prior in the multivariate location family case. Using
differential geometry and, in particular, potential theory, we show that when the
dimensionality of the location model is at least three, Jeffreys’ prior is minimax,
though inadmissible. The Jeffreys prior is both admissible and minimax for one-
and two-dimensional location problems.

2. General notation and main result. We begin by introducing certain nota-
tion that will be used throughout our discussion. Let

L(θ) =
n∏

j=1

fθ (xj ),

l(θ) = logL(θ) =
n∑

j=1

logfθ (xj )

be the likelihood and log-likelihood functions for the sample of observations xn.
Also, let

li = li1,...,ir = ∂r

∂θi1 · · · ∂θir

logL(θ) =
n∑

j=1

∂r

∂θi1 · · · ∂θir

logfθ (Xj ),

Li1,i2,...,is = Pθ

[
li1 li2 · · · lis

]
be the log-likelihood derivatives and expectations of their products, all evaluated at
the true value θ ; Pθ denotes expectation, given θ . The same quantities, evaluated at
the maximum likelihood estimate θ̂ , will be denoted by L̂, l̂, l̂i1,...,ir and L̂i1,i2,...,is .
The matrix (−Lij )i,j=1,...,p is called the Fisher information matrix.
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The model is supplemented by a prior distribution on � with density function h

with respect to the Lebesgue measure, where hi = ∂
∂θi

logh and hij = ∂2

∂θi ∂θj
logh

stand for the log prior first and second derivatives when evaluated at the true θ . Let
ĥ, ĥi and ĥij be the same quantities when evaluated at the maximum likelihood
estimate.

The following theorem gives the asymptotic expression for the Kullback–
Leibler risk up to smaller 1

n3 terms. Adopting tensor summation conventions, the
various expressions that appear in our formula are in fact sums of terms over in-
dices that appear twice.

THEOREM 1. Under regularity conditions stated in the Appendix, the asymp-
totic risk with terms of order O(n−1) and O(n−2), and ignoring smaller terms of
order O(n−3), has the expression

R(θ , fh) = p

2n
− p

4n2

+ 1

n2

[
n

{
L−1

i,r L−1
j,s

(
1

2
Lij,r,s + 3

4
Lij,rs + Lirj,s + 1

2
Lirjs

)

+ L−1
i,r L−1

j,sL
−1
k,t

(
1

2
Li,rjLk,st + 1

2
Li,jkLt,rs + 1

6
LijkLr,s,t

+ LirjLk,st + 3

2
LijkLr,st

+ 1

2
LirjLskt + 7

12
LijkLrst

)

+ L−1
i,r L−1

j,s (Lrj,s + Lrjs)hi

+ L−1
i,r

(
hir + 1

2
hihr

)}]

+ O(n−3).

Here p is the dimensionality of �.

REMARK 1. L−1
i,r denotes the (i, r) element of the inverse of the Fisher infor-

mation matrix (−Lir)i,r=1,...,p .

REMARK 2. The expression n{· · ·} is the same for all n.

REMARK 3. The first-order term in this expansion coincides with the same or-
der term in the asymptotic risks of the maximum likelihood and Bayes procedures
([8], Theorems 1 and 4). It also coincides with the upper bound for the asymptotic
entropy risk from [5].
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REMARK 4. The prior expressions from the second order terms in the asymp-
totic risks of the Bayes predictive densities and of the Bayes estimators from [8]
are the same. Thus, the difference in the O(n−2) terms of the two asymptotic risks
does not depend on the prior choice. The estimative density for the maximum like-
lihood estimate is f (x|θ̂). It may be shown that the ratio of predictive to estimative
densities is asymptotically the same for all priors; therefore, the difference in the
Kullback–Leibler distances does not depend on the prior and, indeed, the estima-
tive density has risk no less than the predictive density.

REMARK 5. Let J denote the Jeffreys prior density. By adding and subtract-
ing terms involving log Jeffreys’ first and second derivatives, Ji = ∂

∂θi
logJ and

Jij = ∂2

∂θi ∂θj
logJ , all evaluated at the true θ , the O(n−2) part of the asymptotic

risk expression will separate into two distinct expressions, both invariant under
monotone transformations of the parameter. We call these new expressions the
likelihood and prior terms:

likelihood term

= L−1
i,r L−1

j,s

(1
2Lij,r,s + 3

4Lij,rs + Lirj,s + 1
2Lirjs

)
+ L−1

i,r L−1
j,sL

−1
k,t

(1
2Li,rjLk,st + 1

2Li,jkLt,rs + 1
6LijkLr,s,t

+ LirjLk,st + 3
2LijkLr,st + 1

2LirjLskt + 7
12LijkLrst

)
+ L−1

i,r L−1
j,s

(1
2Lir,j,s + 2Lij,r,s + Lij,rs + Lirj,s + 1

2Li,r,j,s

)
+ L−1

i,r L−1
j,sL

−1
k,t

(−2Lrs,tLi,j,k − Lij,kLrs,t − Lij,kLrt,s

+ 1
2Lij,rLst,k − 1

2Li,j,kLr,s,t

+ 1
8Li,j,sLr,k,t + 1

2Lrk,tLi,j,s

)
+ L−1

i,r L−1
j,s (Lj,rs + Lrjs)L

−1
k,t

(1
2Li,k,t + Lik,t

);
prior term

= L−1
i,r

{−Jr(hi − Ji) + (hir − Jir) + 1
2(hi − Ji)(hr − Jr)

}
.

REMARK 6. If the group of invariant transformations of the parameter is tran-
sitive (so that a transformation exists mapping any parameter value into any other),
then the likelihood term in the risk is constant. In this case, for relatively invariant
priors, the prior term is also constant. Thus, for priors in the class of relatively
invariant priors proposed by Hartigan [7],

{hi = L−1
j,s (αLi,j,s + Lij,s)}α,

the asymptotic risk expression is independent of the parameter and reduces to a
quadratic function in α. Solving for α, one finds that the choice of α giving the
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asymptotically minimum risk satisfies the condition

(α − 1)L−1
i,r L−1

j,sL
−1
k,t Li,j,sLr,k,t

= L−1
i,r L−1

j,s (−Lir,j,s − Li,jr,s − Li,j,rs − Li,r,j,s)

+ L−1
i,r L−1

j,sL
−1
k,t (Lr,jsLi,k,t + 2Lrs,kLi,j,t + Lr,s,kLi,j,t ).

The Jeffreys prior corresponds to α = 1
2 and is a member of the class.

2.1. The one-parameter problem with examples. A simpler asymptotic risk
expression holds when θ is one-dimensional.

COROLLARY 1. For θ ∈ � ⊆ R, the asymptotic risk expression becomes

R(θ,fh) = 1

2n
− 1

4n2

+ 1

n2

[
n

{
L−2

1,1

(
1

2
L1,1,2 + 3

4
L2,2 + L1,3 + 1

2
L4

)

+ L−3
1,1

(
L2

1,2 + 1

6
L3L1,1,1 + 5

2
L3L1,2 + 13

12
L2

3

)

+ L−1
1,1(L1,2 + L3)h1 + L−1

1,1

(
h2 + 1

2
h2

1

)}]

+ O(n−3).

Having precise expressions for the asymptotic risk permits detailed evaluations
of admissibility and minimaxity. In the following subsections, we present some
applications to both discrete and continuous distribution functions. Although it is
true that some of these examples can be done in finite sample settings, our general
technique agrees with them and offers a method of arriving at minimax solutions.
To simplify our calculations, we will assume that n = 1.

2.1.1. The Poisson example. Let x be an observation according to the Poisson
distribution. From Corollary 1, the O( 1

n2 ) term in the asymptotic risk that depends
on the parameter is of the form

h1 + θ

(
h2 + 1

2
h2

1

)
− 1

12θ
.

Within the class of relatively invariant priors {h = θα−1}α , the priors h = θ±1/
√

6

corresponding to α = 1 ± 1√
6

have constant risk. The prior corresponding to α = 1
has risk everywhere smaller than these priors, so they are inadmissible. However
the maximum risk for any prior is never less than the risk for these priors, so they
are minimax.
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2.1.2. The binomial example. Let x be an observation according to the bino-
mial distribution with the canonical parameter θ , Bin(1, eθ

1+eθ ). As in the Poisson

case, the 1
n2 term of the asymptotic risk depending on the parameter is easily com-

puted as being

1

eθ

{(
h2 + 1

2
h2

1

)
(1 + eθ )2 − h1(1 − e2θ ) + 5

24
+ 1

12
eθ + 5

24
e2θ

}
.

It can be shown that the prior corresponding to α = 1 + 1√
6

has constant risk and
is minimax among all positive priors.

2.1.3. The negative binomial example. For the negative binomial distribution
in the canonical parameter θ , N Bin(r,1 − eθ ), the 1

n2 term in the asymptotic risk
is of the form

1

reθ

{(
h2 + 1

2
h2

1

)
(1 − eθ )2 − h1(1 − e2θ ) + 5

24
− 1

12
eθ + 5

24
e2θ

}
.

Following the binomial case, the prior corresponding to α = 1 − 1√
6

gives least
constant risk within the α-family; we have not been able to show minimaxity.

2.1.4. The normal location-scale example. Suppose we have an observation x

according to the normal location-scale density function, N (µ,σ 2). Due to obvi-
ous invariances with respect to groups of transformations over the sample and the
parameter spaces, the asymptotic risk expression reduces to

R(σ 2, fh) = 1

2n
+ 1

n2

{
−1

2
+ 19

12
+ 4σ 2h2 + 2σ 4

(
h22 + 1

2
h2

2

)
+ 3

4

}
+ O(n−3),

where each subscript 2 for the prior represents differentiation with respect to σ 2.
Unlike the normal scale case, the Jeffreys prior, J (µ,σ 2) ∝ σ−3, is neither ad-

missible nor minimax: the prior corresponding to α = 2
3 in the α-class has a strictly

smaller asymptotic risk than Jeffreys’ for all θ . This agrees with the finite sample
result that the Bayes predictive density based on σ−1 dµdσ (which corresponds
to our α = 2

3 ) is the best invariant predictive density and has a strictly smaller
asymptotic risk than the Jeffreys prior [12].

2.1.5. The multivariate normal scale example. Let xn = (x1, . . . , xn) be a
random sample according to the multivariate normal scale distribution with log-
likelihood function

l(V ) = logf (x|V ) = −1
2

n∑
i,j=1

Wijxixj − 1
2 log |V | + ct,
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where V is a symmetric and positive definite covariance matrix, V = W−1. Also
let

l(ij) = l(i1j1)···(ir jr ) =
n∑

k=1

∂r

∂Vi1j1 · · · ∂Virjr

logfV (Xk),

L(i1j1),(i2j2),...,(is js ) = PV

[
l(i1j1)l(i2j2) · · · l(is js )

]
,

be the log-likelihood derivatives and expectations of products of the log-likelihood
derivatives, where single indices represent pairs of indices identifying the variance–
covariance parameters. For example, var(Xi) = Vii = W−1

ii , cov(Xi,Xj ) = Vij =
W−1

ij . For each pair of indices (ii′), it is assumed that i ≤ i ′.
We give, without proof, the following lemma that can be found in [2]:

LEMMA 1. For any pairs of indices (ii′), (rr ′), (jj ′), (ss′), the following ex-
pressions for the expectations of different products of the log-likelihood derivatives
are true:

L(ii′) = 0,

L(ii′)(rr ′) = −WirWi′r ′ + Wir ′Wi′r
2{i=i′}+{r=r ′} ,

L(ii′)(rr ′)(jj ′)

= 1

2{i=i′}+{r=r ′}+{j=j ′}
× {Wi′jWr ′iWj ′r + WijWr ′i′Wj ′r + Wi′rWj ′iWr ′j

+ WirWj ′i′Wr ′j + Wi′jWriWj ′r ′ + Wi′r ′Wj ′iWrj

+ Wi′j ′Wr ′iWjr + Wi′rWjiWr ′j ′ },
L(ii′)(rr ′)(jj ′)(ss′)

= − 1

2{i=i′}+{r=r ′}+{j=j ′}+{s=s′}
× {sum of 48 terms like WisWi′jWj ′rWr ′s′,

where, for each pair of W ’s, the indices must come from at least

three pairs of indices in the L’s. For example, WisWi′j comes

from the pairs ii′, jj ′, ss′}.
Also, the inverse information matrix components are

L−1
(ii′),(rr ′) = VirVi′r ′ + Vir ′Vi′r .



2930 M. ASLAN

Using Remark 6 above, in the α-class of priors, which is of the form

{
hii′ = αL−1

(jj ′)(ss′) L(ii′),(jj ′),(ss′)
}
α,

the choice of α giving the asymptotically minimum risk satisfies the condition

(α − 1)L−1
(ii′),(rr ′)L

−1
(jj ′),(ss′)L

−1
(kk′),(t t ′)L(ii′)(jj ′)(ss′)L(rr ′)(kk′)(t t ′)

= L−1
(ii′),(rr ′)L

−1
(jj ′),(ss′)

(
L(ii′)(rr ′)(jj ′)(ss′)

(2.1)
+ L(ii′),(rr ′)L(jj ′),(ss′) − L(rr ′),(ss′)L(ii′),(jj ′)

)
+ L−1

(ii′),(rr ′)L
−1
(jj ′),(ss′)L

−1
(kk′),(t t ′)L(rr ′)(ss′)(kk′)L(ii′)(jj ′)(t t ′).

Through simple manipulations of the likelihood identities (A5) in the Appendix
and the formulae in Lemma 1, explicit expressions for all the terms in (2.1) become
available. Due to invariance arguments, it can be shown that the α = 1

2 solution to
(2.1), which corresponds to the Jeffreys prior, has the minimum asymptotic risk
within the α-class of priors.

In finite sample theory, Murray [13] and Ng [14] prove similar results for gen-
eral group models under invariant prediction.

For the univariate normal scale case, the Jeffreys prior is also minimax among
all smooth priors available: through a simple reparametrization of the form u =
logσ 2, and following the argument in Section 3, this problem becomes a location
problem for which one can prove that the uniform prior in the new parameter is
least favorable among all smooth priors, and so is minimax.

3. Minimaxity and admissibility in the location case. One important appli-
cation of the searching method for minimax solutions is to the general location
model. As in the Stein problem of estimating multivariate normal location para-
meters, we prove that a similar division between dimensions 2 and 3 holds for pre-
dictive density estimates for the general location problem. For dimensions 1 and 2,
the Jeffreys prior is admissible, but for dimensions greater than 2 there are priors
that have everywhere smaller risk than Jeffreys’ so that the Jeffreys prior, though
minimax, is inadmissible.

In finite sample theory, the Stein phenomenon in density estimation has been
explored by Komaki [11], who showed that for the multivariate normal location
model, the Jeffreys prior produces density estimates admissible in 1 or 2 dimen-
sions, but inadmissible in 3 or more, just as Stein did for location estimates. For
the same multivariate normal location model, George, Liang and Xu [6] go further
than Komaki and show that under certain conditions on the marginal of the prior,
the corresponding Bayes predictive density becomes minimax.
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We prove a more general result by using the asymptotic risk expression from
Theorem 1 to evaluate admissibility and minimaxity of density estimates in a gen-
eral location model setting. The risk evaluations require the study of elliptic differ-
ential operators. For parameter estimation, such operators, in a simple form, appear
in [4]. We give here the general form of such operators for density estimates.

Let f (x − µ) represent a general location model with the standard probability
density function f (x) and µ the location parameter for the family. For general
multivariate location families, the likelihood term is constant under invariant and
transitive transformations of the parameter. Thus, the risk expression depends on
the parameter only through the prior term, which has the expression

p∑
i,r=1

L−1
i,r

{−Jr(hi − Ji) + (hir − Jir) + 1
2(hi − Ji)(hr − Jr)

}
,

where h is any continuously twice differentiable positive prior among all priors
available and J is the Jeffreys prior. The Jeffreys prior being constant, all of the
log-Jeffreys derivatives are 0. Note that for h = J , the prior term is 0.

Choosing h of the form g2, g > 0, the part that remains to be optimized becomes

p∑
i,r=1

L−1
i,r {gir + gigr} =

p∑
i,r=1

L−1
i,r

∂2/∂µi ∂µrg

g
= �g

g
,

where � stands for the Laplacian differential operator and �g = ∑p
i=1

∂2

∂µ2
i

g.

There exists a linear transformation on X that converts the information matrix to
the identity. Thus, the L−1

i,r factor is constant in the parameter.

THEOREM 2 (Admissibility). For p = 1 and p = 2 the Jeffreys prior is ad-
missible: there is no other prior g such that

�g ≤ 0 for all µ,

�g < 0 for some µ.

For p ≥ 3, the Jeffreys prior is inadmissible: there exists a prior g such that
�g < 0 for all µ; however, there exists no prior g that dominates Jeffreys’ uni-
formly by a positive amount, that is, there exists no g such that for some c > 0,

�g

g
≤ −c < 0 for all µ.

COROLLARY 2 (Minimaxity). In one and two dimensions, the admissibility of
the Jeffreys prior supports its minimaxity by the constant asymptotic risk. For loca-
tion models of higher dimensionality, Jeffreys’ is also minimax because it cannot
be dominated uniformly.
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PROOF OF THEOREM 2. The case p = 1 is a standard convex functions result.
The case p = 2 is simply Liouville’s theorem (see [15]).

Case p ≥ 3: If we assume that �g < 0 everywhere, we can find a prior g that
makes the Jeffreys prior inadmissible. An example of this kind is

g(µ) =
(

1 +
p∑

i=1

µ2
i

)α

,

which, for 0 > α > 1 − p
2 , satisfies the condition �g < 0 for any µ.

Following Aslan [2], we consider as our domain in Rp a solid sphere D with
radius r and its surface S : {R = r}. We also consider the one-to-one mapping to
“cylindrical” coordinates

µ ↔ (R, s),

with |µ| ≤ R2, s being of dimension p − 1 and the Jacobian of the mapping being

∂(µ)

∂(R, s)
= Rp−1.

Gauss’ divergence theorem applies and∫
· · ·

∫
S
rp−1 ∂g

∂r
ds =

∫ ∫
· · ·

∫
D

Rp−1�g dR ds,

or simply

rp−1ḡ′ =
∫ ∫

· · ·
∫
D

Rp−1�g dR ds,

where ḡ is the function obtained by averaging g over S, ḡ(r) = ∫ · · · ∫S g(R,

s) ds ≥ 0 and ḡ′ is its derivative. By using the Leibniz rule for differentiation and
the hypothesized inequality �g ≤ −cg for a positive constant c ∈ R, we obtain

d

dr
(rp−1ḡ′) ≤ −crp−1ḡ.

Making the change of variable u = r2−p with du = (2−p)r1−p dr and absorb-
ing all the constants into c, we obtain the new differential inequality

ḡ′′ ≤ −cuλḡ ∀u ≥ 0,(3.1)

where −6 ≤ λ = 3(p−1)
2−p

≤ −3.
Assume first that ḡ′(u) < 0 for all u. This implies that ḡ is strictly decreasing.

Using the Taylor series expansion around u0 ≤ u and (3.1), we obtain

ḡ(u) ≤ ḡ(u0) + (u − u0)ḡ
′(u0) − cuλ

2
(u − u0)

2 ḡ(u∗),

where u0 ≤ u∗ ≤ u. Since ḡ′(u0) < 0, ḡ(u) → −∞ as u → +∞, and this holds
for any u0 ≥ 0. Therefore, ḡ′ must be nonnegative for all u.
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Similarly, using a Taylor series expansion around 1
2u for u ∈ [0, t], t small, and

by the strict concavity of ḡ, together with (3.1) and the increasing monotonicity of
ḡ in a small neighborhood of u, we obtain

ḡ
(1

2u
)[

1 + 1
8cu2+λ] ≤ ḡ(u).

Since λ + 2 < −1, we have u2+λ → ∞ as u → 0. Thus, for small u, ḡ(1
2u) ≤

1
2 ḡ(u), which contradicts the strict concavity of ḡ. The Jeffreys prior is inadmissi-
ble, but remains minimax for the case where the dimensionality of the model is at
least three. �

In general, for invariant problems where the likelihood term in the asymptotic
risk is constant, finding minimax solutions reduces to finding least favorable priors
for which the prior term is minimax. If a reparametrization of the problem exists in
which the Fisher information matrix is the identity, then the same argument used
in the location case shows that the Jeffreys prior is asymptotically minimax.

APPENDIX: ASYMPTOTICS OF RISK

We present here the main assumptions and ideas used in obtaining the result of
Theorem 1. For a more elaborate and computationally involved presentation of the
proof, see [2].

The asymptotics of the risk involve both Taylor series and Edgeworth approxi-
mations which require appropriate regularity conditions. The work of Bhattacharya
and Ghosh [3] gives a rigorous account of the theory of Edgeworth series for gen-
eral statistics. The Taylor series approximations are polynomials in (θ̂ − θ ) with
remainder terms which require special attention in order to integrate successfully.
We also need expectations to evaluate risks accurately to O(n−2) terms.

The locally asymptotic normality of the standardized maximum likelihood esti-
mator

√
n(θ̂ − θ), as well as truncated expectations in the sense given by Hartigan

[8] are used extensively here. The following assumptions, similar to Hartigan’s,
are required for the validity of our expansions:

ASSUMPTIONS. (A1) The prior density h is smooth in the sense that it is twice
continuously differentiable in a neighborhood of θ and is positive.

(A2) We assume that the second derivatives ∂2

∂θ2
i

l(θ) are of order n, where n is

the number of observations. We also assume that all l’s and L’s are, in general, of
order n with the exception of li ’s, which are random variables of order

√
n with

zero expectations. These assumptions are usually satisfied in practice.
(A3) l(θ) = logf (x|θ) is five times continuously differentiable with respect to

θ̃ in a small neighborhood of the true parameter θ for each observation x.
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(A4) All moments exist for the first four log-likelihood derivatives, and for the
maximum squared fifth derivatives, in a neighborhood of θ ; in other words, for
each θ̃ ∈ � and for some ε > 0,

P
θ̃

∣∣li1,...,i4(θ̃)
∣∣ < ∞,

P
θ̃

(
sup

|θ−θ̃ |≤ε

∣∣li1,...,i5(θ)
∣∣)2

< ∞,

where the set of indices (i1, . . . , ir ) ⊆ {1, . . . , p}r , with r = 4 and r = 5, respec-
tively.

(A5) The integral
∫

f (x|θ) dx can be differentiated four times with respect to θ
under the integral sign. The usual likelihood identities, obtained by differentiating∫

fθ , are valid for any indices i, j , k and l:

0 = Li,

0 = Lij + Li,j ,

0 = Lijk + Lij,k + Lik,j + Ljk,i + Li,j,k,

0 = Lijkl + Lijk,l + Lijl,k + Likl,j

+ Ljkl,i + Lij,kl + Lik,j l + Lil,jk

+ Lij,k,l + Lik,j,l + Lil,j,k

+ Ljk,i,l + Ljl,i,k + Lkl,i,j + Li,j,k,l .

(A6) The Fisher information matrix (−Lij )i,j=1,...,p =
(Li,j )i,j=1,...,p , or Li,j for short, is nonsingular and positive definite for
|θ − θ̃ | < ε.

(A7) For each ε > 0, P{|θ − θ̃ | > ε} = o(n−2).

PROOF OF THEOREM 1. Through straightforward calculations the risk ex-
pression becomes a difference between two Kullback–Leibler losses. When θ is
true, we have

R(θ , fh) = D(f (xn+1|θ)||f (xn+1)) − D(f (xn|θ)||f (xn)),(A.1)

where f (x) stands for the marginal density of x.
To arrive at the risk asymptotics, we begin by computing an asymptotic expres-

sion for the Kullback–Leibler loss,

D(f (x|θ)||f (x)) =
∫

{logf (x|θ) − logf (x)}f (x|θ) dθ .

The following lemma gives the asymptotic behavior of f (x). The result and its
proof can be found in [2].



ASYMPTOTICALLY MINIMAX BAYES PREDICTIVE DENSITIES 2935

LEMMA 2. Under the previous regularity conditions, the marginal density
f (x) has the following asymptotic expression with terms of order OP (n−1), ig-
noring smaller OP (n−2) terms:

f (x) = (2π)p/2 det(−l̂ij )
−1/2f (x|θ̂)h(θ̂)

× {
1 − 1

2L−1
ij ĥij − 1

2L−1
ii′ ĥi ĥi′

+ 1
8L−1

ij L−1
kl l̂ijkl − 1

12L−1
ii′ L

−1
jj ′L−1

kk′ l̂ijk l̂i′j ′k′

− 1
8L−1

ij L−1
i′j ′L−1

kk′ l̂ijk l̂i′j ′k′ + 1
2L−1

ij L−1
ki′ l̂ijkĥi′ + OP (n−2)

}
.

Using Lemma 2 and the “Expectation lemma” in [8], the Kullback–Leibler loss
expression becomes

D(f (x|θ)||f (x)) = −p

2
log 2π +

∫ (
logf (x|θ) − logf (x|θ̂)

)
f (x|θ) dx

−
∫

log
h(θ̂)

det(−l̂ij )1/2
f (x|θ) dx

+
{

1

2
L−1

ij hij + 1

2
L−1

ii′ hihi′

− 1

8
L−1

ij L−1
kl Lijkl + 1

12
L−1

ii′ L
−1
jj ′L−1

kk′LijkLi′j ′k′

+ 1

8
L−1

ij L−1
i′j ′L−1

kk′LijkLi′j ′k′

− 1

2
L−1

ij L−1
ki′ Lijkhi′ + OP (n−2)

}
.

Following Aslan [2], the first two integrals in the Kullback–Leibler expression are
further expanded into the asymptotic expressions∫ (

logf (x|θ) − logf (x|θ̂)
)
f (x|θ) dx

= −p

2
+ L−1

i,r L−1
j,s

(
−1

2
Li,j,rs − 1

2
Lij,rs − 1

2
Lirj,s − 1

8
Lirjs

)

+ L−1
i,r L−1

j,sL
−1
k,t

(
−1

2
Li,rjLk,st − 1

2
Li,stLk,rj

− 1

6
LijkLr,s,t − 1

2
LirjLk,st

− LijkLr,st − 1

6
LirjLskt − 1

4
LijkLrst

)
+ OP (n−2)
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and

−
∫

log
h(θ̂)

det(−l̂ij )1/2
f (x|θ)dx

= p

4
+ 1

2
log(|Li,j |) − logh

+ L−1
i,r L−1

j,s

(
−1

2
Lirj,s − 1

4
Lij,rs − 1

4
Lirjs

)

+ L−1
i,r L−1

j,sL
−1
k,t

(
−1

2
LirjLk,st − 1

4
LirjLskt − 1

2
LijkLr,st − 1

4
LijkLrst

)

+ L−1
i,r L−1

j,s

(
−Lrj,shi − 1

2
Lrjshi

)
+ 1

2
L−1

i,r hir + OP (n−2).

By simply substituting these expressions into the Kullback–Leibler loss formula
from above, we obtain the following asymptotic approximation of the loss:

LEMMA 3. Under the previous regularity conditions, the asymptotic expres-
sion for the Kullback–Leibler loss function D(f (x|θ)||f (x)) with terms of order
OP (n−1) and ignoring smaller terms of order OP (n−2) is

D(f (x|θ)||f (x))

= −p

2
log 2π − p

4
+ 1

2
log(|Li,j |) − logh

+ L−1
i,r L−1

j,s

(
−1

2
Lij,r,s − 3

4
Lij,rs − Lirj,s − 1

2
Lirjs

)

+ L−1
i,r L−1

j,sL
−1
k,t

(
−1

2
Li,rjLk,st − 1

2
Li,jkLt,rs − 1

6
LijkLr,s,t

− LirjLk,st − 3

2
LijkLr,st − 1

2
LirjLskt − 7

12
LijkLrst

)

+ L−1
i,r L−1

j,s (−Lrj,s − Lrjs)hi + L−1
i,r

(
−hir − 1

2
hihr

)

+ OP (n−2).

We now arrive at the asymptotic risk approximation in Theorem 1 by simply
substituting in (A.1) the two asymptotic Kullback–Leibler loss expressions, written
more concisely as

Dn+1 = −p

2
log 2π − p

4
+ 1

2
log {(n + 1)p|Li,j |}

− logh(θ) − G(θ)

n + 1
+ OP

(
(n + 1)−2)
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and

Dn = −p

2
log 2π − p

4
+ 1

2
log {np|Li,j |}

− logh(θ) − G(θ)

n
+ OP (n−2),

where Dn+1 = D(f (xn+1|θ)||f (xn+1)) and Dn = D(f (xn|θ)||f (xn)). Thus, the
difference Dn+1 − Dn will be of the form

p

2n
− p

4n2 + G(θ)

n2 + OP (n−3),

where G(θ) is the n{· · ·} term in the asymptotic risk expression of Theorem 1. �
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