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DISCUSSION: CONDITIONAL GROWTH CHARTS

BY MARY LOU THOMPSON1

University of Washington

I will use the terms “reference centiles” or “centile charts,” as the setting that I
consider here is more general than that of “growth charts.”

Longitudinal reference centiles over some measure of time (typically age) are
almost always implemented repeatedly on the same individual. In this kind of
setting the notion of conditional or adaptive centile charts is very appealing, partic-
ularly when the within-individual variability is much less than that between indi-
viduals. While marginal or unconditional centile charts are common in many areas
of application, conditional charts are still rarely encountered and further method-
ological development in this area is to be welcomed. The flexibility of the quantile
regression approach of Wei and He (WH), for instance in allowing the dependence
on past history to vary across centiles, is most attractive, as are the rigor and scope
of their consideration of the problem.

I do, nevertheless, want to make a few cautionary remarks. The first relates
to regression quantiles in particular, the second concerns a constraint common to
all existing methods of constructing conditional percentiles, and the third and final
point addresses the use of centile charts for screening. To concretize the discussion,
the following setting will be considered throughout: the measurement of interest
is assumed to be diastolic blood pressure in pregnant women, monitored between
weeks 16 and 36 of pregnancy. There is typically an initial dip in blood pressure
over this period, followed by a rise toward the end of pregnancy.

1. Bias and precision. My experience with the use of marginal regression
quantiles has been that they are readily and robustly fitted, with far less of the
“fine-tuning” that is needed for distributionally based centile estimation. Never-
theless, the flexibility of quantile regression estimates may come at a cost—should
an appropriate distribution be identified, distributionally based estimates may well
be more precise.

To evaluate bias and precision in marginal and conditional centile estimates, a
simulation study was carried out on a presumed cohort of 1000 pregnant women,
where it was assumed that the women were scheduled to attend an antenatal
clinic once in each of five pregnancy intervals, namely during the weeks of ges-
tation (“gestational age”): [16, 20), [20, 24), [24, 28), [28, 32), [32, 36). The
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visit times for each woman were assumed to be independently uniformly dis-
tributed within each interval. It was further assumed that the marginal distribu-
tion of the diastolic blood pressure of the ith woman at gestational age t , Yit ,
was lognormally distributed with parameters (of the underlying normal distribu-
tion): µt = 4.247 − 0.019(t/10)2 + 0.006(t/10)3 and σt = 0.1, where the units of
blood pressure are mmHg. The j th measurement on the ith woman, Yitj , condi-
tional on the measurement in the previous interval, Yitj−1 , was again assumed to be
lognormal with conditional parameters µtj |tj−1 = µtj + ρ(ln(Yitj−1) − µtj−1) and
σtj |tj−1 = 0.1(1 − ρ2)0.5.

A first-order autoregressive model [AR(1)] was assumed across intervals, with
ρ = 0.6. It was further assumed that the probability of a woman attending a clinic
in each of the prescribed intervals was 0.8, so that, on average, 20% of measure-
ments are missing in each interval and overall. This approximates the situation
that one might observe in practice. Figure 1 shows the longitudinal median blood
pressure under this model as well as a simulated longitudinal sample with true
percentiles superimposed.

Marginal and conditional centile estimates were obtained for 500 such simu-
lated cohorts, using both the quantile regression approach (QR) described by WH
and the LMS procedure [1]. Because the logged blood pressure measurements are
multivariate normally distributed (MVN), this is also an ideal setting for the maxi-
mum likelihood approach suggested by Thompson and Fatti [4]. This last approach
requires that it be possible to transform the longitudinal path, conditional on time
points and covariates, to multivariate normality. Cubic splines were used to model
the intercept term for each of the regression quantiles in the QR approach, to model
L, M and S, and to model the mean of the multivariate normal distribution. The
cross-sectional variance of the log transformed blood pressure measurements is

FIG. 1. (a) Median and (b) 3rd, 10th, 50th, 90th, 97th percentiles.
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constant and the AR(1) correlation, ρ, was also modeled as a constant in the MVN
approach. Stata 9.1 was used for all analyses.

Note that simulations (not reported here) were also carried out using different
numbers of subjects and measurement intervals and varying correlation, ρ. Results
were consistent with those presented below.

All unconditional centile estimates were unbiased, but the variability in the
quantile regression estimates was greater than that of the other two approaches,
particularly at extreme percentiles; see Table 1.

Conditional centile estimates were considered at gestational age 26 for two hy-
pothetical women, each with a previous measurement at week 22. The diastolic
blood pressure reading in week 22 was assumed to be on the 3rd (marginal) per-
centile for the first woman, “A,” that is, a blood pressure reading of 56.3 mmHg.
The blood pressure of woman “B” in week 22 was assumed to be at the 97th
percentile for that week, 82.0 mmHg. The measurements in week 22 and the true
conditional 3rd and 97th percentiles for each woman in week 26 (A: “- -”; B: “++”)
are also shown in Figure 1.

The QR conditional centiles were estimated by fitting the model

Yi,j (τ ) = g0,τ (ti,j ) + (
β0,τ + β1,τ (ti,j − ti,j−1)

)
Yi,j−1

for τ = 0.03, 0.10, 0.50, 0.90, 0.97, where g0,τ (t) is modeled as a linear combina-
tion of five cubic basis splines. For the LMS approach, the longitudinal parameters
L, M and S were estimated and then each observation was transformed to its cor-
responding z-score. Conditional centile estimates were then based on an AR(1)
model, fitted to all z-scores that were one (visit) interval apart. The estimates of
MVN conditional centiles were obtained by back-transforming to the observed

TABLE 1
Standard deviation of estimates of marginal percentiles

Week Method 3rd 10th 50th 90th 97th

20 QR 0.49 0.37 0.31 0.47 0.71
LMS 0.40 0.30 0.28 0.39 0.57
MVN 0.25 0.23 0.23 0.29 0.35

24 QR 0.43 0.33 0.27 0.43 0.64
LMS 0.36 0.28 0.25 0.37 0.53
MVN 0.24 0.23 0.23 0.29 0.34

28 QR 0.41 0.33 0.28 0.42 0.62
LMS 0.35 0.28 0.25 0.36 0.52
MVN 0.24 0.23 0.23 0.29 0.34

32 QR 0.50 0.38 0.32 0.50 0.78
LMS 0.42 0.32 0.28 0.41 0.62
MVN 0.26 0.24 0.24 0.30 0.36
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scale the centile estimates from the Gaussian maximum likelihood estimates (see,
e.g., [4]).

Table 2 summarizes the results of the simulation study comparing conditional
centile estimates at week 26 under each of these approaches.

It can be seen that, except at the high (low) extreme percentiles for the low
(high) prior path, the variability of the conditional QR and LMS estimates is sim-
ilar here, but both are, not surprisingly, estimated with less precision than for the
MVN-based model. The QR estimates are also slightly biased, as were QR esti-
mates based on two previous observations (not shown). The form of the model for
conditional centiles proposed by WH involves a linear adjustment for past history,
whereas the lognormal conditional percentiles are extremely nonlinear in their re-
lationship with previous measurements. It may well be that the extensions of the
basic WH model, as discussed in Section 7.1 of their paper, would overcome this
bias.

While regression quantiles do indeed provide an accessible and flexible means
of estimating marginal and conditional percentiles, the above examples illustrate
that gains can be made in terms of precision of estimates if an appropriate distrib-
utional structure can be identified. In addition, if bias is to be avoided, conditional
percentile estimates using quantile regression will require careful choice of the
form of the model for past history. As a counterpoint, however, as noted by WH,
the conditional distributional structure may be more challenging to correctly iden-
tify than the marginal structure. WH provide an example of a setting where the
distributional assumptions are not met and where hence the distributionally based
centile estimates are biased.

TABLE 2
Mean and standard deviation (SD) of simulated conditional percentile

estimates at gestational age 26 weeks

Path “A” 3rd (52.5)a 10th (55.1) 50th (61.0) 90th (67.6) 97th (70.9)

Method Mean SD Mean SD Mean SD Mean SD Mean SD

QR 52.8 0.57 55.5 0.42 61.5 0.33 68.3 0.51 71.8 0.79
LMS 52.5 0.55 55.1 0.43 61.0 0.33 67.6 0.37 70.9 0.41
MVN 52.5 0.19 55.1 0.20 61.0 0.22 67.6 0.27 70.9 0.31

Path “B” 3rd (65.8) 10th (69.0) 50th (76.4) 90th (84.7) 97th (88.8)

QR 65.3 0.61 68.7 0.46 76.2 0.37 84.5 0.57 88.6 0.91
LMS 65.8 0.38 69.0 0.40 76.4 0.44 84.7 0.67 88.8 0.91
MVN 65.8 0.29 69.0 0.29 76.4 0.28 84.7 0.30 88.9 0.32

aTrue conditional percentile (mmHg).
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2. Drift. All of the methods of calculating conditional centiles implemented
above can be expected to indicate once-off jumps in the path of an individual, but
they are not able to deal satisfactorily with drift in an individual’s path. WH ac-
knowledge this when they state, for instance, that “The conditional growth charts
may be unsuccessful in screening out subjects with gradual but persistent slow-
down in growth.”

To illustrate the problem in the pregnancy context, consider a woman, “C,”
whose blood pressure reading is on the 60th, 70th, 80th and 90th marginal per-
centiles in weeks 18, 22, 26 and 30, respectively. The discussion here will focus
on true conditional percentiles, but the same comments carry over to the associ-
ated estimates under all three approaches considered here. In terms of the (true)
conditional percentiles, the path “C” lies on the 68th, 74th and 83rd conditional
percentiles in weeks 22, 26 and 30. The conditional centiles drift upward with the
observations and thereby the woman’s path is indicated as being progressively less
extreme, relative to the marginal centiles.

Another plausible scenario would be one where there is a jump, after which the
path remains steady at the new level. This might also be an indication of a potential
problem, but unless the jump were large enough to be picked up immediately, the
subsequent conditional percentiles would simply accommodate the change. Con-
sider a woman, “D,” whose blood pressure path has been moving along the (mar-
ginal) 50th percentile through week 22 of pregnancy and then at week 26 jumps
to the (marginal) 80th percentile, where it remains in weeks 30 and 34. The read-
ing in week 26 lies on the 85th conditional percentile but the subsequent readings
in weeks 30 and 34 (both also on the 80th marginal percentile) lie on the 66th
conditional percentile, because the conditional centiles have adjusted to the higher
path.

In both examples the same features would be observed for the estimated condi-
tional percentiles considered here. It is inherent in conditioning on past history that
all past history is assumed “normal.” One can argue that marginal and conditional
centiles should be used together: for instance, the fourth observation on the above
hypothetical woman “C” might be flagged at the 90th percentile of the marginal
chart in week 30. However, these examples do illustrate a severe limitation in the
usefulness of conditional centiles of this sort. Both of these types of paths are fea-
sible in many contexts and these sorts of anomalies will not instill confidence in
the nonstatistical user of such charts.

3. Centile charts as a screening tool. While centile charts may be of sci-
entific interest in their own right, for example, to characterize or compare popu-
lations, they are generally constructed with a view to some sort of screening. In
the context of children’s growth considered by WH, they state, for instance, that:
“When a measurement is extreme on the chart, the subject is often identified for
further investigation. An extreme measurement is likely to be a reflection of some
unusual underlying physical condition.” If the intention is to use the conditional
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centile chart as a screen for a “problem” outcome such as future obesity in chil-
dren’s growth, or pre-eclampsia when monitoring blood pressure in pregnancy,
then, as with any other screening method, it should be assessed in terms of its
diagnostic accuracy.

There are several aspects of screening accuracy which merit attention here.
First, note that there can be a strong association between a variable (e.g., a child’s
weight) and outcome (e.g., obesity) without the variable necessarily being a useful
screening tool (see, e.g., [2]). Some examples drawn again from the blood pressure
in pregnancy setting may illustrate this point.

Assume that a blood pressure reading at gestational age 22 weeks is the basis for
conditional percentiles at week 26, which are being used to screen for some prob-
lem outcome (“disease”). Assume further that the distribution of diastolic blood
pressure in the “diseased” is the same as that in the “normal” group prior to week
26, but that the two groups deviate in their means (but not variances) at week 26,
at which point the percentage difference between the means for the “diseased” and
“normal” groups is d . Then it is easily seen that, for a given specificity, x (where
specificity corresponds to the centile that is being used as a screen), the sensitivity
is given by

Sensitivity(x) = �

(
ln(1 + d)

σ

√
1 − ρ2

− �−1(x)

)
,

where � is the standard normal distribution function. In the above example, with
ρ = 0.6, for there to be 90% sensitivity and specificity at week 26, there would
have to be a 23% difference in mean blood pressure in the “diseased” relative to
the “normal” population in that week. This represents an absolute difference in
means of 15.6 mmHg, corresponding to a substantial 2.3 standard deviation differ-
ence in means. Note also that, if there was indeed no separation in the “diseased”
and “normal” populations prior to week 26, then the screening sensitivity in those
earlier weeks would be 1-specificity.

If, on the other hand, the percentage difference between the mean blood pressure
paths of “diseased” and “normal” were a constant, d , at all gestational ages (all
other distributional characteristics remaining the same), then it is also easily seen
that

Sensitivity(x) = �

(
ln(1 + d)

√
1 − ρ

σ
√

1 + ρ
− �−1(x)

)
.

Here, for a given specificity, sensitivity decreases with increasing ρ and the mar-
ginal percentiles would have greater sensitivity than the conditional percentiles at
all specificities. In the example described here, with ρ = 0.6, for there to be sensi-
tivity and specificity of 90% in any given week, the percentage difference in means
would need to be 67%. This example reinforces the discussion in Section 2, that
conditional centiles are perhaps most useful in identifying jumps in a path.
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The above examples consider once-off use of conditional centiles as a screen for
“disease.” In practice, of course, conditional centiles may be calculated at several
points in time. With repeated screenings, overall sensitivity will increase at the
expense of overall specificity (see, e.g., [3]). It should also be noted that, if the
prevalence of the condition being screened for is low, the majority of “screened
positive” individuals will be false positives. Depending on the consequences of
a positive screen, this may have a range of sequelae ranging from emotional trauma
to unnecessary invasive procedures.

WH have made a valuable contribution to the methodology available for es-
timating conditional centiles. However, there are limitations to the usefulness of
such centiles as a screening mechanism. The implementation of centile charts,
conditional or marginal, needs to be viewed in its entirety and this should include
an evaluation of their screening effectiveness. It may well be that there is diligent
measuring being carried out, to no useful purpose.
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