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1. Introduction. We first would like to congratulate the authors for their in-
teresting paper on the development of the innovative equi-energy (EE) sampler.
The EE sampler provides a solution, which may be better than existing methods,
to a challenging MCMC sampling problem, that is, sampling from a multimodal
target distribution π(x). The EE sampler can be understood as follows. In the equi-
energy jump step, (i) points may move within the same mode; or (ii) points may
move between two modes; but (iii) points cannot move from one energy ring to
another energy ring. In the Metropolis–Hastings (MH) step, points move locally.
Although in the MH step, points may not be able to move freely from one mode
to another mode, the MH step does help a point to move from one energy ring to
another energy ring locally. To maintain certain balance between these two types
of operations, an EE jump probability pee must be specified. Thus, the MH move
and the equi-energy jump play distinct roles in the EE sampler. This unique fea-
ture makes the EE sampler quite attractive in sampling from a multimodal target
distribution.

2. Tuning and “black-box.” The performance of the EE sampler depends on
the number of energy and temperature levels, K , energy levels H0 < H1 < · · · <

HK < HK+1 = ∞, temperature ladders 1 = T0 < T1 < · · · < Tk , the MH proposal
distribution, the proposal distribution used in the equi-energy jump step and the
equi-energy jump probability pee. Based on our experience in testing the EE sam-
pler, we felt that the choice of the Hk , the MH proposal and pee are most crucial
for obtaining an efficient EE sampler. In addition, the choice of these parameters is
problem-dependent. To achieve fast convergence and good mixing, the EE sampler
requires extensive tuning of K , Hk , MH proposal and pee in particular. A general
sampler is designed to be “black box” in the sense that the user need not tune
the sampler to the problem. Some attempts have been made for developing such
“black-box” samplers in the literature. Neal [4] developed variations on slice sam-
pling that can be used to sample from any continuous distributions and that require
little or no tuning. Chen and Schmeiser [2] proposed the random-direction interior-
point (RDIP) sampler. RDIP samples from the uniform distribution defined over
the region U = {(x, y) : 0 < y < π(x)} below the curve of the surface defined by
π(x), which is essentially the same idea used in slice sampling.
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3. Boundedness. It is not clear why the target distribution π(x) must be
bounded. Is this a necessary condition required in Theorem 2? It appears that the
condition supx π(x) < ∞ is used only in the construction of energy levels Hk for
k > 0 for convenience. Would it be possible to relax such an assumption? Other-
wise, the EE sampler cannot be applied to sampling from an unbounded π(x) such
as a gamma distribution with shape parameter less than 1.

If we rewrite

Dj = {x :h(x) ∈ [Hj,Hj+1)} = {
x : π(x) ∈ (

exp(−Hj+1), exp(−Hj)
]}

,

we can see that D0 corresponds to the highest-density region. Thus, if H1 is appro-
priately specified, and the guideline given in Section 3.3 is applied to the choice of
the rest of the Hj ’s, the boundedness assumption on π(x) may not be necessary.

4. Efficiency. The proposed EE sampler requires K(B + N) iterations be-
fore it starts the lowest-order chain {X(0)

n , n ≥ 0}. Note that here B is the number
of “burn-in” iterations and N is the number of iterations used in constructing an
empirical energy ring D̂k

j . As it is difficult to determine how quickly a Markov
chain {X(k)

n } converges, a relatively large B may be needed. If the chain X(k) does
not converge, the acceptance probability given in Section 3.1 for the equi-energy
move at energy levels lower than k may be problematic. Therefore, the EE sampler
is quite inefficient as a large number of “burn-in” iterations will be wasted. This
may be particularly a problem when K is large. Interestingly, the authors never
disclosed what B and N were used in their illustrative examples. Thus, the choice
of B and N should be discussed in Section 3.3.

5. Applicability in high-dimensional problems. Based on the guideline of
the practical implementation provided in the paper, the number of energy levels
K could be roughly proportional to the dimensionality of the target distribution.
Thus, for a high-dimensional problem, K could be very large. As a result, the EE
sampler may become more inefficient as more “burn-in” iterations are required
and at the same time, it may be difficult to tune the parameters involved in the EE
sampler.

For example, consider a skewed link model for binary response data proposed
by Chen, Dey and Shao [1]. Let (y1, y2, . . . , yn)

′ denote an n × 1 vector of n inde-
pendent dichotomous random variables. Let xi = (xi1, . . . , xip)′ be a p × 1 vector
of covariates. Also let (w1,w2, . . . ,wn)

′ be a vector of independent latent vari-
ables. Then, the skewed link model is formulated as follows: yi = 0 if wi < 0
and 1 if wi ≥ 0, where wi = x′

iβ + δzi + εi , zi ∼ G, εi ∼ F , zi and εi are inde-
pendent, β = (β1, . . . , βp)′ is a p × 1 vector of regression coefficients, δ is the
skewness parameter, G is a known cumulative distribution function (c.d.f.) of a
skewed distribution, and F is a known c.d.f. of a symmetric distribution. To carry
out Bayesian inference for this binary regression model with a skewed link, we
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need to sample from the joint posterior distribution of ((wi, zi), i = 1, . . . , n,β, δ)

given the observed data D. The dimension of the target distribution is 2n + p + 1.
When the sample size n is large, we face a high-dimensional problem. Notice that
the dimension of the target distribution can be reduced considerably if we integrate
out (wi, zi) from the likelihood function. However, in this case, the resulting poste-
rior distribution π(β, δ|D) contains many analytically intractable integrals, which
could make the EE sampler expensive or even infeasible to implement. The skewed
link model is only a simple illustration of a high-dimensional problem. Sampling
from the posterior distribution under nonlinear mixed-effects models with missing
covariates considered in [5] could be even more challenging.

In contrast, the popular Gibbs sampler may be more attractive and perhaps more
suitable for a high-dimensional problem because the Gibbs sampler requires only
sampling from low-dimensional conditional distributions. As MH sampling can be
embedded into a Gibbs step, would it be possible to develop an EE-within Gibbs
sampler?

6. Statistical estimation. In the paper, the authors proposed a sophisticated
but interesting Monte Carlo method to estimate the expectation Eπ0[g(X)] under
the target distribution π0(x) = π(x) using all chains from the EE sampler. Due to
the nature of the EE sampler, the state space X is partitioned according to the en-
ergy levels, that is, X = ⋃K

j=0 Dj . Thus, this may be an ideal scenario for applying
the partition-weighted Monte Carlo method proposed by Chen and Shao [3]. Let
{X(0)

i , i = 1,2, . . . , n} denote the sample under the chain X(0) (T = 1). Then, the
partition-weighted Monte Carlo estimator is given by

Êπ0[g(X)] = 1

n

n∑
i=1

K∑
j=0

wjg
(
X

(0)
i

)
1
{
X

(0)
i ∈ Dj

}
,

where the indicator function 1{X(0)
i ∈ Dj } = 1 if X

(0)
i ∈ Dj and 0 otherwise,

and wj is the weight assigned to the j th partition. The weights wj may be es-
timated using the combined sample, {X(k), k = 1,2, . . . ,K}, under the πk for
k = 1,2, . . . ,K .

7. Example 1. We consider sampling from a two-dimensional normal mix-
ture,

f (x) =
2∑

i=1

1

2

[
1

2π
|�i |−1/2 exp

{
−1

2
(x − µi)

′�−1
i (x − µi)

}]
,(7.1)

where

x = (x1, x2)
′, µ′

1 = (0,0), µ′
2 = (5,5)
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and

�i =
(

σ 2
1 σ1σ2ρi

σ1σ2ρi σ 2
2

)

with σ1 = σ2 = 1.0, ρ1 = 0.99 and ρ2 = −0.99. The purpose of this example is to
examine performance of the EE sampler under a bivariate normal distribution with
a high correlation between X1 and X2. Since the minimum value of the energy

function h(x) = − log(f (x)) is around log(4πσ1σ2

√
1.0 − ρ2

i ) ≈ 0.573, we took
H0 = 0.5. K was set to 2. The energy ladder was set between Hmin and Hmin +100
in a geometric progression, and the temperatures were between 1 and 60. The equi-
energy jump probability pee was taken to be 0.1. The initial states of the chain
X(i) were drawn uniformly from [0,1]2. The MH proposal was taken to be bivari-
ate Gaussian: X

(i)
n+1 ∼ N2(X

(i)
n , τ 2

i TiI2), where the MH proposal step size τi for
the ith-order chain X(i) was taken to be 0.5 such that the acceptance ratio was in
the range of (0.23,0.29). The overall acceptance rate for the MH move in the EE
sampler was 0.26. We used 2000 iterations to burn in the EE sampler and then
generated 20,000 iterations. Figure 1 shows autocorrelations and the samples gen-
erated in each chain based on the last 10,000 iterations. We can see, from Figure 1,
that the EE sampler works remarkably well and the high correlations do not impose
any difficulty for the EE sampler at all.

8. Example 2. In this example, we consider another extreme and more chal-
lenging case, in which we assume a normal mixture distribution with different
variances. Specifically, in (7.1) we take

�i =
(

σ 2
i1 σi1σi2ρi

σi1σi2ρi σ 2
i2

)

with σ11 = σ12 = 0.01, σ21 = σ22 = 1.0 and ρ1 = ρ2 = 0. Since the minimum
value of the energy function h(x) is around −6.679, we took H0 = −7.0. We
first tried the same setting for the energy and temperature ladders with K = 2,
pee = 0.1 and the MH proposal N2(X

(i)
n , τ 2

i TiI2). The chain X(0) was trapped
around one mode and did not move from one mode to another at all. A similar
result was obtained when we set K = 4. So, it did not help to simply increase K .
One potential reason for this may be the choice of the MH proposal N2(X

(0)
n , τ 2

0 I2)

at the lowest energy level. If τ0 is large, a candidate point around the mode with a
smaller variance is likely to be rejected. On the other hand, the chain with a small
τ0 may move more frequently, but the resulting samples will be highly correlated.

Intuitively, an improvement could be made by increasing K , tuning energy and
temperature ladders, choosing a better MH proposal and a more appropriate pee.
Several attempts along these lines were made to improve the EE sampler and the
results based on one of those trials are given below. In this attempt, K was set to 6,
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FIG. 1. Plots of EE samples from a normal mixture distribution with equal variances.

and H1 = log(4π) + α = 2.53 + α, where α was set to 0.6. The energy ladder
was set between H1 and Hmin + 100 in a geometric progression, the tempera-
tures were between 1 and 70, and pee = 0.5. The MH proposals were specified as
N2(X

(i)
n , τ 2

i TiI2) for i > 0 and N2(µ(X
(0)
n ),�(X

(0)
n )) at the lowest energy level,

where µ(X
(0)
n ) was chosen to be the mode of the target distribution based upon the

location of the current point X
(0)
n and �(X

(0)
n ) was specified in a similar fashion

as µ(X
(0)
n ). We used 20,000 iterations to burn in the EE sampler and then gener-

ated 50,000 iterations. Figure 2 shows the plots of the samples generated in X(0)

based on all 50,000 iterations. The resulting chain had excellent mixing around
each mode, and the chain also did move from one mode to another mode. How-
ever, the chain did not move as freely as expected.

Due to lack of experience in using the EE sampler, we are not sure at this mo-
ment whether the EE sampler can be further improved for this example. If so, we
do not know how. We would like the authors to shed light on this.
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FIG. 2. Normal mixture distribution with unequal variances. Samples of X(0) = (X
(0)
1 ,X

(0)
2 )

around (a) mode (0,0) and (b) mode (5,5). The marginal sample paths of X
(0)
1 (c) and X

(0)
2 (d).

9. Discussion. The EE sampler is a potentially useful and effective tool for
sampling from a multimodal distribution. However, as shown in Example 2, the
EE sampler did experience some difficulty in sampling from a bivariate normal
distribution with different variances. For the unequal variance case, the guidelines
for practical implementation provided in the paper may not be sufficient. The state-
ment, “the sampler can jump freely between the states with similar energy levels,”
may not be accurate as well.

As a uniform proposal was suggested for the equi-energy move, it becomes
apparent that the points around the modes corresponding to larger variances are
more likely to be selected than those corresponding to smaller variances. Initially,
we thought that an improvement might be made by assigning a larger probability to
the points from the mixand with a smaller variance. However, this would not work
as the resulting acceptance probability would become small. Thus, a more likely
selected point may be less likely to be accepted. It does appear that a uniform
proposal may be a good choice for the equi-energy move.
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