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DISCUSSION OF “EQUI-ENERGY SAMPLER” BY KOU,
ZHOU AND WONG

BY PETER MINARY AND MICHAEL LEVITT

Stanford University

Novel sampling algorithms can significantly impact open questions in
computational biology, most notably the in silico protein folding problem.
By using computational methods, protein folding aims to find the three-
dimensional structure of a protein chain given the sequence of its amino acid
building blocks. The complexity of the problem strongly depends on the pro-
tein representation and its energy function. The more detailed the model, the
more complex its corresponding energy function and the more challenge it
sets for sampling algorithms. Kou, Zhou and Wong have introduced a novel
sampling method, which could contribute significantly to the field of struc-
tural prediction.

1. Rough 1D energy landscape. Most of the energy functions describing off-
lattice protein models are assembled from various contributions, some of which
take account of the “soft” interactions between atoms (residues) far apart in se-
quence, while others represent the stiff connections between atoms directly linked
together with chemical bonds. As a consequence of this complex nature, the re-
sulting energy function is unusually rough even for short protein chains.

The authors apply the equi-energy (EE) sampler to a multimodal two-dimen-
sional model distribution, which is an excellent test for sampling algorithms. How-
ever, it lacks the characteristic features of distributions derived from complex
energy functions of off-lattice protein models. In studies conducted by Minary,
Martyna and Tuckerman [1], the roughness of such energy surfaces was repre-
sented by using a Fourier series on the interval [0,L = 10] [see Figure 1(a)],

h(x) = 2
20∑
i=1

c(i) sin(i2πx/L),(1)

where the coefficients are

(c1, c2, . . . , c20) = (0.21,1.25,0.61,0.25,0.13,0.10,1.16,0.18,0.12,0.23,

0.21,0.19,0.37,0.99,0.36,0.02,0.06,0.08,0.09,0.04).

The performance of various sampling algorithms on the energy function, h(x), is
related to their ability to effectively locate the energy basins separated by large
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FIG. 1. (a) The model system energy function, h(x) (dotted line), and the corresponding normalized
distribution, f (x), scaled by a constant, c = 200 (solid line). (b) Comparing distributions produced
by the EE sampler (EEMC) and parallel tempering (PT) to the target distribution (black) after 40,000
iterations in the interval [0,8]. (c) Similar comparison in the intervals [8,9.5] and [9.5,10]. (d) Con-
vergence rate �f to the target distribution f (x) as a function of the number of iterations for the EE
sampler with energy disk sizes of 5,000 (solid black), 10,000 (dashed black) and 2,500 (dot-dashed
black). The same quantity is plotted for parallel tempering (gray). The distributions presented in
(b) and (c) are produced from statistics, collected up to 40,000 iterations (arrow).

energy barriers. In particular, previous studies by Minary, Martyna and Tucker-
man [1] show that a superior convergence rate to the corresponding normalized
distribution,

f (x) = 1

N
exp(−h(x)), N =

∫ L

0
exp(−h(x)) dx,(2)

often correlates with enhanced sampling of more complex energy functions.
As a first test, the EE sampler with five Hybrid Monte Carlo chains (K = 4) was

applied to this problem. Hybrid Monte Carlo (HMC) [2] was used to propagate the
chains X(i), as it generates more efficient moves guided by the energy surface gra-
dient. Furthermore, it is well suited to complex high-dimensional systems because
it can produce collective moves. The initial values of the chains were obtained
from a uniform distribution on [0,L] and the MD step size was finely tuned, so
that the HMC acceptance ratio was in the range [0.4,0.5]. Figure 1 shows that for
all x ∈ [0,L], h(x) > −10, so that H0 was set to −10. The energy levels, which
were chosen by geometric progression in the interval [−10,10], are reported to-
gether with the temperature levels in Table 1. The EE jump probability pee was set



1638 S. C. KOU, Q. ZHOU AND W. H. WONG

TABLE 1
Sample size of energy rings

Energy rings

Chain < −8.7 [−8.7,−7.5) [−7.5,−5) [−5.0,−0.2) ≥ −0.2

X(0), T0 = 1.0 4295 1981 928 772 24
X(1), T1 = 2.0 2435 1734 1622 3526 683
X(2), T2 = 3.9 726 675 1338 6252 3009
X(3), T3 = 7.7 308 302 895 6847 5648
X(4), T4 = 15.3 240 220 714 7187 7639

to 0.15 and each chain was equilibrated for an initial period prior to the produc-
tion sampling of 100,000 iterations. The sizes of the energy rings were bounded, as
computer memory is limited, especially when applying the EE sampler to structure
prediction problems. After their sizes reach the upper bound, the energy rings are
refreshed by replacing randomly chosen elements. In Table 1, the number of sam-
ples present in each energy ring after the initial burn-in period is summarized. It
shows that energy rings corresponding to lower-order chains are rich in low-energy
elements, whereas higher-order chains are rich in high-energy elements.

For benchmarking the performance of the EE sampler, parallel tempering (PT)
trajectories of the same length were generated using the same number of HMC
chains, temperature levels and exchange probabilities. The average acceptance ra-
tio for EE jumps and replica exchange in PT was 0.82 and 0.45, respectively. Fig-
ures 1(b) and (c) compare the analytical distributions, f (x), with the numerical
ones produced by the EE sampler and PT after 40,000 iterations. All the minima
of f (x) are visited by both methods within this fraction of the whole sampling
trajectory. Quantitative comparison is obtained via the average distance between
the produced and analytical distributions,

�f (fk, f ) = 1

N

N∑
i=1

|fk(xi) − f (xi)|,(3)

where fk is the instantaneously computed numerical distribution at the kth itera-
tion and N is the number of bins used. Figure 1(d) depicts �f , as a function of the
number of MC iterations. It is clear that a substantial gain in efficiency is obtained
with the EE sampler, although the convergence rate is dependent on the maximum
size of energy disks.

2. Off-lattice protein folding in three dimensions. Efficient sampling and
optimization over a complex energy function are regarded as the most severe bar-
rier to ab initio protein structure prediction. Here, we test the performance of
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the EE sampler in locating the native-like conformation of a simplified united-
residue off-lattice β-sheet protein introduced by Sorenson and Head-Gordon [4]
based on the early works of Honeycutt and Thirumalai [3]. The model consists
of 46 pseudoatoms representing residues of three different types: hydrophobic (B),
hydrophilic (L) and neutral (N). The potential energy contains bonding, bending,
torsional and intermolecular interactions:

h =
46∑
i=2

kbond

2
(di − σ)2 +

46∑
i=3

kbend

2
(θi − θ0)

2

+
46∑
i=4

[A(1 + cosφ) + B(1 + cos 3φ)](4)

+
46∑

i=1,j≥+3

VXY (rij ), X,Y = B,L or N.

Here, kbond = 1000εH Å−2, σ = 1 Å, kbend = 20εH rad−2, θ0 = 105◦; εH =
1000K (Kelvin); the torsional potentials have two types: if the dihedral an-
gles involve two or more neutral residues, A = 0,B = 0.2εH (flexible angles),
and otherwise A = B = 1.2εH (rigid angles). The nonbonded interactions are
bead-pair specific, and are given by VBB = 4εH [(σ/rij )

12 − (σ/rij )
6], VLX =

8/3εH [(σ/rij )
12 + (σ/rij )

6] for X = B or L and VNX = 4ε[(σ/rij )
12] with

X = B,L or N . This model and its energy function are illustrated in Figure 2.
A particular sequence of “amino acids,” (BL)2B5N3(LB)4N3B9N3(LB)5L, is

known to fold into a β-barrel conformation as its global minimum energy structure
with the potential energy function given above. Thus, this system is an excellent
test of various sampling algorithms such as the EE sampler or parallel tempering.
Since the native structure is known to be the global minimum (hmin) on the energy
surface, H0 was set to hmin − 0.05|hmin|. The energy corresponding to the com-
pletely unfolded state (hunf) serves as an approximate upper bound to the energy
function because all the favorable nonbonded interactions are eliminated. This is
true only if we assume that bond lengths and bend angles are kept close to their
ideal values and there are no “high-energy collisions” between nonbonded beads.
K was taken to be 8 so that nine HMC chains were employed.

First, the energy levels H1, . . . ,H8 were chosen to follow a geometric progres-
sion in [H0,H8+1 = hunf], but this produced an average EE jump acceptance ratio
of 0.5. In order to increase the acceptance, the condition for geometric progression
was relaxed. The following alternative was used: (a) create an energy ladder by us-
ing Hi+1 = Hiλ; (b) uniformly scale H1, . . . ,H8+1 so that H8+1 = hunf. Applying
this strategy and using a λ drawn from [1.1,1.2] produced an average EE jump
acceptance ratio of ∼0.8. The equi-energy probability pee was set to 0.15 and the
parameters for the HMC chains X(i) were chosen in the same way as discussed in
the case of the 1D model problem.
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FIG. 2. Comparing equi-energy Monte Carlo (EEMC) and parallel tempering (PT) to fold 3D
off-lattice β-sheet model proteins with known native structure. The figure shows the united-residue
model with three types of residues: hydrophobic (black), hydrophilic (gray) and neutral (light gray).
The energy function contains contributions from bonds, bends, torsions and intermolecular interac-
tions, the last being attractive between hydrophobic–hydrophobic residues and repulsive otherwise.
The circular image in the center of the figure illustrates some of the ten initial structures, which were
generated by randomizing the torsions in the loop regions. These torsions are defined as the ones
which include more than two neutral residues. The three “RMSD from native vs. MC steps” subplots
contain representative trajectories starting from the three encircled configurations, whose distance
from the native state (sn) was ∼ 3.0, 6.0 and 9.0 Å, respectively. The last subplot gives the prob-
ability that a visited structure is contained in the set Sx = {s : RMSD(s, sn) ≤ x Å}, PT (gray) and
EEMC (black).

To test the ability of EEMC and PT to locate the native structure, ten initial
structures were obtained by randomly altering the loop region torsion angles. Then
both EEMC and PT trajectories starting from the same initial configurations were
generated. For each structure (s) the RMSD deviation from the native state (sn)

was monitored as a function of the number of MC iterations. The three represen-
tative trajectories depicted in Figure 2 start from initial structures with increasing
RMSD distance from the native structure. Some trajectories demonstrate the supe-
rior performance of the EE sampler over PT, since the native state is found with
fewer MC iterations. More quantitative comparison is provided by the probability
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distribution of the RMSD distance, P(x), which was based on a statistic collected
from all the ten trajectories. As Figure 2 indicates, the cumulative integral of the
distribution shows that 50% of the structures visited by the EE sampler are in S1.5
where Sx = {s : RMSD(s, sn) ≤ x Å}. The corresponding number for PT is 25%.

These tests show that the EE sampler can offer sampling efficiency better than
that of other state-of-the-art sampling methods such as parallel tempering. Careful
considerations must be made when choosing the setting for the energy levels and
disk sizes for a given number of chains. Furthermore, we believe that proper uti-
lization of the structural information stored in each energy disk could lead to the
development of novel, more powerful topology-based optimization methods.
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