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GENERALIZED SCORE TEST OF HOMOGENEITY FOR MIXED
EFFECTS MODELS

BY HONGTU ZHU AND HEPING ZHANG1

Columbia University and Yale University

Many important problems in psychology and biomedical studies require
testing for overdispersion, correlation and heterogeneity in mixed effects and
latent variable models, and score tests are particularly useful for this purpose.
But the existing testing procedures depend on restrictive assumptions. In this
paper we propose a class of test statistics based on a general mixed effects
model to test the homogeneity hypothesis that all of the variance components
are zero. Under some mild conditions, not only do we derive asymptotic dis-
tributions of the test statistics, but also propose a resampling procedure for ap-
proximating their asymptotic distributions conditional on the observed data.
To overcome the technical challenge, we establish an invariance principle for
random quadratic forms indexed by a parameter. A simulation study is con-
ducted to investigate the empirical performance of the test statistics. A real
data set is analyzed to illustrate the application of our theoretical results.

1. Introduction. Mixed effects and latent variable models provide an attrac-
tive framework to accommodate correlated data. For example, structure equation
models and generalized linear mixed models (GLMMs) are commonly used in
behavioral, educational and social sciences (e.g., [2, 3]). A fundamental question
in mixed effects or latent variable models is whether or not the inclusion of the
random effects or latent variables is necessary. Many authors have examined this
important issue using score test statistics in the framework of the GLMMs; see [8,
16, 21, 22, 32], for example. However, those authors did not fully exploit the gen-
eral correlation structure of the random effects (or latent variables).

Suppose that we observe data from n units and within the ith unit we have mi

measurements, i = 1, . . . , n. This is a typical data structure in longitudinal and
family studies that are popular in social and biomedical studies. In longitudinal
studies, the unit is usually a person or an animal. In family studies, the unit is
generally a family. In addition to the following two examples, other examples can
be found in [38].
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EXAMPLE 1 (Segregation analysis of ordinal traits). To study the genetic in-
heritance pattern of many health conditions such as cancer and psychiatric dis-
orders, Zhang, Feng and Zhu [34] proposed a general framework for conducting
complex segregation analysis of ordinal traits based on the latent variable model
of Zhang and Merikangas [35]. Let Yi = (yi,1, . . . , yi,mi

)T be a vector of traits
and Xi the covariates from the ith family, i = 1, . . . , n. Without loss of generality,
suppose that yi,j assumes ordinal values 0, 1 or 2. To model the potential familial
correlation, they introduced a latent variable vector vi for each family to represent
common unmeasured environmental and genetic factors shared by family mem-
bers. Conditional on the {vi}, the yi,j ’s are assumed to be independent and follow
the proportional odds logistic model given by

logitP {yi,j = 0|vi} = xT
i,jβ + α0 + bi,j ,

(1)
logitP {yi,j ≤ 1|vi} = xT

i,jβ + α1 + bi,j ,

where α0 ≤ α1, bi,j depends on {vi} and xi,j is a covariate vector in the design
matrix Xi = (xT

i,1, . . . ,xT
i,mi

) (mi × q1) from the j th member in the ith family.
An important objective in collecting family data is to test familial aggregation and
inheritance, which can be achieved by testing var[bi,j ] = 0 for all i and j .

EXAMPLE 2 (Generalized linear mixed effects model). Consider a data set
that is composed of a response yi,j , covariate vectors xi,j and zi,j for observations
j = 1, . . . ,mi within clusters i = 1, . . . , n. We define the generalized linear mixed
effects models as

p(yi,j |bi ) = exp[φ{yi,j θi,j − a(θi,j )} + c(yi,j , φ)](2)

and µi,j = E(yi,j |bi ) = g(xT
i,jβ + zT

i,j bi ), where a(·), c(·) and g(·) are known
continuously differentiable functions. The random coefficients bi’s (q × 1) are
normally distributed such that E[bi] = 0 and E[bibT

i ] = �. Moreover, for i �= i′,
bi and bi′ are independent of each other. The so-called homogeneity test is to test
whether � = 0.

To summarize the two examples presented above, we consider the following
mixed effects model. We use (yi,j ,xi,j , zi,j ) to denote the j th observation in the
ith cluster. The total number of observations is N = ∑n

i=1 mi . Furthermore, we
assume that for each Yi , there exists an unobserved q ×1 latent variable (or random
effect) vector bi . Given {bi; i = 1, . . . , n}, the components of {Yi; i = 1, . . . , n} are
independent random variables and have the joint probability density function

p(Yi |bi) =
mi∏

j=1

p
(
yi,j |ψi,j

(
bi;β,γ(1)

)
,�

)
,(3)

where ψi,j (bi;β,γ(1)) = g(xT
i,jβ;fi,j (zi,j , γ(1))

T bi) and � is a dispersion para-
meter vector. In addition, g(·) is a known link function and fi,j (·) is a q × 1 vector
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function, and β and γ(1) are, respectively, q1 × 1 and q3 × 1 vectors. The unob-
served random variables, bi , satisfy E[bi] = 0 and E[bibT

i′ ] = �i,i′(γ ), where γ

is a q2 × 1 vector. Model (3) also includes the factor analysis model and the ran-
dom coefficient model, in which fi,j (·, ·) may depend on unknown parameters.
Hereafter, we include γ(1) in γ for notational simplicity.

We are interested in testing the homogeneity hypotheses

H0 :�i,i′(γ ) = 0 for all i, i′ vs. H1 :�i,i′(γ ) �= 0 for some i, i′.(4)

We generally conduct the omnibus testing in (4), because it is easy to control its
type I error. If the null hypothesis is rejected, it is interesting to find out which
components are nonzero. While the details warrant a separate investigation, the
results presented here will be useful for testing that some parameters in (4) equal
zero.

To test the homogeneity hypotheses in (4), we need to address the following
four issues: (a) a convenient parameterization for the homogeneity test; (b) the
construction of a score test statistic; (c) the asymptotic distribution of the score
test statistic under the null hypothesis; and (d) the computation of the p-value
from the asymptotic distribution.

The solution to the first issue on the parameterization lays the foundation for
resolving the subsequent issues. Let us examine a simple case of Example 2 with
q = 2. We write the covariance matrix of bi , � as(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
= σT

(
cos2(γ1) γ2 sin(γ1) cos(γ1)

γ2 sin(γ1) cos(γ1) sin2(γ1)

)
,(5)

where σT = σ 2
1 + σ 2

2 and (σ 2
1 /σT , σ 2

2 /σT ) = (cos2(γ1), sin2(γ1)). We see that the
null hypothesis in (4) is equivalent to �(γ ) = 0, that is, σT = 0. The first and sec-
ond derivatives of the log-likelihood function with respect to all parameters σ1, σ2,
and ρ in �(γ ) are not continuous when �(γ ) = 0; however, they are continuous
in σT at σT = 0 [1]. In this simple case, we simply test σT = 0 and treat the other
parameters as nuisance parameters.

When q ≥ 2, we consider a lower triangular Cholesky decomposition of �,
denoted by L = (�i,j ), which satisfies �i,i ≥ 0 for all i = 1, . . . , q and �i,j = 0
for i < j . Furthermore, we define L = �, where � = diag(�1,1, . . . , �q,q)/√∑q

i=1 �2
i,i and  = (γi,j ) is a q × q lower triangular matrix with γi,i = 1 for

i = 1, . . . , q . Let σT = ∑q
i=1 �2

i,i . Then � can be written as � = σT �T �. Thus,
the null hypothesis in (4) is equivalent to σT = 0.

To our knowledge, there are no satisfactory solutions to the remaining three
issues. For example, Chen, Chen and Kalbfleisch [5, 6], Chen and Chen [4],
Crainiceanu and Ruppert [10] and Zhu and Zhang [37] derived the asymptotic or
small sample distributions of the likelihood ratio statistics for some specific mixed
effects models under restrictive conditions. Others considered score test statistics.
Liang [21] and Commenges and Jacqmin-Gadda [8] considered the case when the
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random effect, bi , is scalar. Although Lin [22] and Hall and Præstgaard [16] con-
sidered a multidimensional bi , their fi,j (·, ·) does not contain γ(1). In other words,
the existing results do not cover our examples and the general model (3). Thus,
it is imperative for us to develop score test statistics and establish the asymptotic
theory under a more general framework.

2. Score test statistics of homogeneity.

2.1. Score test statistics. From now on, we write

�i,i′(γ ) = σT Wi,i′(γ ) for all i, i′ = 1, . . . , n,(6)

where σT is introduced above. Under the parameterization (6), we formally state
the homogeneity hypotheses as

H0 :σT = 0 vs. H1 :σT > 0.(7)

Letting ui = σ
−1/2
T bi , we see that E[ui] = 0 and E[uiuT

i′ ] = Wi,i′(γ ). Thus, the
log-likelihood function Ln(σT |β,γ,�) is given by

log

{∫ n∏
i=1

mi∏
j=1

p
(
yi,j |ψi,j

(
xT
i,jβ;fi,j

(
zi,j , γ(1)

)T uiσ
1/2
T

)
,�

)
dF(u1, . . . ,un|γ )

}
,

where F(u1, . . . ,un|γ ) is the distribution function of (u1, . . . ,un). Let ti,j =
σ

1/2
T ηi,j , where ηi,j = fi,j (zi,j , γ(1))

T ui . Similarly to Liang [21], we can show
that the first-order right derivative of Ln(σT |β,γ,�) at σT = 0, denoted by
TS(γ |β,�), is given by

0.5
∫ [{

n∑
i=1

mi∑
j=1

∂ logp(yi,j |ψi,j (xT
i,jβ; ti,j ))

∂ti,j
(0)ηi,j

}2

+
n∑

i=1

mi∑
j=1

[ηi,j ]2
{∂2 logp(yi,j |ψi,j (xT

i,jβ; ti,j ))
∂t2

i,j

(0)

}]
dF(u1, . . . ,un|γ );

see [38] for a detailed derivation. We will describe later how to estimate (β,�), but
for the time being, let us treat them as if they were known and not include them
as parameters to simplify the notation. That is, let TS(γ ) = TS(γ |β,�). If γ is
actually absent in all of the Wi,i′(γ )’s, TS(γ ) is a score test statistic identical to
that proposed by Liang [21] and Commenges and Jacqmin-Gadda [8]. In general,
however, TS(γ ) is not really a score statistic due to the presence of γ .

Let bK,K ′(γ ) be fi,j (zi,j , γ(1))
T Wi,i′(γ )fi′,j ′(zi′,j ′, γ(1)) and B(γ ) =

(bK,K ′(γ )) be an N × N matrix, where K = (i, j) and K ′ = (i ′, j ′). With this
notation, TS(γ ) can be decomposed into two terms,

TS(γ ) = UT B(γ )U − tr[VB(γ )],(8)
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where U and V are, respectively, an N × 1 vector and an N × N matrix. Let Ui,j

and Vi,j be the limits of ∂ logp(yi,j |ψi,j (xT
i,jβ; ti,j ))/∂ti,j and −∂2 logp(yi,j |

ψi,j (xT
i,jβ; ti,j ))/∂t2

i,j , respectively, as ti,j → 0. The K th element of U is Ui,j ,
and V is a diagonal matrix with K th element Vi,j .

Following Commenges and Jacqmin-Gadda [8], we can decompose TS(γ ) into
two terms,

TS(γ ) = TP (γ ) + TO(γ ), TO(γ ) = ∑
K

bK,K(γ )(U2
K − VK),

(9)
TP (γ ) = UT {B(γ ) − diag[B(γ )]}U = ∑

K �=K ′
bK,K ′(γ )UKUK ′,

where diag[B(γ )] is the N × N diagonal matrix of B(γ ). The first term TP (γ ) is
called a pairwise correlation term and the second term TO(γ ) is an overdispersion
term. Under the null hypothesis H0, we have

E[TP (γ )] = E[TO(γ ′)] = E[TP (γ )TO(γ ′)] = 0,

E[TS(γ )TS(γ ′)] = E[TP (γ )TP (γ ′)] + E[TO(γ )TO(γ ′)],
E[TP (γ )TP (γ ′)] = 2

∑
K �=K ′

bK,K ′(γ ′)bK,K ′(γ )EU2
KEU2

K ′,

E[TO(γ )TO(γ ′)] = ∑
K

bK,K(γ )bK,K(γ ′)[EU4
K + EV 2

K − 2E(U2
KVK)].

We construct three score test statistics in the following. We first define

XP (γ ) = TP (γ )√
IT P (γ )

,

(10)

XO(γ ) = TO(γ )√
IT O(γ )

and XS(γ ) = TS(γ )√
IT S(γ )

,

where IT O(γ ), IT S(γ ) and IT P (γ ) are the variances of TO(γ ), TS(γ ) and
TP (γ ), respectively. However, we need to estimate ξ = (β,�) in XP (γ ),XO(γ )

and XS(γ ) for testing and replace ξ by its estimator ξ̂ . Let ÛK and V̂K denote
the values of UK and VK evaluated at ξ̂ , respectively, which gives T̂O(γ ) =∑

K bK,K(γ )(Û2
K −V̂K), T̂P (γ ) = ∑

K �=K ′ bK,K ′(γ )ÛKÛK ′ and T̂S(γ ) = T̂P (γ )+
T̂O(γ ). We introduce

X̂P (γ ) = T̂P (γ )√
IEP (γ )

,

(11)

X̂O(γ ) = T̂O(γ )√
IEO(γ )

and X̂S(γ ) = T̂S(γ )√
IES(γ )

,
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where IEO(γ ), IES(γ ) and IEP (γ ) are the asymptotic variances of T̂O(γ ), T̂S(γ )

and T̂P (γ ), respectively, with ξ evaluated at ξ̂ . Assume that

N1/2(ξ̂ − ξ∗) = N−1/2
∑
K

FK + op(1),(12)

where ξ∗ is the true value of ξ and FK is a random function of (yK,xK, zK).
In addition, FK and FK ′ are independent of each other for K �= K ′. With
these preparations, we can show that T̂O(γ ) = ∑

K bK,K(γ )(Û2
K − V̂K) ≈∑

K{bK,K(γ )(U2
K − VK) − JN(γ )T FK} under some mild conditions, where

JN(γ ) = E[−N−1 ∂ξTO(γ )]. Furthermore, IEO(γ ) can be approximated by
IT O(γ )−2

∑
KbK,K(γ )E[(U2

K −VK)FT
K ]JN(γ )+JN(γ )T

∑
KE(FKFT

K )JN(γ ).
Because of the one-sided constraint σT ≥ 0, we consider X̂P (γ )1(X̂P (γ ) ≥ 0),

X̂O(γ )1(X̂O(γ ) ≥ 0) and X̂S(γ )1(X̂S(γ ) ≥ 0), where 1(A) is the indicator func-
tion of the event A. Furthermore, to remove the unknown γ , we introduce
the maximum statistics defined by SO = supγ {X̂O(γ )21(X̂O(γ ) ≥ 0)}, SP =
supγ {X̂P (γ )21(X̂P (γ ) ≥ 0)} and SS = supγ {X̂S(γ )21(X̂S(γ ) ≥ 0)}. In practice,
the null hypothesis is rejected if any of these three statistics {SO,SP ,SS} has a
large absolute value.

As a common practice, the foregoing use of the maximum of the score test sta-
tistics is based on power considerations (see, e.g., [14]). Because γ is identifiable
under the alternative hypothesis only, the maximization over γ takes effect under
the alternative hypothesis, as for the likelihood ratio test (LRT). We show in [38]
that SS yields an efficient test statistic because it recovers information from the
likelihood under the alternative hypothesis. Furthermore, we show that the score
test statistic proposed here is asymptotically equivalent to the LRT for testing the
homogeneity of random effects; see Theorems S.1 and S.2 in [38].

By now we have defined three score statistics for testing homogeneity under
mixed effects models, but we will discuss their asymptotic null distributions in
Section 3. Similar to Lin’s [22] method, an important feature of our score statistics
is that we only need to specify the first and second moments of the latent variables
in (8) for the distribution function F(b1, . . . ,bn;γ ). Thus, the test statistics are
expected to be robust with respect to the distribution of the random effects. In ad-
dition, our test statistics allow a general covariance structure of the latent variables,
and fi,j (·, ·) may depend on unknown parameters.

As we know, the optimality of a test depends on its power. To compare the power
of SQ,SP and SS with that of Lin [22], we consider sequences of local alternatives
to σT = 0. The asymptotic local power for SS follows from Theorem 2 in [14]; see
Theorems S.1–S.4 in [38] for details. Empirically, simulations in Section 4 will
demonstrate that the score statistic SS proposed here is more powerful than the
score statistic proposed by Lin [22] (see Tables 1 and 2).
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2.2. A resampling procedure. To assess the power of the three test statistics
{SS,SP ,SO}, we need to obtain empirical distributions for the score statistics in
lieu of their theoretical distributions. What follow are the four key steps in gen-
erating the stochastic processes that have the same asymptotic distributions as the
test statistics.

Step 1. We generate i.i.d. random samples, {v(r)
K,K ′ :K,K ′ = (i, j), j = 1, . . . ,

mi, i = 1, . . . , n}, from N(0,1). Here, the superscript (r) represents a replication
number.

Step 2. We calculate T̂
(r)
S (γ ) = T̂

(r)
P (γ ) + T̂

(r)
O (γ ) and

T̂
(r)
P (γ ) = √

2
∑

K �=K ′
bK,K ′(γ )ÛKÛK ′v(r)

K,K ′,

(13)
T̂

(r)
O (γ ) = ∑

K

v
(r)
K,K{bK,K(γ )(Û2

K − V̂K) − JN(γ )T F̂K},

where F̂K is an estimator of FK evaluated at ξ̂ . Then, we can calculate

X̂
(r)
S (γ ) = T̂

(r)
S (γ )√
IES(γ )

,

X̂
(r)
P (γ ) = T̂

(r)
P (γ )√
IEP (γ )

and X̂
(r)
O (γ ) = T̂

(r)
O (γ )√
IEO(γ )

.

It is important to note that conditional on the observed data, X̂
(r)
S (γ ), X̂

(r)
P (γ ) and

X̂
(r)
O (γ ) converge weakly to the three Gaussian processes described in Theorem 2

as N → ∞ (see Section 3). This can be shown using the conditional functional
central limit theorem; see Section 3 for details.

Step 3. We calculate the three test statistics

S
(r)
S = sup

γ∈

{
X̂

(r)
S (γ )21(X̂

(r)
S (γ ) ≥ 0)

}
, S

(r)
P = sup

γ∈

{
X̂

(r)
P (γ )21(X̂

(r)
P (γ ) ≥ 0)

}

and

S
(r)
O = sup

γ∈

{
X̂

(r)
O (γ )21

(
X̂

(r)
O (γ ) ≥ 0

)}
.

Step 4. We repeat the above three steps r0 times and obtain three realiza-
tions: {S(r)

S : r = 1, . . . , r0}, {S(r)
P :g = 1, . . . , r0} and {S(r)

O : r = 1, . . . , r0}. It can

be shown that the empirical distribution of S
(r)
S converges to the asymptotic dis-

tribution of SS . Similarly, S
(r)
O and S

(r)
P converge to the asymptotic distributions

of SO and SP , respectively. Therefore, the empirical distributions of these three
realizations form the basis for calculating the significance level and power of the
tests.
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2.3. Example 2 (Continued). Let us revisit Example 2 to illustrate how our
test statistics can be applied. Using the parameterization in Section 1, we see
that �(γ ) = σT W(γ ), and Wi,i′(γ ) equals W(γ ) for i = i ′ and is zero other-

wise. In this case, ui = σ
−1/2
T bi , ηi,j = zT

i,j ui , fi,j (zi,j , γ(1)) = zi,j and ti,j =
σ

1/2
T ηi,j = zT

i,j bi . Moreover, we define θi,j (ti,j ) = k(xT
i,j β + ti,j ) and µi,j (ti,j ) =

g(xT
i,jβ + ti,j ) to emphasize the fact that they depend on ti,j explicitly. After some

calculations, for model (2) we have Ui,j = φei,j k̇(xT
i,jβ + ti,j )|ti,j=0 and

Vi,j = {φä(θi,j (0))k̇(xT
i,jβ + ti,j )

2 − φei,j k̈(xT
i,jβ + ti,j )}|ti,j=0,

where the dots denote differentiation, θi,j (0) = k(xT
i,j β + ti,j )|ti,j=0 and ei,j =

yi,j − µi,j (0) = yi,j − µi,j (ti,j )|ti,j=0. In addition, bK,K ′(γ ) = zT
i,jW(γ )zi,j ′ for

i = i′ and is zero otherwise. From now on, we use k̇i,j to denote k̇(xT
i,jβ + ti,j )

evaluated at ti,j = 0 and likewise for k̈i,j . Thus, we have TS(γ ) = TO(γ )+TP (γ ),
TP (γ ) = ∑n

i=1
∑

j �=j ′ zT
i,jW(γ )zi,j ′φ2ei,j ei,j ′ k̇i,j k̇i,j ′ and

TO(γ ) =
n∑

i=1

mi∑
j=1

zT
i,jW(γ )zi,j [φ2e2

i,j k̇
2
i,j + φei,j k̈i,j − φä(θi,j (0))k̇2

i,j ].

Under the null hypothesis H0, we use the first four central moments of yi,j of
the exponential-family distributions [19, 33] to get

EU2
i,j = φä(θi,j (0))k̇2

i,j ,

EU4
i,j = k̇4

i,j

{
3φ2ä(θi,j (0))2 + φa(4)(θi,j (0))

}
,

EV 2
i,j = φä(θi,j (0))k̈2

i,j + φ2ä(θi,j (0))2k̇4
i,j and

E(U2
i,jVi,j ) = φ2a(3)(θi,j (0))k̇2

i,j k̈i,j + φ2ä(θi,j (0))2k̇4
i,j .

Thus, we can have IT S(γ ) = IT O(γ ) + IT P (γ ) and

IT P (γ ) = 2
n∑

i=1

mi∑
j,j ′=1,j �=j ′

{zT
i,jW(γ )zi,j ′ }2φ2ä(θi,j (0))ä(θi,j ′(0))k̇2

i,j k̇
2
i,j ′,

IT O(γ ) =
n∑

i=1

mi∑
j=1

{zT
i,jW(γ )zi,j }2[EU4

i,j + EV 2
i,j − 2E(U2

i,jVi,j )].

As discussed above, we need to replace β and φ by their estimates under H0.
The maximum likelihood estimate, β̂ , of β satisfies

β̂ − β∗ =
{

n∑
i=1

mi∑
j=1

ä(θi,j (0))k̇2
i,j xT

i,j xi,j

}−1 n∑
i=1

mi∑
j=1

k̇i,j ei,j xi,j + op(N−1/2),
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which gives FK for each K = (i, j). Moreover, we can calculate that

JN(γ ) = N−1
n∑

i=1

mi∑
j=1

zT
i,jW(γ )zi,j φ{ä(θi,j (0))k̇i,j k̈i,j + a(3)(θi,j (0))k̇3

i,j }xi,j ,

and IEO(γ ) = IT O(γ ) − JN(γ )T {∑n
i=1

∑mi

j=1 ä(θi,j (0))k̇2
i,j xT

i,j xi,j }−1JN(γ ), in

which β is replaced by β̂ . The strategy to deal with the unknown φ is similar.

3. Asymptotic null distribution of score test statistics. In this section, we
study the asymptotic properties of {XP (γ ), X̂P (γ ), X̂

(r)
P (γ )} under the null hy-

pothesis H0. Note that the asymptotic distributions of XO(γ ), X̂O(γ ) and X̂
(r)
O (γ )

have been widely discussed in the literature [25]. The asymptotic distribution
of X̂

(r)
S (γ ) follows from that of X̂

(r)
P (γ ) and X̂

(r)
O (γ ). We refer to [38] for details

on how to apply our asymptotic results in some specific examples.

3.1. Asymptotic null distribution. We denote ⇒ for weak convergence of
a sequence of stochastic processes indexed by γ ∈ , where the parametric
space  is a uniformly bounded convex compact subset of Rq2 . In addition,
the uniform metric is used to define the weak convergence. Moreover, for a
metric space {D, d}, we consider BL1(D) to be the space of real-valued func-
tions on D with Lipschitz norm bounded by 1, that is, for any h ∈ BL1(D),
supx∈D |h(x)| ≤ 1 and |h(x) − h(y)| ≤ d(x, y). As discussed in [29], as N → ∞,
a stochastic process, X

(r)
P , weakly converges to GP on D if and only if

suph∈BL1(D) |Eh(X
(r)
P ) − Eh(GP )| → 0.

We have the following theorems, but we defer the proofs of all theorems as well
as the assumptions to the Appendix.

Because XO(γ ) can be regarded as the sum of independent but not identically
distributed random variables indexed by γ , the asymptotic distribution of XO(γ ) is
a Gaussian process under some mild conditions by directly applying the functional
central limit theorem (FCLT) [25, 29]. Furthermore, after examining the expres-
sions for XP (γ ) and XS(γ ), we find that both of them are random quadratic forms
indexed by γ . Although the asymptotic properties of random quadratic forms have
been extensively studied in the literature (e.g., [12, 24]), those results are not ap-
plicable to XS(γ ) and XP (γ ), because these stochastic processes are indexed by γ .
Thus, an invariance principle for the quadratic form process indexed by γ needs to
be developed; see detailed discussion in Section 3.2.

THEOREM 1. Under conditions (A1)–(A5) in the Appendix and the null hy-
pothesis H0, XP (·), XO(·) and XS(·) converge weakly to centered Gaussian
processes as N → ∞.

Theorem 1 characterizes the asymptotic null distributions of the stochastic
processes of interest and forms the foundation for constructing test statistics.
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Let us understand the asymptotic properties of X̂O(γ ), X̂P (γ ) and X̂S(γ ).
Because X̂O(γ ) is also asymptotically equivalent to the sum of independent
random variables, it converges to a Gaussian process under some mild condi-
tions (see Theorem 10.6 of [25]). For X̂P (γ ), under suitable conditions we can
show that X̂P (γ ) = ∑

K �=K ′ bK,K ′(γ )ÛKÛK ′/
√

IEP (γ ) = XP (γ ) + op(1) and

IEP (γ ) = IT P (γ ) + op(1). Thus, X̂P (γ ) and XP (γ ) are asymptotically equiv-
alent. The asymptotic distribution of X̂S(γ ) can be established by noting that it is
a weighted sum of X̂O(γ ) and X̂P (γ ). To summarize our discussions, we have the
following theorem.

THEOREM 2. Under conditions (B1)–(B8) in the Appendix and the null hy-
pothesis H0, as N → ∞, X̂P (·) ⇒ GP (·), X̂O(·) ⇒ GO(·) and X̂S(·) ⇒ GS(·),
where GP , GO and GS are three centered Gaussian processes.

Theorem 2 delineates the asymptotic distributions of X̂P (γ ), X̂O(γ ) and
X̂S(γ ). In the generalized linear models, X̂O(γ ) is the same as several tests for
overdispersion [9]. In an example of a Bernoulli response variable, Jacqmin-Gadda
and Commenges [17] show that T̂S(γ ) is identical to the pairwise correlation term.

To derive asymptotic null distributions of SO , SP and SS , we apply the contin-
uous mapping theorem and have the following corollary.

COROLLARY. Under the assumptions of Theorem 2, SO
d→ supγ {GO(γ )2 ×

1(GO(γ ) ≥ 0)}, SP
d→ supγ {GP (γ )21(GP (γ ) ≥ 0)} and SS

d→ supγ {GS(γ )2 ×
1(GS(γ ) ≥ 0)}, where

d→ represents convergence in distribution as N → ∞.

3.2. Asymptotic distribution of a random quadratic form. As noted above,
to understand the asymptotic null distribution of {XP (γ ), X̂P (γ ), X̂

(r)
P (γ )}, we

need to investigate the asymptotic properties of the random quadratic forms in-
dexed by γ ∈ . For convenience, we will also use K to index the integers from 1
to N as well as the pairs (i, j), because there is a one-to-one correspondence be-
tween {K = (i, j) : j = 1, . . . ,mi, i = 1, . . . , n} and {K = 1, . . . ,N}. Consider the
quadratic form without diagonal terms

XP (γ ) = ∑
K �=K ′

cK,K ′(γ )xKxK ′,(14)

where x1, . . . , xN are a sequence of independent random variables such that
ExK = 0 and Ex2

K = 1 for all K = 1, . . . ,N . Note that the cK,K ′(γ )’s may de-
pend on N . We establish the asymptotic distribution of XP (γ ) as follows.

THEOREM 3. Under assumptions (C1)–(C4) in the Appendix, XP ⇒ GP ,
where GP is a centered Gaussian process with covariance matrix ρ(1)(γ, γ ′), as
N → ∞.
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Theorem 3 establishes an invariance principle for a random quadratic form in-
dexed by γ ; however, generalizing this result to a random quadratic form indexed
by an arbitrary index set warrants further investigation. To simulate the asymptotic
distribution of XP (γ ), we consider the quadratic form

X
(r)
P (γ ) = √

2
∑

K �=K ′
cK,K ′(γ )xKxK ′v(r)

K,K ′,(15)

where {v(r)
K,K ′ :K,K ′ = 1, . . . ,N} is a sequence of random variables defined in

Step 1 above. Let EV denote the expectation taken with respect to all v
(r)
K,K ′ con-

ditional on the data.

THEOREM 4. Assume that (C2)–(C4) in the Appendix are true and (C1) holds
for p ≥ 4. Then X

(r)
P (·) converges weakly to the same Gaussian process GP (·) as

N → ∞; that is, X
(r)
P is asymptotically measurable. In particular, as N → ∞,

suph∈BL1(�
∞()) |EV h(X

(r)
P ) − Eh(GP )| → 0, in probability.

One important feature of Theorem 4 is that we can use X
(r)
P to approximate the

Gaussian process GP . This theorem generalizes the resampling technique from the
independent but nonidentically distributed framework [20] to the more general ran-
dom quadratic setting. In particular, we propose a practical resampling technique
to simulate the asymptotic distribution of XP (γ ).

To consider the process X̂P (γ ), we introduce a sequence of independent random
functions {U1(s1, ξ), . . . ,UN(sN, ξ)} such that UK(sK, ξ∗) = xK . Furthermore, let
XP (γ, ξ − ξ∗) = ∑

K �=K ′ cK,K ′(γ )UK(sK, ξ)UK ′(sK ′, ξ). We can easily see that

XP (γ,0) = XP (γ ) and X̂P (γ ) = XP (γ, ξ̂ − ξ∗). In the following, we will prove
that if ξ̂ = ξ∗ + Op(N−1/2), then as N → ∞,

X̂P (γ ) = XP (γ, ξ̂ − ξ∗) = XP (γ ) + op(1).(16)

Thus, the asymptotic distribution of X̂P (γ ) is the same as that of XP (γ ) as de-
scribed in Theorem 3. The asymptotic distribution of X̂P (γ ) in Theorem 2 follows
directly from (16). A sufficient condition for (16) is that

sup
γ∈,‖h‖2≤M

|XP (γ,hN−1/2) − XP (γ,0)| = op(1)(17)

holds for any given M > 0, where ‖ · ‖2 is the Euclidean norm. The following
theorem validates this sufficiency condition.

THEOREM 5. Under assumptions (C1)–(C8) in the Appendix and ξ̂ = ξ∗ +
Op(N−1/2), X̂P (γ ) is asymptotically equivalent to XP (γ ) as N → ∞. In partic-
ular, (17) is true.

Theorem 5 first gives the exact conditions to guarantee the asymptotic equiv-
alence between X̂P (γ ) and XP (γ ). Similarly, we can use X

(r)
P (γ, ξ − ξ∗) =
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√
2

∑
K �=K ′ cK,K ′(γ )v

(r)
K,K ′UK(sK, ξ)UK ′(sK ′, ξ) to approximate the asymptotic

distribution of X̂P (γ ). In particular, X
(r)
P (γ, ξ̂ − ξ∗) has the same form as X̂

(r)
P (γ )

in Step 3 of Section 2.3. By using similar arguments to those in Theorem 5, we can
prove that X̂

(r)
P (γ ) = X

(r)
P (γ ) + op(1). As shown in Theorem 4, X

(r)
p converges

to the process GP in distribution conditional on the data. Combining Theorems
4 and 5, we can conclude that X̂

(r)
p (γ ) has desired properties, which leads to the

following corollary.

COROLLARY. Under assumptions (C1)–(C8), X̂
(r)
P (γ ) is asymptotically

equivalent to X
(r)
P (γ ) and X̂

(r)
P ⇒ GP conditional on the data.

4. Simulation study and a real example. There are two computational is-
sues related to our test procedures in Section 2. First, we need to replace ξ by ξ̂ . In
the following, we choose ξ̂ to be the maximum likelihood estimate obtained from
the Newton–Raphson algorithm under the null hypothesis. Second, the computa-
tion for generating the three realizations, as required in Step 4 of the resampling
process, is intensive. For instance, to generate {S(r)

S : r = 1, . . . , r0}, each S
(r)
S en-

tails a maximization process because S
(r)
S = supγ∈{X̂(r)

S (γ )21(X̂
(r)
S (γ ) ≥ 0)}. To

ease the computational burden, we approximate  by a grid A.

4.1. A simulation study. In this section, we use simulations to compare the
performance of SP , SO and SS , and the test of Lin [22], denoted as LS.

The simulated data sets were drawn from two generalized linear mixed models:
the logistic mixed model and the linear mixed model. We assume that the logistic
mixed model has the form

logitP(yi,j = 1|bi ) = 1.0 + 0.8xi,j1 + 0.5xi,j2 + (bi,1 + zi,j1bi,2).(18)

The linear mixed model takes the form

yi,j = 1.0 + xi,j1 + xi,j2 + (bi,1 + zi,j1bi,2) + εi,j ,(19)

where εi,j and the random effects bi = (bi,1, bi,2)
T are independent, and εi,j fol-

lows a normal distribution with mean zero and variance φ. The xi,j1, xi,j2 and
zi,j1 were simulated from a standard normal generator. The random effects bi

were simulated from a bivariate normal distribution with mean (0,0) and the
2 × 2 covariance matrix σ 2

1 (1, ρ1‖ρ1, ρ2). Using the parameterization (5),  is
given by (0, π] × [−δ0, δ0], where δ0 is any scalar in [0,1). We used the grid
A = {(iπ/20, j/16) : i = 1, . . . ,20; j = −15, . . . ,15}. The size of the grid was
based on computational feasibility and our empirical observation that it appears
large enough to perform well. In the resampling procedure, r0 was set to be 1,000.

For all score test statistics, we first compare the type I error under the null
hypothesis and the power under the alternative hypotheses. For the logistic
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mixed model (18), we generated observations from the Bernoulli distribution
B(1,P (yi,j = 1|bi )). We considered n = 30 and 50. Every unit contains 5 sub-
jects (mi = 5). We used correlations ρ1 = 0.5 and ρ2 = 1.0, and several different
values of σ1. For the linear mixed model (19), we demonstrate the gain of power by
considering the correlation structure among the random effects. The simulated data
set contains 40 (n) 4-subject units. To generate the random effects, we chose seven
different values of σ 2

1 and two sets of (ρ1, ρ2) given by (0.5,1) and (−0.3,0.2).
The results based on 10,000 replications are reported in Table 1. As expected,

a larger sample size improves the power of detecting heterogeneity. The rejection
rate under the null hypothesis is close to the nominal level of 0.05 for the score test
statistics. Under the alternative hypothesis, SS is slightly and consistently more

TABLE 1
Comparison of type I error and the power for the score test statistics under models (18) and (19) at

significance level 0.05. “Considered” and “ignored” represent including or excluding the
correlation in the score test statistics

σ 2
1 LS ŜO ŜP ŜS LS ŜO ŜP ŜS

logistic mixed model (18) and Bernoulli distribution
n = 30 (mi = 5) n = 50 (mi = 5)

0.0 0.049 0.048 0.054 0.060 0.052 0.056 0.048 0.054
0.3 0.216 0.060 0.282 0.292 0.312 0.076 0.426 0.446
0.6 0.484 0.064 0.600 0.608 0.681 0.061 0.760 0.780
0.8 0.626 0.060 0.734 0.734 0.840 0.070 0.908 0.906
1.2 0.828 0.050 0.884 0.886 0.969 0.092 0.972 0.972

linear mixed model (19)
� = σ 2

1 (1,0.5||0.5,1)

n = 40 (mi = 4)

ignored considered
0.00 0.047 0.022 0.054 0.053 0.058 0.030 0.051 0.055
0.05 0.186 0.063 0.203 0.233 0.232 0.054 0.213 0.265
0.10 0.433 0.116 0.389 0.477 0.483 0.106 0.414 0.538
0.15 0.639 0.172 0.609 0.700 0.689 0.158 0.632 0.719
0.20 0.788 0.225 0.757 0.819 0.812 0.233 0.771 0.845
0.25 0.873 0.282 0.845 0.894 0.898 0.284 0.847 0.915
0.30 0.923 0.332 0.902 0.940 0.944 0.341 0.905 0.952

� = σ 2
1 (1,−0.3||−0.3,0.2)

n = 40 (mi = 4)

ignored considered
0.05 0.113 0.026 0.140 0.153 0.121 0.040 0.146 0.165
0.10 0.217 0.031 0.289 0.309 0.267 0.039 0.313 0.332
0.15 0.397 0.038 0.475 0.496 0.452 0.058 0.479 0.518
0.20 0.586 0.043 0.638 0.646 0.606 0.081 0.639 0.675
0.25 0.605 0.051 0.751 0.770 0.736 0.094 0.762 0.795
0.30 0.797 0.053 0.848 0.849 0.828 0.114 0.853 0.880
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powerful than SP . This is because SS accounts for the overdispersion due to the
latent variables, which is tested by SO . Table 1 also suggests that power is im-
proved for all test statistics when a general correlation structure is assumed. It is
quite remarkable that, even with relatively small sample sizes (30–50), the incre-
ment of power is still evident. Not surprisingly, the loss of power is more severe
by ignoring the correlation when it is actually high. We should clarify that we used
a general correlation structure to obtain the results in Table 1, instead of the un-
derlying correlation. Also important, in all cases SS is more powerful than LS,
and the difference is sometimes substantial. This observation is consistent with the
fact that the likelihood ratio statistic under the constrained alternative is uniformly
more powerful than that for the unconstrained case and that there is an asymptotic
equivalence between the likelihood ratio statistic and the score statistic under both
the constrained and unconstrained alternatives [27, 28, 38].

We now examine the type I error of all score tests in the case of nuisance
overdispersion. For model (18), the binomial distribution, B(5,P (yi,j = 1|bi )),
was included in this study to introduce large overdispersion. We perturbed
model (18) with random intercepts, which are independent of each other and
subject specific. Specifically, we added σ 2

2 vi,j to the constant intercept 1 in
model (18), where vi,j was generated from N(0,1). For model (18), we simulated
random errors εi,j from N(0, φ exp(vi,j σ

2
2 )). We set σ1 = 0 and chose several

different values of σ2.
The results based on several different values of σ2 and 10,000 replications are

reported in Table 2. For binary data, the type I error is reasonably controlled for
the four statistics, even when σ2 is large. In contrast, under the binomial distribu-
tion, random intercepts lead to discrepancies between the significance levels and
the nominal level for SS , SO and LS, while the performance of SP remains rea-
sonable. For SS and SO , the discrepancy is greater for a larger σ2. This is because
SO is suitable for testing overdispersion. It is possible that SS and SO yield large
p-values whereas SP gives a small p-value. In this situation, these p-values sug-
gest the presence of overdispersion instead of heterogeneity of the random effects.
In addition, for the binomial distribution, SO is much more powerful than LS in
detecting the nuisance overdispersion. For the linear mixed model, the heteroge-
nous variance leads to inflated type I error of LS, while the performance of SS , SP

and SO remains stable.

4.2. Yale family study of comorbidity of alcoholism and anxiety (YFSCAA).
The YFSCAA was conducted to examine the patterns of familial aggregation of
alcoholism in the relatives of 115 probands with alcohol dependence compared to
those of 147 psychiatric (80 probands with anxiety disorders) and normal controls
(67 probands with no history of psychiatric disorders). The total sample used for
the familial aggregation analyses included 222 probands who had 1194 adult first-
degree relatives and spouses. We refer to [23] for a detailed description of the study
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TABLE 2
Comparison of the type I error in the presence of nuisance overdispersion for the score test statistics
under the logistic and linear mixed models at significance level 0.05. “Considered” and “ignored”

represent including or excluding the correlation in the score test statistics

σ 2
2 LS ŜO ŜP ŜS LS ŜO ŜP ŜS

logistic mixed model (18) and Bernoulli distribution
n = 30 (mi = 5) n = 50 (mi = 5)

0.3 0.055 0.054 0.050 0.054 0.051 0.056 0.040 0.040
0.6 0.048 0.054 0.056 0.066 0.048 0.054 0.048 0.046
0.9 0.055 0.056 0.061 0.074 0.042 0.046 0.066 0.048
1.2 0.058 0.058 0.070 0.068 0.045 0.060 0.061 0.060

logistic mixed model (18) and binomial distribution
n = 30 (mi = 5) n = 50 (mi = 5)

0.2 0.131 0.195 0.054 0.105 0.163 0.346 0.055 0.154
0.4 0.265 0.522 0.052 0.188 0.364 0.784 0.062 0.298
0.6 0.420 0.792 0.061 0.276 0.568 0.964 0.062 0.435
0.8 0.558 0.942 0.063 0.374 0.734 0.998 0.073 0.568
1.0 0.670 0.987 0.061 0.444 0.863 1.000 0.068 0.673

linear mixed model (19)
n = 40 (mi = 4)

ignored considered
0.25 0.084 0.010 0.048 0.039 0.188 0.011 0.042 0.031
0.50 0.119 0.010 0.040 0.041 0.199 0.029 0.043 0.045
0.75 0.170 0.009 0.041 0.034 0.272 0.023 0.043 0.031
1.00 0.212 0.005 0.039 0.030 0.317 0.016 0.037 0.031

design and data collection. Recently, Zhang, Feng and Zhu [34] developed a latent
variable model as described in Example 1 and a two-step procedure for assessing
familial aggregation and heritability of disease, based on the assumption that the
elements of vi follow a Bernoulli distribution. The importance of our reanalysis
is to demonstrate how to use our new results to remove the restrictive Bernoulli
assumption on vi .

As in Section 2.4 of [34], for any (i, j), we have

var(bi,j ) = α2
2 + γ1(1 − γ1)[(1 − γ1)α

2
3 + γ1(α3 + α4)

2 + (α3 + γ1α4)
2].

Similarly, we can get cov(bi,j , bi,k) for all j, k = 1, . . . ,mi . Let σT = var(bi,j ).
Then we have var(bi ) = �i,i = σT Wi,i(γ ) for the ith family. For example, for a
nuclear family with two siblings, we can show that

var(bi ) = �i,i = σT




1 ρ2 ρ0 ρ0
ρ2 1 ρ0 ρ0
ρ0 ρ0 1 ρ1
ρ0 ρ0 ρ1 1


 ,
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where ρ2 = α2
2/σT , ρ0 = [α2

2 + γ1(1 − γ1)(α3 + γ1α4)
2]/σT and ρ1 = [α2

2 +
γ1(1 − γ1)(α3 + γ1α4)

2 + 0.25γ 2
1 (1 − γ1)

2α2
3]/σT . Let α2/Sα = cos(γ2), α3/Sα =

sin(γ2) cos(γ3) and α4/Sα = sin(γ2) sin(γ3), where Sα =
√

α2
2 + α2

3 + α2
4. Then ρ0,

ρ1 and ρ2 can be written as functions of γ1, γ2 and γ3, which are nuisance parame-
ters here. It is noteworthy that deriving these correlation parameters is relatively
straightforward for a general pedigree.

The score test statistics presented in Section 2 can be used to detect the familial
correlation that includes both environmental and genetic factors through testing
the hypothesis σT = 0. Under the null hypothesis, the maximum likelihood esti-
mate is (1.3341,−0.4181,0.0178,−1.6501,−1.1522). To compute the maximum
score test statistics, we used r0 = 10,000 and approximated the nuisance parame-
ter domain  = [0.01,0.99]×[−π/2, π/2]×[−π/2, π/2] by a 15×15×15 grid,
A = {(i/16, jπ/14, kπ/14) : i = 1, . . . ,15; j, k = −7, . . . ,7}. Accordingly, SO ,
SP and SS equal 1.23, 64.22 and 63.91, respectively. The p-value for SO is 0.158,
revealing no evidence for the overdispersion. The p-values for SP and SS are less
than 0.0001, providing significant support for familial aggregation and inheritabil-
ity of alcoholism. To ensure that the size of the approximating grid does not affect
our analysis, we considered a series of grids from smallest size 2 × 2 × 2 to largest
size 100 × 100 × 100. The differences in the approximated values for SO , SP

and SS are indeed so small that they had no impact on our analysis.

5. Discussion. We have proposed several score statistics to test homogene-
ity and overdispersion in the mixed effects and latent variable models. The major
advantage of these statistics is that they do not depend on the distribution of the
random effects except for their mean and variance. Simulation studies demonstrate
that both SP and SS have great power in detecting the heterogeneity in latent vari-
ables, but the type I error of SS is inflated in the case of nuisance overdispersion
(Table 2). We have also examined a number of simulated data sets and one real
application to highlight the broad spectrum of the applications for which our test
procedures can be used. Another advantage of these statistics is that they auto-
matically impose the positive semidefinite constraint on the variance components
of �i,i′(γ )’s. For the model in Example 2, the statistic SS reduces to the projection
score test statistic [16], which asymptotically follows a mixture of χ2 distributions
under a H0 [26]. The simulation studies in Section 4 suggest that using a con-
strained score test can substantially increase the power of detecting heterogeneity.
See [38] for detailed discussion.

The score statistics proposed here are to test whether all the variance compo-
nents are zero. When the null hypothesis is rejected, it is also of interest to test
whether some of the variance components are zero. The advantage of testing the
overall hypothesis on all the variance components, followed by identifying some
nonzero components, is control of the type I error. Although we do not discuss how
to identify the nonzero components, our results can be useful for this purpose. For



SCORE TEST IN MIXED MODELS 1561

instance, SS can be directly applied to clustered designs [22] as n → ∞ and when
all mi ’s are bounded by a constant, and the asymptotic distribution of SS can also
be derived under an M-dependent sequence in nested models by using the func-
tional central limit theorem for dependent data [13]. In particular, we can follow
the derivation in Section 2 to develop a score test by using the parameterization
given in Section 1, and use a parametric bootstrap (or resampling procedure) to
approximate the p-value. However, it is beyond the scope of this work to address
all these related issues in detail.

Many issues still merit further research. One major issue is the empirical perfor-
mance of the test statistics in finite samples under different situations, such as pro-
portional hazard models with random effects [30] and genetic linkage test. Other
possible applications include tests of spatial homogeneity for spatial processes,
tests of serial correlation for state space models and tests of the Markov (or semi-
Markov) hypothesis [8]. In addition, our result can be used to address important
practical problems such as the selection of the random effects components in a
generalized linear mixed model [7, 11]. Our results combined with those in [10]
may also be useful in mixed effects models for semiparametric regression. It is
noteworthy that our assumptions in this paper are not optimal. Some extensions
are still possible and warrant future research. Another major issue is to further as-
sess the impact of the grid dimension on the quality of approximation, even though
some empirical evidence suggests that a rough grid works very well. Also see [1]
and [36].

APPENDIX: PROOFS AND TECHNICAL DETAILS

We introduce some notation as follows:

xK = UK√
EU2

K

, cK,K(γ ) = 0,

cK,K ′(γ ) = bK,K ′(γ )

√√√√EU2
KEU2

K ′
IT P (γ )

, K �= K ′,

yK = (U2
K − VK)√

Var(U2
K − VK)

,

dK(γ ) = bK,K(γ )

√
Var(U2

K − VK)

IT O(γ )
,

λN(1)(γ ) =
√

IT P (γ )

IT S(γ )
and λN(2)(γ ) =

√
IT O(γ )

IT S(γ )
.
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Thus, XP (γ ) = ∑
K �=K ′ cK,K ′(γ )xKxK ′ , XO(γ ) = ∑

K dK(γ )yK and

XS(γ ) = TS(γ )√
IT S(γ )

= λN(1)(γ )
∑

K �=K ′
cK,K ′(γ )xKxK ′ + λN(2)(γ )

∑
K

dK(γ )yK.

A.1. Regularity conditions of Theorem 1.

(A1) As N → ∞, XP (γ ) converges to a Gaussian process with mean zero
and covariance matrix ρ(1)(γ, γ ′) and limN→∞ supγ∈ |µmax[C(γ )]| = 0, where
µmax[C(γ )] is the largest absolute eigenvalue of C(γ ) = (cK,K ′(γ )).

(A2) limN→∞ supKsupγ∈ |dK(γ )| = 0. The dK(γ )’s and cK,K ′(γ )’s have
first-order derivatives with respect to γ and for any {γt , t = 1, . . . , q2},∑

Ksupγ∈[∂γt dK(γ )]2 < ∞ and
∑

K �=K ′ supγ∈[∂γt cK,K ′(γ )]2 < ∞.
(A3) The sequence {supγ∈ |dK(γ )‖yK | :K = 1, . . . ,N} satisfies the Linde-

berg condition.
(A4) For any γ and γ ′ in , limN→∞ ρN(2)(γ, γ ′) = ∑

K dK(γ )dK(γ ′) =
ρ(2)(γ, γ ′).

(A5) limN→∞ supγ∈ |λN(1)(γ ) − λ1(γ )| = 0 and λ1(γ ) is continuous in γ .

PROOF OF THEOREM 1. In terms of
∑

K dK(γ )yK , we can directly apply
the Jain–Marcus theorem [29] by using assumptions (A2)–(A4). The finite con-
vergence of XS(γ ) can be observed from Theorem 5 of [15] by using assump-
tions (A1)–(A3). To prove the asymptotic equicontinuity of XS(γ ), we note that
for any γ and γ ′ in , |XS(γ ) − XS(γ ′)| is bounded by∣∣λN(1)(γ )XP (γ ) − λN(1)(γ

′)XP (γ ′)
∣∣ + ∣∣λN(2)(γ )XO(γ ) − λN(2)(γ

′)XO(γ ′)
∣∣.

The first term |λN(1)(γ )XP (γ ) − λN(1)(γ
′)XP (γ ′)| is bounded by∣∣λN(1)(γ ) − λN(1)(γ

′)
∣∣|XP (γ )| + ∣∣λN(1)(γ

′)
∣∣|XP (γ ) − XP (γ ′)|.

From (A5), it follows that |λN(1)(γ ) − λN(1)(γ
′)| can be sufficiently small when

γ and γ ′ are sufficiently close. Using the fact that XP (γ ) = Op(1), λN(1)(γ
′) ≤ 1

and XP (γ ) is stochastically continuous, we can prove that for any ε, η > 0, there
exists a δ > 0 such that

lim
N→∞P

{
sup

‖γ−γ ′‖≤δ

∣∣λN(1)(γ )XP (γ ) − λN(1)(γ
′)XP (γ ′)

∣∣ > ε

}
< η.

By using similar arguments, we can handle the second term. Therefore, XS(γ ) is
stochastically continuous. This completes the proof of Theorem 1. �

REMARK 1. Assumption (A1) will be established in Theorem 3 where we
introduce sufficient conditions (C1)–(C4). Assumptions (A2)–(A4) can be re-
placed by the assumptions of Theorem 10.6 of [25], but for simplicity, we pre-
fer (A2)–(A4) because they can be easily checked for all examples considered
here as well as those in [38].
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Note that UK depends on ξ∗ implicitly. So, we denote it by UK(hN−1/2)

when we replace ξ∗ in UK by ξ∗ + hN−1/2. We introduce similar notation
for VK , {IT O(γ ), IT S(γ ), IT P (γ )} and {IEO(γ ), IES(γ ), IEP (γ )}. After re-
placing ξ∗ by ξ∗ + hN−1/2 in TP (γ ), TS(γ ) and TO(γ ), we get TP (γ,h),
TS(γ,h) and TO(γ,h). We define λN(3)(γ ) = √

IEP (γ )/IES(γ ), λN(4)(γ ) =√
IEO(γ )/IES(γ ), yK(h) = [UK(hN−1/2)2 − VK(hN−1/2)]/

√
Var(U2

K − VK),

xK(h) = UK(hN−1/2)√
EU2

K

and dO,K(γ ) = bK,K(γ )

√
Var(U2

K − VK)

IEO(γ )
.

With these preparations, we get

XP (γ,h) = ∑
K �=K ′

cK,K ′(γ )xK(h)xK ′(h)

√
IEP (γ )

IEP (γ,hN−1/2)
,

XO(γ,h) = ∑
K

dO,K(γ )yK(h)

√
IEO(γ )

IEO(γ,hN−1/2)

and

XS(γ,h) = [
λN(3)(γ )XP (γ,h) + λN(4)(γ )XO(γ,h)

]√ IES(γ )

IES(γ,hN−1/2)
.

The following conditions are assumed for Theorem 2.

A.2. Regularity conditions of Theorem 2.

(B1) limN→∞ supγ∈,‖h‖2≤M ‖IEO(γ )[IEO(γ,hN−1/2)]−1 − 1‖ = 0 and

lim
N→∞ sup

γ∈,‖h‖2≤M

∥∥∥∥ IEP (γ )

IEP (γ,hN−1/2)
− 1

∥∥∥∥ = 0.

(B2) For any ‖h‖2 ≤ M , supK Var[yK(h) − yK(0) − ∂hyK(0)T h] → 0 as
N → ∞ and |yK(h) − yK(h′)| ≤ zK‖h − h′‖2, where supK E(z2

K) < ∞. In ad-
dition, supK E[yK(0)2 + ‖∂hyK(0)‖2

2] < ∞, supγ∈

∑N
K=1[dO,K(γ )]2 < ∞ and∑N

K=1 supγ∈[∂γt dO,K(γ )]2 < ∞.

(B3) N1/2(ξ̂ − ξ∗) = N−1/2 ∑
K FK + op(1), N−1/2 ∑

K FK = Op(1), and

lim
N→∞ sup

γ∈

∣∣∣∣∣
∑
K

dO,K(γ ) ∂hyK(0) − N1/2 1√
IEO(γ )

JN(γ )

∣∣∣∣∣ = 0.

(B4) fK(γ ) = bK,K(γ )/
√

IEO(γ ) has the first-order derivative with respect
to γ , and for any {γt , t = 1, . . . , q2}, ∑

K supγ∈[∂γt dK(γ )]2 < ∞. We assume
similar conditions for all components of JN(O)(γ ) = JN(γ )/

√
IEO(γ ).
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(B5) The sequence {supγ∈ |fK(γ )(U2
K − VK) − JN(O)(γ )T FK | :K = 1, . . . ,

N} satisfies the Lindeberg condition.
(B6) For any γ and γ ′ in , limN→∞ ρN(3)(γ, γ ′) = ρ(3)(γ, γ ′), where

ρN(3)(γ, γ ′) is given by∑
K

Cov
[
fK(γ )(U2

K −VK)−JN(O)(γ )T FK,fK(γ ′)(U2
K −VK)−JN(O)(γ

′)T FK

]
.

(B7) For any given M > 0, supγ∈,‖h‖2≤M |∑K �=K ′ cK,K ′(γ )[xK(h)xK ′(h) −
xKxK ′ ]| = op(1), and XP (γ,0) converges in distribution to a Gaussian process
with mean zero and covariance ρ(1)(γ, γ ′).

(B8) As N → ∞, λN(3)(γ ) uniformly converges to λ(3)(γ ) for all γ ∈ ,
and λ(3)(γ ) is continuous in γ .

REMARK 2. Some sufficient conditions for (B3) in a general mixed model
have been given by Jiang [18]. Some sufficient conditions for (B7) will be given
in (C1)–(C5), and other conditions will be given in Theorem 5. Also see Theorems
3 and 5 for more details.

PROOF OF THEOREM 2. The proof of Theorem 2 consists of three steps. In
the first step, we will establish that

XO(γ,h) = ∑
K

dO,K(γ )[yK(0) + ∂hyK(0)h](1 + op(1)
) + op(1).(20)

From (B1), it follows that XO(γ,h) = ∑
K dO,K(γ )yK(h)(1 + op(1)). Further-

more, we consider the stochastic process SP(I) = ∑
K dO,K(γ )[yK(h) − yK(0) −

∂hyK(0)h] indexed by {(γ,h) :γ ∈ ,‖h‖2 ≤ M}. For each fixed (γ,h), the vari-
ance of SP(I) converges to zero and (B2) leads to the result that SP(I) is sto-
chastically continuous. Thus, (20) is proved. We can use (B3) to deduce that
XO(γ,

√
N(ξ̂ − ξ∗)) can be approximated by

1√
IEO(γ )

∑
K

[bK,K(γ )(U2
K − VK) − JN(γ )T FK ][1 + op(1)] + op(1);

therefore, X̂O(γ ) converges to a Gaussian process with mean zero and covariance
matrix ρ3(γ, γ ′) because (B4)–(B6) are sufficient conditions for this claim.

The second step is to show that

XP

(
γ,

√
N(ξ̂ − ξ∗)

) = ∑
K �=K ′

cK,K ′(γ )xKxK ′ [1 + op(1)] + op(1).

This can be proved by using (B1) and (B7), which ends the second step. As the
last step, we combine the results on XP (γ,h) and XO(γ,h) and then follow the
proof of Theorem 1 to complete the proof for Theorem 2. �
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A.3. Regularity conditions of Theorem 3.

(C1) Let x1, . . . , xN be a sequence of independent random variables such that
ExK = 0 and Ex2

K = 1 for all K = 1, . . . ,N . We assume that supK{E|xK |p} < ∞
for some integer p greater than max(q2,2).

(C2) Var[XP (γ )] = 2
∑

K �=K ′ c2
K,K ′(γ ) = 2 and limN→∞ supγ∈|µmax[C(γ )]| = 0.

(C3) cK,K ′(γ ) has continuous first-order and second-order derivatives with re-
spect to γ . Let γt be any component of γ . We assume that∑

K �=K ′ supγ∈[∂γt cK,K ′(γ )]2 < ∞ for t = 1, . . . , q2.
(C4) For any γ and γ ′ in ,

lim
N→∞ρN(1)(γ, γ ′) = ∑

K �=K ′
cK,K ′(γ )cK,K ′(γ ′) = ρ(1)(γ, γ ′).

PROOF OF THEOREM 3. First, we need to show that any finite-dimensional
distributions of {XP (γ ) :γ ∈ } converge weakly to the corresponding finite-
dimensional distributions of {GP (γ ) :γ ∈ }. From (C1)–(C3) and the martin-
gale convergence theorem, it follows that

∑
K �=K ′ cK,K ′(γ )xKxK ′ converges to the

standard normal in distribution for any γ ∈ ; see [24] and [15].
Let us consider two points γ1 and γ2 in . By using the Cramér–Wald device,

we need to show that for any a1 and a2 in R,

XP (γ1, γ2) = a1XP (γ1) + a2XP (γ2)
L−→ N[0,2a2

1 + 2a2
2 + 4a1a2ρ(1)(γ1, γ2)].

From (C2) and (C4), we know that Var[XP (γ1, γ2)] converges to 2a2
1 + 2a2

2 +
4a1a2ρ(1)(γ1, γ2). If a2

1 + a2
2 + 2a1a2ρ(1)(γ1, γ2) = 0, then XP (γ1, γ2) converges

to zero in probability and a1GP (γ1) + a2GP (γ2) = 0. In other cases, we have
a2

1 + a2
2 + 2a1a2ρ(1)(γ1, γ2) > 0. From (C2), it follows that

|µmax[a1C(γ1) + a2C(γ2)]| ≤ |a1||µmax[C(γ1)]| + |a2||µmax[C(γ2)]| → 0.

Thus, XP (γ1, γ2) converges to the desired normal random variable in distribution.
Similarly, we can generalize this result to any finite cases.

From Lemma 1.3 of [24], it follows that {E|∑K �=K ′ [cK,K ′(γ1) − cK,K ′(γ2)] ×
xKxK ′ |p}2/p ≤ C

∑
K �=K ′ [cK,K ′(γ1) − cK,K ′(γ2)]2, where C is a scalar inde-

pendent of N . By using (C3), we have {E|∑K �=K ′ [cK,K ′(γ1) − cK,K ′(γ2)] ×
xKxK ′ |p}1/p ≤ C‖γ1 − γ2‖2. To prove the stochastic equicontinuity of XP (γ ),
we just need to show that E sup‖γ1−γ2‖2≤δ |∑K �=K ′ [cK,K ′(γ1) − cK,K ′(γ2)] ×
xKxK ′ |p → 0 as δ → 0 and N → ∞. We can finish our proof by noting that 

is a bounded compact set of Rq2 , whose packing number D(t,,‖ · ‖2) is of the
order of t−q2 . Theorem 2.2.4 of [29] concludes the proof. �

PROOF OF THEOREM 4. First, we will prove the unconditional weak conver-
gence of X

(r)
P (γ ). After some calculations, we can show that E[X(r)

P (γ )] = 0 and
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Cov[X(r)
P (γ1),X

(r)
P (γ2)] = 2

∑
K �=K ′ cK,K ′(γ1)cK,K ′(γ2) = 2ρN(1)(γ1, γ2). There-

fore, X(r)
P (γ ) and XP (γ ) have the same mean and covariance structures. Following

the proof of Theorem 4 in [15], we can show that X
(r)
P (γ ) as the sum of martingale

differences converges to a normal random variable for any γ ∈ , as N → ∞.
The Cramér–Wald device is applicable in any finite case. Following the similar
argument in Theorem 3, we can show the stochastic continuity of X

(r)
P (γ ). There-

fore, X(r)
P (γ ) converges to GP (γ ) in distribution; that is, X(r)

P (γ ) is asymptotically
measurable.

Second, given x1, . . . , xN , we have X
(r)
P (γ ) ∼ N[0,2

∑
cK,K ′(γ )2x2

Kx2
K ′ ] and

EV [X(r)
P (γ )X

(r)
P (γ ′)] is equal to 2

∑
K �=K ′ cK,K ′(γ )cK,K ′(γ ′)x2

Kx2
K ′ . We write

EV [X(r)
P (γ )X

(r)
P (γ ′)]/2 as the sum of

∑
K �=K ′ cK,K ′(γ )cK,K ′(γ ′)(x2

K − 1) ×
(x2

K ′ − 1), 2
∑

K �=K ′ cK,K ′(γ )cK,K ′(γ ′)(x2
K − 1) and ρN(1)(γ, γ ′). The first term

is also a random quadratic form. Its mean is zero and its variance is bounded by
C maxK{∑N

K ′=1 cK,K ′(γ ′)2}, which converges to zero; see Lemma 1.2 of [24]. By
using Theorem 1 of [31], we can show that

∑
K �=K ′ cK,K ′(γ )cK,K ′(γ ′)(x2

K − 1) ×
(x2

K ′ −1) converges to zero in probability. The same technique can be used to show
that

∑
K �=K ′ cK,K ′(γ )cK,K ′(γ ′)(x2

K − 1) converges to zero in probability. Thus,

EV [X(r)
P (γ )X

(r)
P (γ ′)] → ρ(1)(γ, γ ′) in probability. We can obtain the marginal

convergence in the conditional central limit theorem by using the Cramér–Wald
method.

For each δ > 0, let δ assign to each γ ∈  a closest element of a given fi-
nite δ-net of  with respect to ‖ · ‖2. The above finite convergence results lead
to suph∈BL1(�

∞()) |EV h(X
(r)
P (δ(·))) − Eh(GP (δ(·)))| → 0 in probability, as

N → 0. By continuity of GP (γ ), we have GP (δ(γ )) → GP (γ ) almost surely,
as δ → 0; that is, limδ→0 suph∈BL1(�

∞()) |Eh(GP (δ(·))) − Eh(GP (·))| = 0. Fi-

nally, suph∈BL1(�
∞()) |EV h(X

(r)
P (δ(·))) − EV h(X

(r)
P (·))| is bounded by

EV (sup‖γ−γ ′‖2≤δ |X(r)
P (γ ′) − X

(r)
P (γ )|). Because the expectation on the left-hand

side is smaller than E(supγ,γ ′∈;‖γ−γ ′‖2≤δ |X(r)
P (γ ′) − X

(r)
P (γ )|), which was es-

tablished by the unconditional weak convergence of X
(r)
P (γ ), the desired results

follow. �

Next, we state a few more assumptions. Let ŨK(hN−1/2) = UK(sK,hN−1/2)−
µK(hN−1/2), where µK(hN−1/2) = EUK(sK,hN−1/2).

A.4. Regularity conditions of Theorem 5.

(C5) UK(sK, ξ) has continuous first-order and second-order derivatives with
respect to ξ in an open neighborhood of ξ∗, denoted by ∂ξUK(sK, ξ) and ∂2

ξ UK(sK,

ξ), respectively.
(C6) supK Var{ŨK(hN−1/2)ŨK ′(hN−1/2) − xKxK ′ } → 0 as N → ∞.
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(C7) sup‖h‖2≤M

∑
K µK(hN−1/2)2 < ∞, supK sup‖h‖2≤M E1/p|ŨK(h ×

N−1/2)|p < ∞ and supK E1/p|ŨK(hN−1/2) − ŨK(h′N−1/2)|p < c‖h′ − h‖2 for
some integer p > q2 + q3.

(C8) supγ∈,‖h‖2≤M |∑K �=K ′ cK,K ′(γ )µK ′(hN−1/2)ŨK(hN−1/2)| = op(1).

PROOF OF THEOREM 5. We see that XP (γ,hN−1/2) can be written as the
sum of

∑
K �=K ′ cK,K ′(γ )ŨK(hN−1/2)ŨK ′(hN−1/2),

2
∑

K �=K ′
cK,K ′(γ )µK(hN−1/2)ŨK ′(hN−1/2)

and
∑

K �=K ′ cK,K ′(γ )µK(hN−1/2)µK ′(hN−1/2). In the following, we will prove
that every term in the foregoing equation converges to zero in probability.

For the third term, we have

term (III) ≤ sup
γ∈

µmax[C(γ )] sup
‖h‖2≤M

∑
K

µK(hN−1/2)2,

which converges to zero as N is sufficiently large. The second term (II) is just
assumption (C8).

For the first term, we need to consider the process TN(γ,h) = term (I) −
XP (γ,0). For each γ and h, TN(γ,h) has mean zero and variance given by

2
∑

K �=K ′
cK,K ′(γ )2 Var{ŨK(hN−1/2)ŨK ′(hN−1/2) − xKxK ′ },

which converges to zero by assumption (C6). To establish stochastic continuity
of TN(γ,h), we find that TN(γ,h) − TN(γ ′,h′) = (a) + (b) + (c) + (d), where
each term on the right-hand side is given by

(a) = ∑
K �=K ′

[cK,K ′(γ ) − cK,K ′(γ ′)]ŨK(hN−1/2)[ŨK ′(hN−1/2) − xK ′ ],

(b) = ∑
K �=K ′

[cK,K ′(γ ) − cK,K ′(γ ′)]xK ′ [ŨK(hN−1/2) − xK ],

(c) = ∑
K �=K ′

cK,K ′(γ ′)ŨK(h′N−1/2)[ŨK ′(hN−1/2) − ŨK ′(h′N−1/2)],

(d) = ∑
K �=K ′

cK,K ′(γ ′)ŨK ′(hN−1/2)[ŨK(h′N−1/2) − ŨK(hN−1/2)].

Using the same technique as in Lemma 1.3 of [24], we can finishes the proof by
using Theorem 2.2.4 of [29] and assumption (C7). �
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