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PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION
OF ARCH(∞) MODELS

BY PETER M. ROBINSON1 AND PAOLO ZAFFARONI

London School of Economics and Imperial College London

Strong consistency and asymptotic normality of the Gaussian pseudo-
maximum likelihood estimate of the parameters in a wide class of ARCH(∞)

processes are established. The conditions are shown to hold in case of expo-
nential and hyperbolic decay in the ARCH weights, though in the latter case
a faster decay rate is required for the central limit theorem than for the law of
large numbers. Particular parameterizations are discussed.

1. Introduction. ARCH(∞) processes comprise a wide class of models for
conditional heteroscedasticity in time series. Consider, for t ∈ Z = {0,±1, . . .}, the
equations

xt = σtεt ,(1)

σ 2
t = ω0 +

∞∑
j=1

ψ0j x
2
t−j ,(2)

where

ω0 > 0, ψ0j > 0 (j ≥ 1),

∞∑
j=1

ψ0j < ∞,(3)

and {εt } is a sequence of independent identically distributed (i.i.d.) unobservable
real-valued random variables. We shall assume that a strictly stationary solution
xt to (1) and (2) exists almost surely (a.s.) under (3), and call it an ARCH(∞)

process. We consider a parametric version, in which we know functions ψj(ζ ) of
the r × 1 vector ζ , for r < ∞, such that, for some unknown ζ0,

ψj(ζ0) = ψ0j , j ≥ 1.(4)

Also, ω0 is unknown and xt is unobservable but we observe

yt = µ0 + xt(5)
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for some unknown µ0.
ARCH(∞) processes, extending the ARCH(m), m < ∞, process of Engle [11]

and the GARCH(n,m) process of Bollerslev [4], were considered by Robinson
[29] as a class of parametric alternatives in testing for serial independence of yt .
Empirical evidence of Whistler [35] and Ding, Granger and Engle [10] has sug-
gested the possibility of long memory autocorrelation in the squares of financial
data. Taking [contrary to the first requirement in (3)] ω0 = 0, such long memory in
x2
t driven by (1) and (2) was considered by Robinson [29], the ψ0j being the au-

toregressive weights of a fractionally integrated process, implying
∑∞

j=1 ψ0j = 1;
see also Ding and Granger [9]. For such ψ0j , and the same objective function as
was employed to generate the tests of Robinson [29], Koulikov [20] established
asymptotic statistical properties of estimates of ζ0. On the other hand, under our
assumption ω0 > 0, Giraitis, Kokoszka and Leipus [13] found that such ψ0j are
inconsistent with covariance stationarity of xt , which holds when

∑∞
j=1 ψ0j < 1.

Finite variance of xt implies summability of coefficients of a linear moving aver-
age in martingale differences representation of x2

t ; see [37]. In this paper we do
not assume finite variance of xt , but rather that xt has a finite fractional moment
of degree less than 2. The first requirement in (3) was shown by Kazakevičius and
Leipus [18] to be necessary for existence of an xt satisfying (1) and (2). The inter-
mediate requirement in (3) is sufficient but not necessary for a.s. positivity of σ 2

t ,
and is imposed here to facilitate a clearer focus on the ψ0j , which decay, possibly
slowly, but never vanish.

We wish to estimate the (r + 2)× 1 vector θ0 = (ω0,µ0, ζ
′
0)

′ on the basis of ob-
servations yt , t = 1, . . . , T , the prime denoting transposition. The case when µ0 is
known, for example, µ0 = 0, is covered by a simplified version of our treatment. If
the yt were instead unobserved regression errors, we have µ0 = 0, but would then
need to replace xt by residuals in what follows; the details of this extension would
be relatively straightforward. Another relatively straightforward extension would
cover simultaneous estimation of the regression parameters ω0 and ζ0, after re-
placing µ0 by a more general parametric function; as in (1), (2) and (5), efficiency
gain is afforded by simultaneous estimation.

Under stronger restrictions than
∑∞

j=1 ψ0j < 1, Giraitis and Robinson [14] con-
sidered discrete-frequency Whittle estimation of ζ0, based on the squared obser-
vations y2

t (with µ0 known to be zero), this being asymptotically equivalent to
constrained least squares regression of y2

t on the y2
t−s , s > 0, a method employed

in special cases of (2) by Engle [11] and Bollerslev [4]. In these the spectral den-
sity of y2

t , when it exists, has a convenient closed form. This property, along with
availability of the fast Fourier transform, makes discrete-frequency Whittle esti-
mation based on the y2

t a computationally attractive option for point estimation,
even in very long financial time series. However, it has a number of disadvantages,
as discussed by Giraitis and Robinson [14]: it is not only asymptotically ineffi-
cient under Gaussian εt , but never asymptotically efficient; it requires finiteness
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of fourth moments of yt for consistency and of eighth moments for asymptotic
normality, which are sometimes considered unacceptable for financial data; its
limit covariance matrix is relatively complicated to estimate; it is less well moti-
vated in ARCH models than in stochastic volatility and nonlinear moving average
models, such as those of Taylor [33], Robinson and Zaffaroni [30, 31], Harvey
[15], Breidt, Crato and de Lima [5] and Zaffaroni [36], where the actual likelihood
is computationally relatively intractable, while Whittle estimation also plays a less
special role in the short-memory-in-y2

t ARCH models of Giraitis and Robinson
[14] than in the long-memory-in-y2

t models of the previous five references, where
it entails automatic “compensation” for possible lack of square-integrability of the
spectrum of y2

t . Mikosch and Straumann [26] have shown that a finite fourth mo-
ment is necessary for consistency of Whittle estimates, and that convergence rates
are slowed by fat tails in εt .

For Gaussian εt , a widely-used approximate maximum likelihood estimate is
defined as follows. Denote by θ = (ω,µ, ζ ′)′ any admissible value of θ0 and define

xt (µ) = yt − µ,

σ 2
t (θ) = ω +

∞∑
j=1

ψj(ζ )x2
t−j (µ)

for t ∈ Z, and

σ̄ 2
t (θ) = ω +

t−1∑
j=1

ψj(ζ )x2
t−j (µ)1(t ≥ 2)

for t ≥ 1, where 1(·) denotes the indicator function. Define also

qt (θ) = x2
t (µ)

σ 2
t (θ)

+ lnσ 2
t (θ), q̄t (θ) = x2

t (µ)

σ̄ 2
t (θ)

+ ln σ̄ 2
t (θ), 1 ≤ t ≤ T ,

QT (θ) = T −1
T∑

t=1

qt (θ), Q̄T (θ) = T −1
T∑

t=1

q̄t (θ),

θ̃T = arg min
θ∈�

QT (θ), θ̂T = arg min
θ∈�

Q̄T (θ),

where � is a prescribed compact subset of R
r+2. The quantities with over-bar are

introduced due to yt being unobservable for t ≤ 0; θ̃T is uncomputable. Because
we do not assume Gaussianity in the asymptotic theory, we refer to θ̂T as a pseudo-
maximum likelihood estimate (PMLE).

We establish strong consistency of θ̂T and asymptotic normality of T 1/2(θ̂T −
θ0), as T → ∞, for a class of ψj(ζ ) sequences. In the case of the first prop-
erty this is accomplished by first showing strong consistency of θ̃T and then
that θ̂T − θ̃T → 0, a.s. In the case of the second we likewise first show it for
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T 1/2(θ̃T −θ0) and then show that θ̂T − θ̃T = op(T −1/2), but the latter property, and
thus the asymptotic normality of T 1/2(θ̂T − θ0), is achieved only under a restricted
set of possible ζ0 values, and this seems of practical concern in relation to some
popular choices of the ψj(ζ ). These results are presented in the following section,
along with a description of regularity conditions and partial proof details. The
structure of the proof is similar in several respects to earlier ones for the GARCH
case of (2), especially that of Berkes, Horváth and Kokoszka [3]. Sections 3 and 4
apply the results to particular models.

2. Assumptions and main results. Our assumptions are as follows.

ASSUMPTION A(q), q ≥ 2. The εt are i.i.d. random variables with Eε0 = 0,
Eε2

0 = 1, E|ε0|q < ∞ and probability density function f (ε) satisfying

f (ε) = O
(
L(|ε|−1)|ε|b)

as ε → 0,

for b > −1 and a function L that is slowly varying at the origin.

ASSUMPTION B. There exist ωL,ωU,µL,µU such that 0 < ωL < ωU < ∞,

−∞ < µL < µU < ∞, and a compact set ϒ ∈ Rr such that � = [ωL,ωU ] ×
[µL,µU ] × ϒ .

ASSUMPTION C. θ0 is an interior point of �.

ASSUMPTION D. For all j ≥ 1,

inf
ζ∈ϒ

ψj (ζ ) > 0;(6)

sup
ζ∈ϒ

ψj (ζ ) ≤ Kj−d−1 for some d > 0;(7)

ψ0j ≤ Kψ0k for 1 ≤ k ≤ j,(8)

where K throughout denotes a generic, positive constant.

ASSUMPTION E. There exists a strictly stationary and ergodic solution xt to
(1) and (2), and for some

ρ ∈ (
(d + 1)−1,1

)
,(9)

with d as in Assumption D, we have

E|x0|2ρ < ∞.(10)
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ASSUMPTION F(l). For all j ≥ 1, ψj (ζ ) has continuous kth derivative on ϒ

such that, with ζi denoting the ith element of ζ ,∣∣∣∣ ∂kψj (ζ )

∂ζi1 · · · ∂ζik

∣∣∣∣ ≤ Kψj(ζ )1−η(11)

for all η > 0 and all ih = 1, . . . , r, h = 1, . . . , k, k ≤ l.

ASSUMPTION G. For each ζ ∈ ϒ , there exist integers ji = ji(ζ ), i = 1, . . . , r,

such that 1 ≤ j1(ζ ) < · · · < jr(ζ ) < ∞ and

rank
{
�(j1,...,jr )(ζ )

} = r,

where

�(j1,...,jr )(ζ ) = {
ψ

(1)
j1

(ζ ), . . . ,ψ
(1)
jr

(ζ )
}
, ψ

(1)
j (ζ ) = ∂ψj (ζ )

∂ζ
.

ASSUMPTION H. There exists

d0 > 1
2(12)

such that

ψ0j ≤ Kj−1−d0,(13)

and (10) holds for

ρ ∈ (
4/(2d0 + 3),1

)
.(14)

Assumption A(q) allows some asymmetry in εt , but implies the less primitive
condition (which does not even require existence of a density) employed in a sim-
ilar context by Berkes, Horváth and Kokoszka [3]. Assumptions B and C are stan-
dard. Inequalities (7) and (13) together imply d0 ≥ d , while (8) with (3) is milder
than monotonicity but implies ψ0j = o(j−1) as j → ∞. We take η > 0 in As-
sumption F(l) because ψj(ζ ) < 1 for all large enough j , by (7). Assumption G
is crucial to the proof of consistency, being used in Lemmas 9 and 10 to show
that in the limit θ0 globally minimizes QT (θ); it also ensures nonsingularity of
the matrix H0 in Proposition 2 and Theorem 2 below. This and other assumptions
are discussed in Sections 3 and 4 in connection with some parameterizations of
interest.

We present asymptotic results for the uncomputable θ̃T as propositions, those
for θ̂T as theorems. All these, and the corollaries in Sections 3 and 4 and lemmas
in Section 5, assume (1)–(5).

PROPOSITION 1. For some δ > 0, let Assumptions A(2 + δ), B, C, D, E, F(1)
and G hold. Then

θ̃T → θ0 a.s. as T → ∞.
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PROOF. The proof follows as in, for example, [17], Theorem 6, from uniform
a.s. convergence over � of QT (θ) to Q(θ) = Eq0(θ) established in Lemma 7, the
fact that QT (θ̂T ) ≤ QT (θ), and Lemma 10. �

THEOREM 1. For some δ > 0, let Assumptions A(2 + δ), B, C, D, E, F(1) and
G hold. Then

θ̂T → θ0 a.s. as T → ∞.(15)

PROOF. From Lemmas 7 and 8, Q̄T (θ) converges uniformly to Q(θ) a.s.,
whence the proof is as indicated for Proposition 1. �

Denote by κj the j th cumulant of εt and introduce

G0 = (2 + κ4)M − 2κ3(N + N ′) + P, H0 = M + 1
2P,

where

M = E(τ0τ
′
0), N = E(σ−1

0 τ0)e
′
2, P = E(σ−2

0 )e2e
′
2,

for τ0 = τ0(θ0), τt (θ) = (∂/∂θ) logσ 2
t (θ), and e2 the second column of the (r +

2) × (r + 2) identity matrix. In case µ0 is known (e.g., to be zero), we omit the
second row and column from M , and have instead G0 = (2 + κ4)M , H0 = M . In
case εt is Gaussian, κ3 = κ4 = 0, so G0 = 2H0 = 2M + P .

PROPOSITION 2. Let Assumptions A(4), B, C, D, E, F(3) and G hold. Then

T 1/2(θ̃T − θ0)
d→ N(0,H−1

0 G0H
−1
0 ) as T → ∞.

PROOF. Write

Q
(1)
T (θ) = ∂QT (θ)

∂θ
= T −1

T∑
t=1

ut (θ),

where

ut (θ) = τt (θ)
(
1 − χ2

t (θ)
) + σ−2

t (θ)νt (θ),

with

χt(θ) = x2
t (µ)

σ 2
t (θ)

, νt (θ) = ∂x2
t (µ)

∂θ
= −2xt (µ)e2.

By the mean value theorem,

0 = Q
(1)
T (θ̃T ) = Q

(1)
T (θ0) + H̃T (θ̃T − θ0),(16)

where H̃T has as its ith row the ith row of HT (θ) = T −1 ∑T
t=1 ht (θ) evaluated

at θ = θ̃
(i)
T , where ht (θ) = (∂2/∂θ ∂θ ′)QT (θ), ‖θ̃ (i)

T − θ0‖ ≤ ‖θ̃T − θ0‖, where
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we define ‖A‖ = {tr(A′A)}1/2 for any real matrix A. Now ut (θ0) = τt (θ0)(1 −
ε2
t ) − 2e2εt/σt is, by Lemmas 2, 3 and 7, a stationary ergodic martingale dif-

ference vector with finite variance, so from Brown [6] and the Cramér–Wold de-
vice, T 1/2Q

(1)
T (θ0) →d N(0,G0) as T → ∞. Finally, by Lemma 7 and Theorem 1,

H̃T →p H0, whence the proof is completed in standard fashion. �

Define

ūt (θ) = ∂q̄t (θ)

∂θ
, ḡt (θ) = ūt (θ)ū′

t (θ), h̄t (θ) = ∂2q̄t (θ)

∂θ ∂θ ′ ,

ḠT (θ) = T −1
T∑

t=1

ḡt (θ), H̄T (θ) = T −1
T∑

t=1

h̄t (θ).

THEOREM 2. Let Assumptions A(4), B, C, D, E, F(3), G and H hold. Then

T 1/2(θ̂T − θ0)
d→ N(0,H−1

0 G0H
−1
0 ) as T → ∞,(17)

and H−1
0 G0H

−1
0 is strongly consistently estimated by H̄−1

T (θ̂T )ḠT (θ̂T )H̄−1
T (θ̂T ).

PROOF. We have

0 = Q̄
(1)
T (θ̂T ) = Q̄

(1)
T (θ0) + ĤT (θ̂T − θ0),

where Q̄
(1)
T (θ) = (∂/∂θ)QT (θ) and ĤT has as its ith row the ith row of H̄T (θ)

evaluated at θ = θ̂
(i)
T , for ‖θ̂ (i)

T − θ0‖ ≤ ‖θ̂T − θ0‖. Thus, from (16),

θ̂T − θ̃T = (H̃−1
T − Ĥ−1

T )Q̄
(1)
T (θ0) − H̃−1

T

{
Q̄

(1)
T (θ0) − Q

(1)
T (θ0)

}
,

where the inverses exist a.s. for all sufficiently large T by Lemma 9. In view of
Proposition 2 and Lemma 8, (17) follows on showing that

Q̄
(1)
T (θ0) − Q

(1)
T (θ0) = op(T −1/2).

The left-hand side can be written (B1T + B2T + B3T )/T , where

B1T =
T∑

t=1

ε2
t b1t , B2T = −

T∑
t=1

(ε2
t − 1)b2t , B3T = −2e2

T∑
t=1

εtb3t ,

with

b1t = − σ̄
2(1)
t (σ 2

t − σ̄ 2
t )

σ̄ 4
t

, b2t = σ
2(1)
t

σ 2
t

− σ̄
2(1)
t

σ̄ 2
t

, b3t = σ 2
t − σ̄ 2

t

σ̄ 2
t σt

,

for σ̄ 2
t = σ̄ 2

t (θ0), σ
2(1)
t = σ

2(1)
t (θ0), σ̄

2(1)
t = σ̄

2(1)
t (θ0), with σ

2(1)
t (θ) =

(∂/∂θ)σ 2
t (θ), σ̄

2(1)
t (θ) = (∂/∂θ)σ̄ 2

t (θ). We show that BiT = op(T 1/2), i = 1,2,3.
For the remainder of this proof, we drop the zero subscript in ψ0j .
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Consider first B1T . We have

σ̄
2(1)
t =

(
1,−2

t−1∑
j=1

ψjxt−j ,

t−1∑
j=1

ψ
(1)
j x2

t−j

)′
,(18)

where ψ
(1)
j = ψ

(1)
j (ζ0). From Assumption F(1),

∥∥σ̄ 2(1)
t

∥∥ ≤ 1 + 2
t−1∑
j=1

ψj |xt−j | + K

t−1∑
j=1

ψ
1−η
j x2

t−j ,

for all η > 0. Now

t−1∑
j=1

ψj |xt−j | ≤
(

t−1∑
j=1

ψjx
2
t−j

)1/2( ∞∑
j=1

ψj

)1/2

≤ Kσ̄t ,

so since σ̄t ≥ ωL > 0,

σ̄−2
t

t−1∑
j=1

ψj |xt−j | ≤ Kσ̄−1
t < ∞.

From (8),

t−1∑
j=1

ψ
1−η
j x2

t−j ≤ Kψ
−η
t σ̄ 2

t .

It follows that ∥∥σ̄ 2(1)
t

∥∥/σ̄ 2
t ≤ Kψ

−η
t .(19)

On the other hand, by the cr -inequality ([23], page 157) and (10),

E(σ 2
t − σ̄ 2

t )ρ ≤ K

∞∑
j=t

ψ
ρ
j E|xt−j |2ρ ≤ K

∞∑
j=t

ψ
ρ
j .(20)

Thus, by (8) and (14),

E‖b1t‖ρ ≤ Kψ
−ηρ
t

∞∑
j=t

ψ
ρ
j ≤ K

∞∑
j=t

ψ
ρ(1−η)
j ≤ Kt1−ρ(d0+1)(1−η),(21)

choosing η < 1 − 1/{ρ(d0 + 1)}, which (14) enables. Applying the cr -inequality
again,

E‖B1T ‖ρ ≤ K

T∑
t=1

E|ε0|2ρE‖b1t‖ρ.
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Applying (21), this is O(1) when ρ > 2/(d0 + 1), while when ρ ≤ 2/(d0 + 1), we
may choose η so small to bound it by

KT 2−ρ(d0+1)(1−η) ≤ KT ρ/2−{1+2(d0+1)(1−η)}[ρ/2−2/{1+2(d0+1)(1−η)}] = o(T ρ/2),

using (12) [which requires (13)] and arbitrariness of η. Thus, B1T = op(T 1/2) by
Markov’s inequality.

Consider B2T . By independence of εt and b2t , by the cr -inequality when ρ ≤ 1
2 ,

and by the inequality of von Bahr and Esseen [34] and the fact that the ε2
t are i.i.d.

with mean 1 when ρ > 1
2 ,

E‖B2T ‖2ρ ≤ K

T∑
t=1

(E|ε0|4ρ + 1)E‖b2t‖2ρ ≤ K

T∑
t=1

(E‖b4t‖2ρ + E‖b5t‖2ρ),

where

b4t = σ
2(1)
t − σ̄

2(1)
t

σ 2
t

, b5t = σ̄
2(1)
t (σ 2

t − σ̄ 2
t )

σ̄ 2
t σ 2

t

.

Thus, from Assumptions F(1) and H,

‖b4t‖ ≤
(

2
∞∑
j=t

ψj |xt−j | +
∞∑

j=t

∥∥ψ(1)
j

∥∥x2
t−j

)/
σ 2

t

≤ σ−2
t

[
2

{ ∞∑
j=t

ψj

}1/2

+
{ ∞∑

j=t

(∥∥ψ(1)
j

∥∥2
/ψj

)
x2
t−j

}1/2]{ ∞∑
j=t

ψjx
2
t−j

}1/2

≤ K

{( ∞∑
j=t

j−d0−1

)1/2

+
( ∞∑

j=t

ψ
1−2η
j x2

t−j

)1/2}

≤ K

[
t−d0/2 +

{ ∞∑
j=t

j−(d0+1)(1−2η)x2
t−j

}1/2]
,

so

E‖b4t‖2ρ ≤ Kt−ρd0 + K

∞∑
j=t

j−(d0+1)ρ(1−2η) ≤ Kt1−(d0+1)ρ(1−2η)

for sufficiently small η. Thus,
∑T

t=1 E‖b4t‖2ρ is O(1) for ρ > 2/(d0 + 1), while
for ρ ≤ 2/(d0 + 1), it is bounded by

KT 2−(d0+1)ρ(1−2η) ≤ KT ρ−(d0+2){ρ−2/(d0+2)}+2(d0+1)ρη = o(T ρ)

from (14) and arbitrariness of η. Also, ‖b5t‖ ≤ K‖σ̄ 2(1)
t /σ̄ 2

t ‖(σ 2
t − σ̄ 2

t )1/2, so from
(19) and (20) we have E‖b5t‖2ρ ≤ Kt1−(d0+1)ρ(1−2η), and proceeding as before,

T∑
t=1

E‖b5t‖2ρ = o(T ρ),
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and thence, B2T = op(T 1/2).

Next,

E‖B3T ‖2ρ ≤ KE

∣∣∣∣∣
T∑

t=1

εtb3t

∣∣∣∣∣
2ρ

≤ K

T∑
t=1

E|ε0|2ρEb
2ρ
3t ,

applying the cr -inequality when ρ ≤ 1
2 and von Bahr and Esseen [34] when ρ > 1

2 .
Now b3t ≤ (σ 2

t − σ̄ 2
t )1/2σ̄−2

t , so from (20),

E‖B3T ‖2ρ ≤ K

T∑
t=1

∞∑
j=t

ψ
ρ
j

≤ K
{
1
(
ρ > 2/(d0 + 1)

) + (lnT )1
(
ρ = 2/(d0 + 1)

)
+ T 2−ρ(d0+1)1

(
ρ < 2/(d0 + 1)

)}
= o(T ρ),

much as before. Thence, B3T = op(T 1/2).
It remains to consider the last statement of the theorem, which follows on stan-

dard application of Propositions 1 and 2, Theorem 1 and Lemmas 7 and 8. �

In earlier versions of this paper we checked the conditions in the case of
GARCH(n,m) models in which the ψj(ζ ) decay exponentially and we allow the
possibility that the GARCH coefficients lie in a subspace of dimension less than
m+n; the details are available from the authors on request. However, the literature
on asymptotic theory for estimates of GARCH models is now extensive, recent ref-
erences including [3, 7, 12, 16, 22, 32], along with investigations of the properties
of the models themselves; see recently [2, 18, 25]. We focus instead on alternative
models which have received less attention, and for which our theoretical frame-
work is primarily intended.

We introduce the generating function

ψ(z; ζ ) =
∞∑

j=1

ψj(ζ )zj , |z| ≤ 1.(22)

3. Fractional GARCH models. A slowly decaying class of ARCH(∞)

weights was considered by Robinson [29], Ding and Granger [9] and Koulikov
[20], generated by

ψ(z; ζ ) = 1 − (1 − z)ζ , 0 < ζ < 1,(23)

where r = 1 and formally

(1 − z)d =
∞∑

j=0

�(j − d)

�(−d)�(j + 1)
zj , |z| ≤ 1, d > 0.(24)
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In these references ω0 = 0 was assumed in (2), but we assume ω0 > 0 and general-
ize (23) as follows. Introduce the functions aj = aj (ζ ), bj = bj (ζ ) and, for m ≥ 1,
n ≥ 0, n + m ≥ r ,

a(z; ζ ) =
m∑

j=1

aj z
j , b(z; ζ ) = 1 −

n∑
j=1

bj z
j1(n ≥ 1);(25)

and for all ζ ∈ ϒ ,

aj > 0, j = 1, . . . ,m; bj > 0, j = 1, . . . , n;(26)

b(z; ζ ) �= 0, |z| ≤ 1;(27)

a(z; ζ ) and b(z; ζ ) have no common zeros in z.(28)

Now take ψ(z; ζ ) (22) to be given by

ψ(z; ζ ) = a(z; ζ ){1 − (1 − z)d}
zb(z; ζ )

,(29)

with d = d(ζ ) satisfying

d ∈ (0,1).(30)

We call xt based on (29) a fractional GARCH, FGARCH(n, d0,m) process, for
d0 = d(ζ0).

COROLLARY 1. Let ψ(z; ζ ) be given by (29) and (25) with m ≥ 1, n ≥ 0, and
let d and the aj , bj be continuously differentiable. For some δ > 0, let Assumptions
A(2 + δ), B, C and E hold, with all ζ ∈ ϒ satisfying (26)–(28), (30) and

rank
{

∂

∂ζ
(a1, . . . , am, b1, . . . , bn, d)

}
= r.

Then (15) is true. Let also d and the aj , bj be thrice continuously differentiable
and d0 > 1

2 . Then (17) is true.

PROOF. Denoting by cj (j ≥ 1) and dj (j ≥ 0) the coefficients of zj in the
expansions of a(z; ζ )/b(z; ζ ), z−1{1 − (1 − z)d}, respectively, we have ψj(ζ ) =∑j−1

k=0 cj−kdk , j ≥ 1. From [3], the cj are bounded above and below by posi-
tive, exponentially decaying sequences when n ≥ 1, and are all nonnegative when
n = 0. Since the dj are all positive, it follows that (6) holds. Also, Stirling’s approx-
imation indicates that j−d−1/K ≤ dj ≤ Kj−d−1, so the ψj(ζ ) satisfy the same
inequalities. Compactness of ϒ , smoothness of d , and (30), imply d(ζ ) ≥ d , to
check (7). The above argument indicates that ψ0j ≤ Kj−d0−1 ≤ Kk−d0−1 ≤ Kψ0k

for j > k ≥ 1, so (8) holds, and thus Assumption D. With regard to (11), note
that (∂/∂d)ψ(z; ζ ) = −{a(z; ζ )/b(z; ζ )}z−1(1 − z)d ln(1 − z), where the coef-
ficient of zj in −z−1(1 − z)d ln(1 − z) is

∑j
k=1 k−1dj−k ≤ K(ln j)j−d−1 ≤
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Kj−(d+1)(1−η) ≤ Kψ
1−η
j (ζ ) for any η > 0. Derivatives with respect to the aj , bj

are dominated, and higher derivatives can be dealt with similarly, to complete the
checking of Assumption F(l). To check Assumption G, suppress reference to ζ in
a, b, ψ and

φ(z) = b(z)−1{1 − (1 − z)d}, γ (z) = b(z)−1a(z),

and note that
∂ψ(z)

∂aj

= zj−1φ(z), j = 1, . . . ,m,

∂ψ(z)

∂bj

= zj−1γ (z)φ(z), j = 1, . . . , n,

∂ψ(z)

∂d
= −γ (z)

z
(1 − z)d log(1 − z).

Choose ji(ζ ) = i for i = 1, . . . ,m+n, ζ ∈ ϒ, leaving jm+n+1(ζ ) to be determined
subsequently. Fix ζ and write U = �(ji,...,jr )(ζ ), partitioning it in the ratio m+n : 1
and calling its (i, j)th submatrix Uij . We first show that the (m + n) × (m + n)

matrix U11 is nonsingular. Write R for the n× (m+n) matrix with (i, j)th element
γj−i , and S for the (m + n) × (m + n) matrix with (i, j)th element φj−i+1, where
φj = γj = 0 for j ≤ 0, and for j > 0, φj and γj are respectively given by

φ(z) =
∞∑

j=1

φjz
j , γ (z) =

∞∑
j=1

γjz
j ,

these series converging absolutely for |z| ≤ 1 in view of (30). Noting that ψ
(1)
j

is given by (∂/∂ζ )ψ(z) = ∑∞
j=1 ψ

(1)
j zj , we find that the first m rows of U11 can

be written (Im,O)S, where Im is the m-rowed identity matrix, O is the m × n

matrix of zeroes and, when n ≥ 1 the last n rows of U11 can be written RS. Now
S is upper-triangular with nonzero diagonal elements. Thus, for n = 0, U11 = S is
nonsingular. For n ≥ 1, U11 is nonsingular if and only if the n×n matrix R2 having
(i, j)th element γm+j−i and consisting of the last n columns of R is nonsingular.
This is not so if and only if the γj , j = m, . . . ,m + n − 1, are generated by a
homogeneous linear difference equation of degree n − 1, that is, if there exist
scalars λ0, λ1, . . . , λn−1, not all zero, such that

λ0γj −
n−1∑
i=1

λiγj−i = 0, j = m, . . . ,m + n − 1.

But it follows from (25) and (27) that they are generated by the linear difference
equation

γj −
n−1∑
i=1

biγj−i = πj , j = m, . . . ,m + n − 1,
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where πm = am + bnγm−n, πj = bnγj−n for j = m + 1, . . . ,m + n − 1. Since
bn �= 0, the πj are all zero if and only if γm−n = −am/bn and γj = 0 for j =
m+1−n, . . . ,m−1. But this implies γm = 0 also, and thence, γj = 0, all j ≥ m−
n + 1. For m ≤ n, this is inconsistent with the requirement aj > 0, j = 1, . . . ,m,
and for m > n, it implies a has a factor b, which is inconsistent with (28). Thus,
U11 is nonsingular when n ≥ 1. Nonsingularity of U follows if U22 �= U21U

−1
11 U12.

For large enough jm+n+1 = jm+n+1(ζ ), this must be true because U22 decays like
(ln jm+n+1)j

−d−1
m+n+1, whereas the elements of U12 are O(βjm+n+1) for some β ∈

(0,1). Thus Assumption G is true, and thence (15). Clearly (13) is true, so under
the additional conditions so is Assumption H, and thence (17). �

For m = 1, n = 0, (29) reduces to (23) when a1 = 1, while when a1 ∈ (0,1),
it gives model (4.24) of Ding and Granger [9]. The important difference between
these two cases is that the covariance stationarity condition ψ(1; ζ0) < 1 is satis-
fied in the second but not in the first. In general with (29), as with the GARCH
model, xt is covariance stationary when a(1; ζ0) < b(1; ζ0) but not otherwise. We
compare (29) with

ψ(z; ζ ) = 1 − {1 − a(z; ζ )}
b(z; ζ )

(1 − z)d,(31)

with d again satisfying (30) and a and b again given as in (25), though we now
allow m = 0, meaning a(z; ζ ) ≡ 0. Thus, with m = n = 0, (31) reduces to (23).
ARCH(∞) models with ψ given by (31) were proposed by Baillie, Bollerslev and
Mikkelsen [1] and called FIGARCH(n, d0,m). In general, though (31) also gives
hyperbolically decaying ψ0j , it differs in some notable respects. Application of
(26)–(28) again ensures positivity of ψj(ζ ) in case of FGARCH and facilitates the
above proof, but sufficient conditions in FIGARCH are less apparent in general,
though Baillie, Bollerslev and Mikkelsen [1] indicated that they can be obtained.
Also, unlike FGARCH, FIGARCH xt never has finite variance.

The requirement d0 > 1
2 for the central limit theorem in Corollary 1 would also

be imposed in a corresponding result for FIGARCH. This is automatically satisfied
in GARCH models but if only d0 ∈ (0, 1

2 ] in (13) is possible in the general setting
of Section 3, it appears that the asymptotic bias in θ̂T is of order at least T −1/2,
whereas that for θ̃T is always o(T −1/2). Assumption H copes with the replacement
of σ 2

t (θ) by σ̄ 2
t (θ), the truncation error varying inversely with d0. Inspection of the

proof of Theorem 2 indicates that this bias problem is due to the term H−1B1T .
The factor σ 2

t − σ̄ 2
t in b1t is nonnegative, and if j−d0−1 is an exact rate for ψ0j ,

σ 2
t − σ̄ 2

t exceeds t−d0/K as t → ∞ with probability approaching one. So far as
the factor σ̄

2(1)
t /σ 4

t in b1t is concerned, the second element of σ̄ 2(1) [see (18)] has
zero mean, but the first is positive, and though the ψ

(1)
j can have elements of either

sign, whenever d0 ≤ 1
2 it seems unlikely that the last r elements of B1T can be
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op(T 1/2). Nor is there scope for relaxing (12) by strengthening other conditions.
With regard to implications for choice of ρ, when d0 ≥ 2d + 1

2 , (14) entails no
restriction over (9).

Though results of Giraitis, Kokoszka and Leipus [13] indicate existence of a
stationary solution of (1)–(3) when ψ(1; ζ0) < 1, Kazakevičius and Leipus [19]
have questioned the existence of strictly stationary FIGARCH processes, and thus
the relevance of Assumption E here. The same reservations can be expressed
about FGARCH when a(1; ζ0) ≥ b(1; ζ0), and more generally about ARCH(∞)

processes with ψ(1; ζ0) ≥ 1. A sufficient condition for (10) can be deduced as
follows. Recursive substitution gives

σ 2
t ≤ K + K

∞∑
l=1

( ∞∑
j1=1

· · ·
∞∑

jl=1

ψ0j1 · · ·ψ0jl
ε2
t−j1

ε2
t−j1−j2

· · · ε2
t−j1−···−jl

)
,

so by the cr -inequality,

σ
2ρ
t ≤ K + K

∞∑
l=1

( ∞∑
j1=1

· · ·
∞∑

jl=1

ψ
ρ
0j1

· · ·ψρ
0jl

∣∣εt−j1

∣∣2ρ

× ∣∣εt−j1−j2

∣∣2ρ · · · ∣∣εt−j1−···−jl

∣∣2ρ

)
.

Thus, from Lemma 2,

E|xt |2ρ < E|σt |2ρ ≤ K + K

∞∑
l=0

(
E|ε0|2ρ

∞∑
j=1

ψ
ρ
0j

)l

.

The last bound is finite if and only if

E|ε0|2ρ
∞∑

j=1

ψ
ρ
0j < 1.(32)

Thus, (10) holds if there is a ρ satisfying (9) and (32). Recursive substitution
and the cr -inequality were also used by Nelson ([27], Corollary) to upper-bound
E|σt |2ρ in the GARCH(1,1) case, but he employed the simple dynamic structure
available there, and (32) does not reduce to his necessary and sufficient condition.

If ψ(1; ζ0) < 1, (32) adds nothing because we already know that Ex2
0 < ∞

here, but if ψ(1; ζ0) ≥ 1, the second factor on the left-hand side of (32) exceeds 1
and increases with ρ; the question is whether the first factor, which is less than
1 and decreases with ρ [due to Assumption A(q)], can over-compensate. Ana-
lytic verification of (32) for given ζ0, ρ seems in general infeasible, and numerical
verification highly problematic when the ψj decay slowly. However, consider the
family of densities

f (ε) = exp[−{α(γ )|ε|}1/γ ]/{2γ�(γ )α(γ )}(33)
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for γ > 0, where α(γ ) = {�(γ )/�(3γ )}1/2 (also used by Nelson [28] to model
the innovation of the exponential GARCH model). We have Eε0 = 0, Eε2

0 = 1
as necessary, Assumption A(q) is satisfied for all q > 0, and E|ε0|2ρ = �((2ρ +
1)γ )/{�(γ )1−ρ�(3γ )ρ}. In case γ = 0.5, (33) is the normal density, for which
θ̂T is asymptotically efficient. Here E|ε0|2ρ = 2ρ�(ρ + 0.5)/

√
π , and numerical

calculations for FIGARCH(0, d0,0) cast doubt on (32). In case γ = 1, (33) is the
Laplace density, with E|ε0|2ρ = 2ρ−1�(2ρ + 1). As γ increases, E|ε0|2ρ can be
made small for fixed ρ < 1, for example, with ρ = 0.95, it is 0.64 when γ = 10
and 0.42 when γ = 20.

4. Generalized exponential and hyperbolic models. FGARCH(n, d0,m)

[and FIGARCH(n, d0,m)] processes require d0 ∈ (0,1). For d = 1, (29) reduces
to (23), and for d > 1, at least one coefficient in the expansion of (23) is negative,
leading to the possibility of negative ψj(ζ ). Because FGARCH ψj(ζ ) decay like
j−d−1, a large mathematical gap is left relative to GARCH processes. Even if
exponential decay is anticipated, there is a case for more direct modeling of the
ψj(ζ ) than provided by GARCH(n,m), since it is the ψj(ζ ) and their derivatives
that must be formed in point and interval estimation based on the PMLE.

Consider the choices

ψj(ζ ) =
m∑

i=1

�(fi + 1)−1eid
fi+1jfi e−dj ,(34)

ψj(ζ ) =
m∑

i=1

�(fi + 1)−1eid lnfi (j + 1)(j + 1)−d−1,(35)

where d = d(ζ ) and the ei = ei(ζ ), fi = fi(ζ ) are such that ϒ satisfies

d ∈ (0,∞),(36)

ei > 0, i = 1, . . . ,m,(37)

0 ≤ f1 ≤ · · · ≤ fm < ∞,(38)

with 2m+1 ≥ r . Given (1)–(4) and (22), we call xt generated by (34) a generalized
exponential, GEXP(m), process, and xt generated by (35) a generalized hy-
perbolic, GHYP(m), process. Condition (38) is sufficient but not necessary for
ψj(ζ ) > 0, all j ≥ 1. By choosing m large enough in (34) or (35), any finite
ψ(1; ζ ) can be arbitrarily well approximated, but (34) and (35) can also achieve
parsimony. For real x ≥ 1, xf e−dx and (lnx)f x−d−1 decay monotonically if
f = 0, and for f > 0, have single maxima at f/d and ef/(d+1), respectively. Thus,
with m = 1 and f1 = 0, we have monotonic decay in (34) and (35); otherwise,
both can exhibit lack of monotonicity, while eventually decaying exponentially or
hyperbolically. The scale factors in (34) and (35) are so expressed because xf e−dx

and (lnx)f x−d−1 integrate over (0,∞) to �(f + 1)/df +1 and �(f + 1)/d , re-
spectively, so that ψ(1; ζ ) � ∑m

i=1 ei in both cases, but the approximation may
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not be very close and the “integrated” case is less easy to distinguish than in
GARCH and FGARCH models (though it would be possible to alternatively scale
the weights by infinite sums to achieve equality).

The following corollary covers (34) and (35) simultaneously, and implies the
special case when the fi are specified a priori, for example, to be nonnegative
integers; strictly speaking, when the true value of f1 is unknown, Assumption C
prevents it from being zero.

COROLLARY 2. Let ψ(z; ζ ) be given by (22) and (34) or (35) with m ≥ 1 and
let d and the ei, fi be continuously differentiable. For some δ > 0, let Assump-
tions A(2 + δ), B, C and E hold, with all ζ ∈ ϒ satisfying (36)–(38) and

rank
{

∂

∂ζ
(e1, f1, . . . , em,fm, d)

}
= r.

Then (15) is true. Let also d and the ei, fi be thrice continuously differentiable
and Assumption A(4) hold, and d0 = d(ζ0) > 1

2 in case of (35). Then (17) is true.

PROOF. Given (36)–(38) and the proofs of Corollaries 1 and 2, the verification
of Assumptions D and F(l) is straightforward. We check Assumption G for (35)
only, a very similar type of proof holding for (34). We have

ψ
(1)
j =

[
E(u′

1j , . . . , u
′
mj )

′
vj

]
d(j + 1)−d−1,

where

uij = (
ln ln(j + 1) − (∂/∂fi) ln�(fi+1),1

)′ lnfi (j + 1), i = 1, . . . , r,

vj = −
m∑

i=1

ei�(fi+1)
−1 lnfi+1(j + 1),

and E is the diagonal matrix whose (2i − 1)st diagonal element is ei , and
whose even diagonal elements are all 1. Fixing ζ , we show first that the lead-
ing (r − 1) × (r − 1) submatrix of �(j1,...,jr )(ζ ) has full rank, equivalently,
that Um has full rank, where, for i = 1, . . . ,m, the (2i) × (2i) matrix Ui has
(k, �)th 2×1 sub-vector ukj�

, k = 1, . . . , i, � = 1, . . . ,2i. Suppose, for some
i = 1, . . . ,m − 1 and given j1, . . . , j2i , that Ui has full rank, and partition the
rows and columns of Ui+1 in the ratio 2i : 2, calling its (k, �)th submatrix Uk� (so
U11 = Ui ). Take j2i+2 = j2

2i+1. Because ln lnx strictly increases in x > 1, it fol-

lows that U22 is nonsingular and ‖U−1
22 ‖ = O(ln ln j2i+1 ln−fi+1 j2i+1). Noting that

‖U12‖ = O(ln ln j2i+1 lnfi j2i+1), while U11 and U21 depend only on j1, . . . , j2i ,
we can choose j2i+1 such that U11 − U12U

−1
22 U21 differs negligibly from U11.

Thus, Ui+1 has full rank. Since, for f1 ≥ 0, U1 has full rank (e.g., when j1 = 1,
j2 = 2), it follows by induction that Um has full rank. Since vj is dominated by a
term of order lnfm+1 j , while ‖uij‖ = O(ln ln j lnfi j), a similar argument shows
that jr can then be chosen large enough, to complete verification of Assumption G.

�
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5. Technical lemmas. Define

σ ∗2
t (θ) = ω +

∞∑
j=1

ψj(ζ )x2
t−j , σ ∗2

t = ωU +
∞∑

j=1

sup
ζ∈ϒ

ψj (ζ )x2
t−j .

LEMMA 1. Under Assumptions B and D, for all θ ∈ �, t ∈ Z,

K−1σ ∗2
t (θ) ≤ σ 2

t (θ) ≤ Kσ ∗2
t (θ) a.s.

PROOF. A simple extension of [21], Lemma 1. �

LEMMA 2. Under Assumptions A(2), B, C, D and E, for all t ∈ Z,

E|xt |2ρ < Eσ
2ρ
t ≤ E sup

θ∈�

σ
2ρ
t (θ) ≤ KEσ

∗2ρ
t ≤ KE|xt |2ρ ≤ K,(39)

inf
θ∈�

σ 2
t (θ) > 0, sup

θ∈�

σ 2
t (θ) < Kσ ∗2

t < ∞ a.s.,(40)

E sup
θ∈�

| lnσ 2
t (θ)| ≤ K.(41)

PROOF. With respect to (39), the first inequality follows from Jensen’s in-
equality, the second is obvious, the third follows from Lemma 1, the fourth fol-
lows from the cr -inequality, (7) and (9), while the last one is due to (10). The
proof of (40) uses Lemma 1, σ 2

t (θ) ≥ ωL, (10) and [23], page 121. To prove (41),
| lnx| ≤ x + x−1 for x > 0 and Lemma 2 give

E sup
θ∈�

| lnσ 2
t (θ)| ≤ ρ−1E sup

θ∈�

σ
2ρ
t (θ) + E

{
inf
θ∈�

σ 2
t (θ)

}−1

≤ K. �

LEMMA 3. Under Assumptions D, E and F(l), for all θ ∈ �, σ 2
t (θ), qt (θ) and

their first l derivatives are strictly stationary and ergodic.

PROOF. Follows straightforwardly from the assumptions. �

LEMMA 4. Under Assumption A(2), for positive integer k < (b + 1)n/2,

E

(
n∑

t=1

ε2
t

)−k

< ∞.(42)

PROOF. Denote by MX(t) = E(etX) the moment-generating function of a ran-
dom variable X. By Cressie et al. [8], the left-hand side of (42) is proportional to∫ ∞

0
tk−1M∑

ε2
t
(−t) dt =

∫ ∞
0

tk−1Mn

ε2
0
(−t) dt

(43)

≤
∫ 1

0
tk−1 dt +

∫ ∞
1

tk−1Mn

ε2
0
(−t) dt.
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It suffices to show that the last integral is bounded. For all δ > 0, there exists η > 0
such that L(ε−1) ≤ ε−δ , ε ∈ (0, η), so

Mε2
0
(−t) =

∫ ∞
−∞

e−tε2
f (ε) dε ≤ K

∫ η

0
e−tε2

εb−δ dε + 2e−tη2
.

The last integral is bounded by

Kt(δ−b−1)/2
∫ ∞

0
e−εε(δ−b−1)/2 dε ≤ Kt(δ−b−1)/2.

Thus, (43) is finite if k + n(δ − b − 1)/2 < 0, that is, since δ is arbitrary, if k <

(b + 1)n/2. �

The previous version of the paper included a longer, independently obtained,
proof of the following lemma which we have been able to shorten in one respect
by using an idea of Berkes, Horváth and Kokoszka [3] in a corresponding lemma
covering the GARCH(n,m) case.

LEMMA 5. Under Assumptions A(q), B, C and D, for p < q/2,

E sup
θ∈�

(
σ 2

t

σ 2
t (θ)

)p

≤ K < ∞.

PROOF. We have

σ 2
t = ω0 + ψ01x

2
t−1 +

∞∑
j=2

ψ0j x
2
t−j ≤ ω0 + ψ01σ

2
t−1ε

2
t−1 + Kσ 2

t−1

from (8). Thus, σ 2
t /σ 2

t−1 ≤ K(1 + ε2
t−1) and thence, for fixed j ≥ 1, σ 2

t /σ 2
t−j ≤

Khtj , where htj = ∏j
i=1(1 + ε2

t−i). For any M < ∞,

σ 2
t

σ 2
t (θ)

≤ Kσ 2
t

σ ∗2
t (θ)

≤ K

(
ω

σ 2
t

+
M∑

j=1

ψj(ζ )ε2
t−j

σ 2
t−j

σ 2
t

)−1

≤ KhtM/{infζ∈ϒ infj=1,...,M ψj (ζ )}∑M
j=1 ε2

t−j

.

The proof can now be completed much as in the proof of Lemma 5.1 of [3], us-
ing Hölder’s inequality as there but employing our Lemma 4 and taking M >

2pq/[(b + 1)(q − 2p)]. �

LEMMA 6. Under Assumptions A(2), B, C, D, E and F(l), for all p > 0 and
k ≤ l,

E sup
θ∈�

∣∣∣∣ 1

σ 2
t (θ)

∂kσ 2
t (θ)

∂θi1 · · · ∂θik

∣∣∣∣p < ∞,(44)

E sup
θ∈�

∣∣∣∣ 1

σ̄ 2
t (θ)

∂kσ̄ 2
t (θ)

∂θi1 · · · ∂θik

∣∣∣∣p < ∞.(45)
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PROOF. Take i1 ≤ i2 ≤ · · · ≤ ik. First assume i1 ≥ 3, whence, for given k and
i1, . . . , ik ,

∂kσ 2
t (θ)

∂θi1 · · · ∂θik

=
∞∑

j=1

ξj (ζ )x2
t−j (µ),

where ξj (ζ ) = ∂kψj (ζ )/∂ζi1−2 · · · ∂ζik−2. Now∣∣∣∣∣
∞∑

j=1

ξj (ζ )x2
t−j (µ)

∣∣∣∣∣ ≤ 2
∞∑

j=1

|ξj (ζ )|(x2
t−j + µ2),

so using Lemma 1,∣∣∣∣ 1

σ 2
t (θ)

∂kσ 2
t (θ)

∂θi1 · · · ∂θik

∣∣∣∣ ≤ 2
∑∞

j=1 |ξj (ζ )|x2
t−j

σ ∗2
t (θ)

+ K

∞∑
j=1

|ξj (ζ )|.

It suffices to take p > 1. By Hölder’s inequality,

∞∑
j=1

|ξj (ζ )|x2
t−j ≤

{ ∞∑
j=1

|ξj (ζ )|p/ρψj (ζ )1−p/ρx2
t−j

}ρ/p{ ∞∑
j=1

ψj(ζ )x2
t−j

}1−ρ/p

,

so {∑∞
j=1 |ξj (ζ )|x2

t−j

σ ∗2
t (θ)

}p

≤ K

∞∑
j=1

|ξj (ζ )|pψj (ζ )ρ−p|xt−j |2ρ.

By Assumption F(l), for all η > 0

sup
ζ∈ϒ

|ξj (ζ )|pψj (ζ )ρ−p ≤ K sup
ζ∈ϒ

ψj (ζ )ρ−ηp ≤ Kj−(d+1)(ρ−ηp).

Since ρ(d + 1) > 1, we may choose η such that (d + 1)(ρ − pη) > 1. Thus,

E sup
θ∈�

{∑∞
j=1 |ξj (ζ )|x2

t−j

σ ∗2
t (θ)

}p

< ∞.

The above proof implies that also

sup
ζ∈ϒ

{ ∞∑
j=1

|ξj (ζ )|
}p

< ∞,

whence, the proof of (44) with i1 ≥ 3 is concluded. Next take i1 = 2. If i2 > 2,

∂kσ 2
t (θ)

∂θi1 · · · ∂θik

= −2
∞∑

j=1

ξj (ζ )xt−j (µ),(46)



1068 P. M. ROBINSON AND P. ZAFFARONI

where now ξj (ζ ) = ∂k−1ψj(ζ )/∂ζi2−2 · · · ∂ζik−2, while if i2 = 2, i3 > 2,

∂kσ 2
t (θ)

∂θi1 · · · ∂θik

= −2
∞∑

j=1

ξj (ζ ),

where now ξj (ζ ) = ∂k−2ψj(ζ )/∂ζi3−2 · · · ∂ζik−2. In the first of these cases the
proof is seen to be very similar to that above after noting that, by the Cauchy
inequality, (46) is bounded by

K

{ ∞∑
j=1

|ξj (ζ )|x2
t−j

∞∑
j=1

|ξj (ζ )|
}1/2

+ K

∞∑
j=1

|ξj (ζ )|,

while in the second it is more immediate; we thus omit the details. We are left with
the cases i1 = i2 = i3 = 2 and i1 = 1, both of which are trivial. The details for
(45) are very similar (the truncations in numerator and denominator match), and
are thus omitted. �

Define

gt (θ) = ut (θ)u′
t (θ), GT (θ) = T −1

T∑
t=1

gt (θ).

LEMMA 7. For some δ > 0, under Assumptions A(2+δ), B, C, D, E and F(1),

sup
θ∈�

|QT (θ) − Q(θ)| → 0 a.s. as T → ∞,(47)

and Q(θ) is continuous in θ . If also Assumption F(2) holds,

sup
θ∈�

‖GT (θ) − G(θ)‖ → 0 a.s. as T → ∞,(48)

and G(θ) is continuous in θ . If also Assumption F(3) holds,

sup
θ∈�

‖HT (θ) − H(θ)‖ → 0 a.s. as T → ∞,(49)

and H(θ) is continuous in θ .

PROOF. To prove (47), note first that, by Lemmas 1, 2, 3 and 5,

sup
�

E|q0(θ)| ≤ sup
�

E| logσ 2
0 (θ)| + sup

�

Eχ0(θ) < ∞.

Thus, by ergodicity

QT (θ) → Q(θ) a.s.,

for all θ ∈ �. Then uniform convergence follows on establishing the equicontinu-
ity property

sup
θ̃ : ‖θ̃−θ‖<ε

|QT (θ̃) − QT (θ)| → 0 a.s.,
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as ε → 0, and continuity of Q(θ). By the mean value theorem it suffices to show
that

sup
�

∥∥∥∥∂QT (θ)

∂θ

∥∥∥∥ + sup
�

∥∥∥∥∂Q(θ)

∂θ

∥∥∥∥ < ∞ a.s.,

which, by Loève ([23], page 121) and identity of distribution, is implied by
E sup� ‖u0(θ)‖ < ∞. By the definition of ut(θ), and x2

t (µ) ≤ K(x2
t + 1),

‖νt (θ)‖ ≤ 2(|xt | + 1), we have

‖ut (θ)‖ ≤ K

[
‖τt (θ)‖

{
1 + ε2

t

σ 2
t

σ 2
t (θ)

}
+ |εt | σt

σt (θ)
+ 1

]
.

Thus, E sup� ‖u0(θ)‖ is bounded by a constant times

E sup
�

‖τ0(θ)‖ +
[
E sup

�

{
σ 2

0

σ 2
0 (θ)

}p]1/p[
E sup

�

‖τ0(θ)‖p/(p−1)

]1−1/p

+ E sup
�

{
σ0

σ0(θ)

}
+ 1

for all p > 1. On choosing p < 1 + δ/2, this is finite by Lemmas 5 and 6. (Our use
of Lemmas 5 and 6 is similar to Berkes, Horváth and Kokoszka’s [3] use of their
Lemmas 5.1 and 5.2 in the GARCH(n,m) case.) This completes the proof of (47).
Then (48) and (49) follow by applying analogous arguments to those above, and so
we omit the details; indeed, (48) and (49) are only used in the proof of consistency
of ḠT (θ̂T ), H̄T (θ̂T ) for G0,H0, where convergence over only a neighborhood of
θ0 would suffice. �

LEMMA 8. Under Assumptions A(2 + δ), B, C, D, E and F(1),

sup
θ∈�

|QT (θ) − Q̄T (θ)| → 0 a.s. as T → ∞.(50)

If also Assumption F(2) holds,

sup
θ∈�

‖GT (θ) − ḠT (θ)‖ → 0 a.s. as T → ∞.(51)

If also Assumption F(3) holds,

sup
θ∈�

‖HT (θ) − H̄T (θ)‖ → 0 a.s. as T → ∞.(52)

PROOF. We have Q̂T (θ) − QT (θ) = AT (θ) + BT (θ), where

AT (θ) = T −1
T∑

t=1

ln
[
σ̄ 2

t (θ)

σ 2
t (θ)

]
, BT (θ) = T −1

T∑
t=1

x2
t (µ){σ̄−2

t (θ) − σ−2
t (θ)}.
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Because

σ 2
t (θ) = σ̄ 2

t (θ) +
∞∑

j=0

ψj+t (ζ )x2−j (µ),

ln(1 + x) ≤ x for x > 0 and σ 2
t (θ) ≥ ωL > 0, it follows that

|AT (θ)| ≤ KT −1
T∑

t=1

{σ 2
t (θ) − σ̄ 2

t (θ)}

≤ KT −1
T∑

t=1

∞∑
j=t

ψj (ζ )x2
t−j (µ)

≤ KT −1
∞∑
t=0

{
t+T∑

j=t+1

ψj(ζ )

}
x2−t (µ).

Now from (7),

sup
ζ∈ϒ

t+T∑
j=t+1

ψj(ζ ) ≤ K

t+T∑
j=t+1

j−d−1 ≤ K min(t + 1, T )(t + 1)−d−1.

Thus,

sup
�

AT (θ) ≤ KT −1
T∑

t=0

(t + 1)−d(x2−t + 1) + K

∞∑
t=T

t−d−1(x2−t + 1).(53)

From the cr -inequality, (9) and (10),
∑∞

t=1(t + 1)−d−1x2−t has finite ρth moment,
and thus, by Loève ([23], page 121), is a.s. finite. Thus, the second term of (53)
tends to zero a.s. as T → ∞, while the first does so for the same reasons combined
with the Kronecker lemma. Next,

|BT (θ)| ≤ KT −1
T∑

t=1

χt(θ)

∞∑
j=t

ψj (ζ )x2
t−j (µ)

(54)

≤ KT −1
T∑

t=1

χt(θ)

∞∑
j=t

j−d−1(x2
t−j + 1).

From previous remarks,
∑∞

j=t j
−d−1(x2

t−j + 1) → 0 a.s. Also, for each θ , a.s.

T −1
T∑

t=1

χt(θ) → Eχ0(θ) ≤ K

{
E

(
σ 2

0

σ 2
0 (θ)

)
+ 1

}
≤ K

by ergodicity and Lemma 5. Thus, (54) → 0 a.s. by the Toeplitz lemma. The con-
vergence is uniform in θ because, from the proof of Lemma 7, for all θ ∈ �,

sup
θ̃ : ‖θ̃−θ‖<ε

‖χ0(θ̃) − χ0(θ)‖ → 0 a.s.,
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as ε → 0. This completes the proof of (50). We omit the proofs of (51) and (52) as
they involve the same kind of arguments. �

LEMMA 9. For some δ > 0, under Assumptions A(2 + δ), B, C, D, E, F(1)
and G, M(θ) is finite and positive definite for all θ ∈ �.

PROOF. Fix θ ∈ �. Finiteness of M(θ) follows from Lemma 6. Positive
definiteness follows (by an argument similar to that of Lumsdaine [24] in
the GARCH(1,1) case) if, for all nonnull (r + 2) × 1 vectors λ, λ′M(θ)λ =
E{λ′τ0(θ)}2 > 0, that is, that

λ′τ0(θ)σ 2
0 (θ) �= 0 a.s.,(55)

since 0 < σ 2
0 (θ) < ∞ a.s. Define

τtω(θ) = ∂

∂ω
lnσ 2

t (θ) = σ−2
t (θ),

τtµ(θ) = ∂

∂γ
lnσ 2

t (θ) = −2σ−2
t (θ)

∞∑
j=1

ψj(ζ )xt−j (µ),

τtζ (θ) = ∂

∂ζ
lnσ 2

t (θ) = σ−2
t (θ)

∞∑
j=1

ψ
(1)
j (ζ )x2

t−j (µ),

so that τt (θ) = (τtω(θ), τtµ(θ), τ ′
tζ (θ))′. Write λ = (λ1, λ2, λ

′
3)

′, where λ1 and λ2

are scalar and λ3 is r × 1. Consider first the case λ1 = λ2 = 0, λ3 �= 0. Suppose
(55) does not hold. Then we must have

∞∑
j=1

λ′
3ψ

(1)
j (ζ )x2

t−j (µ) = 0 a.s.

If λ′
3ψ

(1)
1 (ζ ) �= 0, it follows that

(σt−1εt−1 + µ0 − µ)2 = −{
λ′

3ψ
(1)
j (ζ )

}−1
∞∑

j=2

λ′
3ψ

(1)
j (ζ )x2−j (µ).(56)

Since σt−1 > 0 a.s., the left-hand side involves the nondegenerate random vari-
able εt−1, which is independent of the right-hand side, so (56) cannot hold. Thus,
λ′

3ψ
(1)
j (ζ ) = 0. Repeated application of this argument indicates that, for all ζ ,

λ′
3ψ

(1)
j (ζ ) = 0, j = 1, . . . , jr(ζ ). This is contradicted by Assumption G, so (56)

cannot hold. Next consider the case λ1 = 0, λ2 �= 0, λ3 = 0. If (56) does not hold,
we must have

∞∑
j=1

ψj(ζ )xt−j (µ) = 0 a.s.(57)
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Let k be the smallest integer such that ψk(ζ ) �= 0. Then (57) implies

εt−k = σ−1
t−k(θ)

{
µ − µ0 − ψ−1

k (ζ )

∞∑
j=k+1

ψj(θ)xt−j (µ)

}
.

But the left-hand side is nondegenerate and independent of the right-hand side, so
(57) cannot hold. Next consider the case λ1 = 0, λ2 �= 0, λ3 �= 0. If (55) is not true,
then, taking λ2 = 1, we must have

∞∑
j=1

{
λ′

3ψ
(1)
j (ζ )xt−j (µ) − 2ψj(ζ )

}
xt−j (µ) = 0 a.s.(58)

Let k be the smallest integer such that either λ′
3ψ

(1)
k (ζ ) �= 0 or ψk(ζ ) �= 0; the

preceding argument indicates that there exists such k. Then we have{
2ψk(ζ ) − λ′

3ψ
(1)
k (ζ )(σt−kεt−k + µ0 − µ)

}{σt−kεt−k + µ0 − µ}

=
∞∑

j=k+1

{
λ′

3ψ
(1)
j (ζ )xt−j (µ) − 2ψj(ζ )

}
xt−j (µ) a.s.

The left-hand side is a.s. nonzero and involves the nondegenerate random variable
εt−k, which is independent of the right-hand side, so (58) cannot hold. We are left
with the cases where λ1 �= 0. Taking λ1 = −1 and noting that σ 2

t (θ)τtω(θ) ≡ 1,
the preceding arguments indicate that there exist no λ2 and λ3 such that

λ2σ
2
t (θ)τtµ(θ) + λ′

3σ
2
t (θ)τtζ (θ) = 1 a.s. �

LEMMA 10. For some δ > 0, under Assumptions A(2 + δ), B, C, D, E, F(1)
and H,

inf
θ∈�
θ �=θ0

Q(θ) > Q(θ0).

PROOF. We have

Q(θ) − Q(θ0) = E

[
σ 2

0

σ 2(θ)
− ln

{
σ 2

0

σ 2(θ)

}
− 1

]
+ (µ − µ0)

2E

[
1

σ 2
0 (θ)

]
.

The second term on the right-hand side is zero only when µ = µ0 and is positive
otherwise. Because x − lnx − 1 ≥ 0 for x > 0, with equality only when x = 1, it
remains to show that

lnσ 2
0 (θ) = lnσ 2

0 a.s., some θ �= θ0.(59)

By the mean value theorem, (59) implies that (θ − θ0)
′τ0(θ̄) = 0 a.s., for θ �= θ0

and some θ̄ such that ‖θ̄ − θ0‖ ≤ ‖θ − θ0‖. But by Lemma 9 there is no such θ̄ .
�
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