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POISSON CALCULUS FOR SPATIAL NEUTRAL TO
THE RIGHT PROCESSES1

BY LANCELOT F. JAMES

Hong Kong University of Science and Technology

Neutral to the right (NTR) processes were introduced by Doksum in 1974
as Bayesian priors on the class of distributions on the real line. Since that time
there have been numerous applications to models that arise in survival analy-
sis subject to possible right censoring. However, unlike the Dirichlet process,
the larger class of NTR processes has not been used in a wider range of more
complex statistical applications. Here, to circumvent some of these limita-
tions, we describe a natural extension of NTR processes to arbitrary Polish
spaces, which we call spatial neutral to the right processes. Our construction
also leads to a new rich class of random probability measures, which we call
NTR species sampling models. We show that this class contains the impor-
tant two parameter extension of the Dirichlet process. We provide a posterior
analysis, which yields tractable NTR analogues of the Blackwell–MacQueen
distribution. Our analysis turns out to be closely related to the study of regen-
erative composition structures. A new computational scheme, which is an or-
dered variant of the general Chinese restaurant processes, is developed. This
can be used to approximate complex posterior quantities. We also discuss
some relationships to results that appear outside of Bayesian nonparametrics.

1. Introduction. Doksum [9] considered a nonparametric Bayesian analysis
based on neutral to the right (NTR) priors. These priors are random probability
measures defined on the real line, R, that include the popular Dirichlet process
(see [13] and [16]). Within Bayesian nonparametric statistics, the NTR process
serves as one of the important classes of models. In particular, there have been
numerous applications to models that arise in survival analysis subject to possible
right censoring. On the other hand, unlike the Dirichlet process, the larger class
of NTR processes has not been used in a wider range of statistical applications.
That is, for instance, there are no general NTR analogues of the important class of
(kernel based) Dirichlet process mixture models. See, for example, [32] and [23]
for further background and references on Dirichlet process mixture models.

A goal of this article is to begin to answer the question of how one can possi-
bly use NTR processes in a wider context, as has been the case for the Dirichlet
process. One of the limitations of NTR processes is that they are only defined on
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the real line. The other limitation, which is perhaps more severe, is that as of yet we
do not have tractable NTR analogues of the Blackwell–MacQueen [3] Pólya urn
distribution associated with the Dirichlet process. The Blackwell–MacQueen dis-
tribution is well known to be the exchangeable distribution derived from a Dirichlet
process, and its theoretical understanding and practical implementation are crucial
in complex models. To circumvent some of these limitations, we describe a nat-
ural extension of NTR processes defined on an arbitrary Polish space S = R+×X,
which we call spatial NTR processes. Here R+ denotes the positive real line and
X is an arbitrary Polish space. Our construction also leads to a rich class of ran-
dom probability measures on X, which we call NTR species sampling. We provide
a detailed analysis of these models and obtain properties analogous to the Dirich-
let process. In particular, we provide a description of the posterior distribution of
spatial NTR processes and, more importantly, we give a detailed analysis of the
NTR analogues of the Blackwell–MacQueen distribution.

Such an analysis parallels, in part, the results of Antoniak [1] (see also [12])
and Lo [32] for the Dirichlet process. These works involve characterizations based
on random partitions of the integers {1, . . . , n} and were derived using nontrivial
combinatorial arguments. The structure of general NTR processes is more com-
plex than that of the Dirichlet process and an approach using direct combinatorial
analysis is considerably more challenging. We circumvent such issues by apply-
ing the Poisson process partition calculus discussed by James [24, 26]. This also
paves the way for a straightforward derivation of the posterior distribution of spa-
tial NTR processes. Using these results, we develop a new computational scheme
related to the general Chinese restaurant process (see [37], page 60 and [23]),
which now allows one to sample from the exchangeable distributions derived from
NTR processes.

It is important to note that although Bayesian applications of NTR processes to
complex statistical models have been limited, the use of these processes appears
often in other important contexts. Doksum ([9], Theorem 3.1) showed that one can
describe an NTR distribution function F on R+ via positive Lévy processes, Z,
on R+ as

1 − F(t) = S(t) = e−Z(t),(1)

where S denotes the survival distribution of a random variable T from F . The Lévy
process Z is an increasing independent increment process that satisfies Z(0) = 0
and limt→∞ Z(t) = ∞ a.s. That is, T |F has survival distribution P(T > t |F) =
e−Z(t). Importantly, the representation in (1) shows that NTR survival processes
essentially coincide with the class of exponential functionals of possibly inhomo-
geneous, nonnegative Lévy processes. Such objects and more general exponential
functionals of Lévy processes, such as Brownian motion, have been extensively
studied by probabilists with applications, for instance, to finance. The NTR mod-
els also arise in coalescent theory, which has applications in genetics and physics,
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as seen, for example, in [36], Proposition 26. See also [2] and [5]. Noting some of
these connections, Epifani, Lijoi and Prünster [11] applied techniques from those
manuscripts to obtain expressions for the moments of mean functionals of NTR
models and, as we also do here, highlighted some of the connections to these areas
outside of Bayesian nonparametric statistics. The mean functional can be described
explicitly as

I =
∫ ∞

0
tF (dt) =

∫ ∞
0

S(t) dt =
∫ ∞

0
e−Z(t) dt.(2)

It is a significant object, which has interesting interpretations in a variety of fields.
We describe how this process is related to the study of the Blackwell–MacQueen
analogue derived from NTR processes. Moreover, we discuss how our work is
closely related to the recent work of Gnedin and Pitman [18] on regenerative com-
position structures.

2. Spatial neutral to the right processes. Suppose that (T ,X) are random el-
ements on the Polish space S that have distribution F(ds, dx) for (s, x) ∈ S. Here
we would like to extend the definition of an NTR process to model F(ds, dx) as
a random probability measure such that its marginal F(ds,X) is an NTR process.
While the representation in (1) is quite useful for calculations, it is not immedi-
ately obvious how one can use this definition to extend an NTR process to S. The
known exception is the Dirichlet process that can be defined on arbitrary spaces.
To do this, we first recall that if F is an NTR process on R+, then its cumulative
hazard �(ds) := F(ds)/S(s−) is a nonnegative Lévy process; in other words, � is
a completely random measure (see [30]). This observation and alternative idea for
modeling via cumulative hazards is due to the important work of Hjort [21]. Note
that Z in (1) is also a completely random measure. Moreover, an important aspect
of our results relies on the fact that there is one-to-one distributional correspon-
dence between a particular Z and �. Specifically, if Jj represents a random jump
of � taking its values in [0,1], then − log(1 − Jj ) is the jump of a correspond-
ing Z taking its values in R+. Hence if we initially model Z and � as completely
random measures without a drift component and fixed points of discontinuity, they
may both be represented as linear functionals of a common Poisson random mea-
sure. Importantly, one then may give precise meaning to the distributional equiv-
alences P(T ∈ ds|F) = F(ds) := S(s−)�(ds) := e−Z(s−)�(ds), where F is an
NTR process.

Our construction now proceeds by extending � and Z to completely random
measures on S, using a representation in terms of a Poisson random measure. Let
N denote a Poisson random measure on some Polish space W = [0,1] × S with
mean intensity

E[N(du,ds, dx)|ν] = ν(du, ds, dx) := ρ(du|s)�0(ds, dx).

Here ρ is a Lévy density that will determine the conditional distribution of the
jumps of � and Z. Furthermore, without loss of generality, we assume that
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∫ 1
0 uρ(du) = 1 and, hence, uρ(du) is a probability density function. The inten-

sity ν is chosen such that �0(ds, dx) := F0(ds, dx)/S0(s−) is by definition a
hazard measure on S, where F0 represents a prior specification for the distribu-
tion of F on S, and S0 is the corresponding survival function on R+. See [31],
A5.3, for formal details of hazard measures on abstract spaces. Note that in [28],
Proposition 25.28, the hazard measure is also called a natural compensator of a
random measure defined as δT ,X . We denote the Poisson law of N with intensity
ν as P(dN |ν). The Laplace functional for N , which plays an important role in our
analysis, is defined as

E
[
e−N(f )|ν] =

∫
M

e−N(f )
P(dN |ν) = e−G(f ),

where for any positive f , N(f ) = ∫
W f (x)N(dx) and G(f ) = ∫

W (1 − e−f (x)) ×
ν(dx), and M denotes the space of boundedly finite measures on W (see [6]).
A measure, say N , is boundedly finite if for each bounded set A, N(A) < ∞. See
also [28], Chapter 12, for a discussion of Poisson random measures and the unicity
property of Laplace functionals.

Now the specifications above imply that �(ds, dx) := ∫ 1
0 uN(du, ds, dx) is a

completely random hazard measure on S with mean E[�(ds, dx)] = �0(ds, dx)

and there is a corresponding Z(ds, dx) := ∫ 1
0 [− log(1 −u)]N(du,ds, dx). In par-

ticular, − logS(t−) := Z(t−) = ∫
W [−I {s < t} log(1 − u)]N(du,ds, dx). Now

using these facts we define a spatial neutral to the right (SPNTR) random proba-
bility measure on S as

P(T ∈ dt,X ∈ dx|F) := F(dt, dx) = S(t−)�(dt, dx).(3)

Defining �(ds) := �(ds,X), it follows that F(ds) := S(s−)�(ds) is an NTR
process and, furthermore, E[F(dt, dx)] = S0(t−)�0(dt, dx) = F0(dt, dx). See
Section 5 for more details.

REMARK 1. The choice of

ρ(du|s)�0(ds, dx) = c(s)u−1(1 − u)c(s)−1 du�0(ds, dx)(4)

for c(s) a positive function yields a natural extension of Hjort’s [21] beta cumula-
tive hazard process to beta processes on S. Equivalently, this specification defines
beta-Stacy or beta-neutral distribution functions on S. See [33, 41] and [21], Sec-
tion 7A, for such processes defined on R+. The case of the Dirichlet process with
shape parameter θF0 is obtained by choosing c(s) = θS0(s−). Our construction
of spatial NTR processes is influenced by the work of James and Kwon [27], who
first gave an explicit construction of spatial beta-neutral processes on S via ratios
of two independent gamma processes.
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REMARK 2. Given the specifications in (3), we extend this definition to in-
clude prior fixed points of discontinuity {(s1,w1), . . . , (sk,wk)} in S as

F̃k(ds, dx) =
[
e−Z(s−)

∏
{l : sl<s}

(1 − Ul)

]
�̃k(ds, dx),(5)

where �̃k(ds, dx) = �(ds, dx) + ∑k
l=1 Ulδsl,wl

(ds, dx) is defined such that inde-
pendent of �, Uj are independent random variables on [0,1] with distribution Hj

for j = 1, . . . , k. We call F̃k a general spatial NTR process.

REMARK 3. The log mapping that we use can be deduced, for instance, from
[7] and [8], Proposition 2. This type of correspondence is actually noted, albeit
less explicitly, in [21] and is also used in related contexts without specific mention
of NTR processes; see, for instance, [36], Proposition 26. In particular, if τ is a
Lévy measure that specifies the conditional distribution of the jumps of Z, then by
writing τ(dy|s) := τ(y|s) dy and ρ(du|s) := ρ(u|s) du, the relationship between
the Lévy measures of Z and � is described by

τ(y|s) = e−yρ(1 − e−y |s) for y ∈ R+ or

ρ(u|s) = (1 − u)−1τ
(− log(1 − u)|s) for u ∈ [0,1].

Note that if ρ(du|s) := ρ(du), then we say that the relevant processes are homo-
geneous.

3. Posterior analysis. Similar to the case of the Dirichlet process, we con-
sider the following setup. Suppose that (Ti,Xi)|F are i.i.d. pairs with com-
mon distribution F for i = 1, . . . , n and suppose the law of F is modeled as
a spatial NTR process. This description yields a joint distribution of (T,X) =
{(T1,X1), . . . , (Tn,Xn)} and F . We are interested in the Bayesian disintegration
of this joint distribution in terms of the posterior distribution of F |T,X and the
marginal distribution of (T,X). Since �, Z and F are all functionals of N , we
work instead with the joint distribution of (T,X,N),[

n∏
i=1

S(Ti−)�(dTi, dXi)

]
P(dN |ν)

(6) = π(dN |T,X)M(dT1, dX1, . . . , dTn, dXn),

where π(dN |T,X) denotes the desired posterior distribution of N |T,X and

M(dT, dX) = M(dT1, dX1, . . . , dTn, dXn)

(7)

=
∫
M

[
n∏

i=1

F(dTi, dXi)

]
P (dN |ν)
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is the important exchangeable marginal distribution of (T,X). The M denotes the
general analogue of the Blackwell–MacQueen Pólya urn, and hence is crucial to
both theoretical understanding and practical implementation of the general class
of spatial NTR processes. We will describe the posterior distribution given (T,X)

in Section 4, and give a detailed analysis of M and related quantities in Section 5.
We first explain some key elements of the analysis.

3.1. The role of random partitions and order statistics. It is clear that one can
always represent (T,X) as (T∗,X∗,p), where, using notation similar to Lo [32],
(T∗,X∗) = {(T ∗

1 ,X∗
1), . . . , (T ∗

n(p),X
∗
n(p))} denotes the distinct pairs of observa-

tions within the sample and where p = {E1, . . . ,En(p)} stands for a partition of
{1, . . . , n} of size n(p) ≤ n that records which observations within the sample are
equal. The number of elements in the j th cell, Ej := {i : (Ti,Xi) = (T ∗

j ,X∗
j )}, of

the partition is indicated by ej for j = 1, . . . , n(p), so that
∑n(p)

j=1 ej = n. It follows
that the marginal distribution of (T,X), say M, can be expressed in terms of a
conditional distribution of T,X|p, which is the same as a conditional distribution
of the unique values T∗,X∗|p, and the marginal distribution of p. The marginal
distribution of p, denoted as π(p) or p(e1, . . . , en(p)), is an exchangeable parti-
tion probability function (EPPF), that is, a probability distribution on p which is
exchangeable in its arguments and depends only on the size of each cell. The best
known case of an EPPF is the variant of the Ewens sampling formula (ESF) (see
[1, 12]) associated with the Dirichlet process with total mass θ , given as

θn(p)�(θ)

�(θ + n)

n(p)∏
j=1

�(ej ).

Additionally, since a Dirichlet process is a special case of what are called species
sampling models, the distribution of T,X|p is such that the unique pairs (T ∗

j ,X∗
j )

are i.i.d. with distributions F0. We note that the marginal distribution and, naturally,
the posterior distribution of the Dirichlet process depend only on the counts ej and
the unique values. The structure of M for general NTR processes is considerably
more complex. However, as we will explain, what is interesting is that they do have
a natural interpretation in terms of classical survival models. One can think of T∗
as the collection of the unordered distinct times to death of individuals in a sample
of size n. In this sense, the count ej represents the number of deaths at time T ∗

j .
Additionally, it is well known that the posterior distribution of NTR processes
also depends on the number at risk at a given time, say t , which can be defined
as Yn(t) = ∑n

i=1 I {Ti > t}. We have discovered that to simplify the expressions
for M, it is necessary not only to know the number of deaths, but also to know the
number at risk at the unique times. Instead of working directly with T∗, we do this
by using its ordered values.

That is, let T(1 : n) > T(2 : n) > · · · > T(n(p) : n) denote an ordering of the unique
values {T ∗

1 , . . . , T ∗
n(p)}. This collection represents the ordered unique times of
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death. Note that we work with the pairs (T(j : n),X
∗
j ), where X∗

j is simply the
unique value treated as the concomitant of T(j : n). That is, we do not order the X
values; in fact, some spaces X do not have a natural ordering. Associated with this,
let m = {E(1), . . . ,E(n(p))} denote the collection of sets E(j) = {i :Ti = T(j : n)}
for j = 1, . . . , n(p). That is, E(j) is the collection of values equal to the j th
largest unique death time. Similar to ej , let mj = |E(j)| denote the number of
deaths at the j th largest unique death time, T(j : n), for j = 1, . . . , n(p). There
are of course n(p)! possible orderings of T∗. This implies that given a partition
p = {E1, . . . ,En(p)}, the collection {m1, . . . ,mn(p)} [resp. (m)] takes its values
over the symmetric group, say Sn(p), of all n(p)! permutations of {e1, . . . , en(p)}
[of ({E1, . . . ,En(p)})]. Notice now that, for each s,

Yn(s) =
n∑

i=1

I {Ti > s} =
n(p)∑
j=1

ej I {T ∗
j > s} =

n(p)∑
l=1

mlI
{
T(l : n) > s

}
.

Hence for j = 1, . . . , n(p), we can define rj−1 := Yn(T(j : n)) = ∑j−1
l=1 ml , which

denotes the number larger than the j th largest unique value. Note that r0 = 0 and
rn(p) = n; additionally, rj = rj−1 +mj . What is important is that, unlike p, the col-
lection {E(1), . . . ,E(n(p))} completely determines (rj ) via the (mj ); that is, m con-
tains the relevant information in p. We will often refer to (m,p) rather than m to
remind the reader of the dependence of m on p.

REMARK 4. See [34, 37, 38] for a general overview of the EPPF concept and
see [23, 24, 26] for its relevance to general marginal exchangeable distributions
that arise in a Bayesian context.

REMARK 5. One of the earliest applications of the Ewens sampling formula is
in population genetics. It is quite interesting to note that, as described by Donnelly
and Joyce ([10], page 230), one may also interpret the (T(j : n)) as the ordering of
genetic types (alleles) of individuals, where new alleles arise by mutation and the
alleles present in the population or in a sample at a given time may be ordered by
age. An interesting by-product of our work is that it actually yields the explicit
distribution for large classes of such models. A simple description will be given in
Proposition 5.2.

4. The posterior distribution of spatial NTR processes. In this section we
describe formally the posterior distribution of spatial NTR processes given the data
(T,X). Note here that we will characterize the posterior via the ordered values
rather than T∗. Since we are conditioning on (T,X), these are equivalent notions.
We first describe the result for no fixed points of discontinuity and then discuss
how one easily obtains the extension in Section 4.1. The proof is delayed until the
Appendix.
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PROPOSITION 4.1. Let F be a spatial NTR process defined by the Poisson
random measure N with mean intensity ν(du, ds, dx) = ρ(du|s)�0(ds, dx); � is
its corresponding Lévy hazard measure. Suppose that (Ti,Xi)|F are i.i.d. F for
i = 1, . . . , n. Then:

(i) The posterior distribution of N |T,X is equivalent to the distribution of the
random measure N∗

n = Nn + ∑n(p)
j=1 δJj,n,T(j : n),X

∗
j
, where, conditional on (T,X),

Nn is a Poisson random measure with intensity

νn(du, ds, dx) = (1 − u)Yn(s)ρ(du|s)�0(ds, dx).(8)

Additionally, the (Jj,n) are conditionally independent of Nn and are mutually in-
dependent with distributions specified by

P
(
Jj,n ∈ du|T(j : n)

) ∝ umj (1 − u)rj−1ρ
(
du|T(j : n)

)
for j = 1, . . . , n(p).

(ii) The posterior distribution of � given (T,X) is equivalent to the law of the
Lévy hazard measure,

�∗
n(ds, dx) =

∫ 1

0
uN∗

n (du, ds, dx)

= �n(ds, dx) +
n(p)∑
j=1

Jj,nδT(j : n),X
∗
j
(ds, dx),

where �n(ds, dx) = ∫ 1
0 uNn(du, ds, dx) is a Lévy hazard measure with Lévy mea-

sure as in (8) and where the (Jj,n) are conditionally independent of �n.
(iii) The posterior distribution of the corresponding Z process is equivalent to

the the law of the random measure

Z∗
n(ds, dx) = Zn(ds, dx) +

n(p)∑
j=1

Zj,nδT(j : n),X
∗
j
(ds, dx),

where Zn(ds, dx) = ∫ 1
0 [− log(1 − u)]Nn(du, ds, dx) and each Zj,n = − log(1 −

Jj,n) with distribution

P
(
Zj,n ∈ dy|T(j : n)

) := H ∗
j

(
d(1 − e−y)

) ∝ (1 − e−y)mj e−rj−1τ
(
dy|T(j : n)

)
.

(iv) Additionally, the posterior distribution of F is equivalent to the conditional
law, given (T,X), of the random probability measure F ∗

n (ds, dx) expressed as

e−Zn(s−)

[ n(p)∏
{j : T(j : n)<s}

(1 − Jj,n)

]
�n(ds, dx) +

n(p)∑
j=1

P̃j : nδT(j : n),X
∗
j
(ds, dx),

where P̃j,n = e−Zn(T(j : n)−)Jj,n

∏n(p)
l=j+1(1 − Jl,n). It follows that the Bayesian pre-

diction rule is given by E[F ∗
n (ds, dx)|T,X], which can be expressed in several

ways.
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REMARK 6. Note that due to symmetry, one has the equivalence in distribu-
tion of

n(p)∑
j=1

Jj,nδT(j : n),X
∗
j
(ds, dx) =

n(p)∑
j=1

J ∗
j,nδT ∗

j ,X∗
j
(ds, dx),

where the random variables (J ∗
j,n) are mutually independent with marginal dis-

tributions P(J ∗
j,n ∈ ds|T ∗

j ) ∝ uej (1 − u)
Yn(T ∗

j )
ρ(du|T ∗

j ). Recall that Yn(T(j : n)) =
rj−1.

4.1. Remarks on prior fixed points of discontinuity. We have so far omitted
any discussion on the form of the posterior distribution when there are prior points
of discontinuity as in �̃k defined in (5). In fact, the analysis is essentially al-
ready contained in our results. Recall that for n ≥ 1 the posterior process for
� in the complete data is �∗

n = �n + ∑n(p)
j=1 Jj,nδT(j : n),X

∗
j
, where the (Jj,n) are

conditionally independent of �n. Using the fact that �̃k and �∗
n are the same

structurally, one can simply let n(p) play the role of k and let {Ul, sl,wl} play
the role of {Jj,n, T(j : n),X

∗
j }. Let nl = |{i : (Ti,Xi) = (sl,wl)}| for l = 1, . . . , k.

In addition, let (T(j : n),X
∗
j ) denote 0 ≤ n(p) ≤ n unique values distinct from

{(s1,w1), . . . , (sk,wk)}. Then it is easy to see that the posterior distribution of
�̃k is of the form

�̃∗
n,k = �n +

k∑
l=1

Ul : nδsl,wl
+

n(p)∑
j=1

Jj,nδT(j : n),X
∗
j
,

where P{Ul : n ∈ du|sl} ∝ unl (1 − u)Yn(sl)Hl(du) for l = 1, . . . , k. Note here we
use Yn(s) = ∑n

i=1 I {Ti > s}.

REMARK 7. Note that marginalizing over X, the result in Proposition 4.1 re-
duces to the appropriate analogous results for NTR processes described in [9, 14,
15, 21, 29]. However, we shall present a considerably streamlined and direct proof
that uses a methodology applicable to a much wider class of random probability
measures on abstract spaces. Note moreover that there is no analogue of Proposi-
tion 4.1(i) appearing in those works. The distribution of F ∗

n (∞, dx) corresponds
to the posterior distribution of a new class of random probability measures, which
we discuss in more detail in Section 5.3.

5. Analysis of NTR generalizations of the Blackwell–MacQueen distrib-
ution. We now present a detailed analysis of the marginal distribution M and
related quantities. We give details for Lemmas 5.1 and 5.2 in the Appendix. First
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we introduce some additional notation. For a homogeneous ρ or τ and for ω ≥ 0,
let

φ(ω) =
∫ ∞

0
(1 − e−ωy)τ (dy) =

∫ 1

0

(
1 − (1 − u)ω

)
ρ(du)

=
∫ 1

0
ω(1 − u)ω−1

[∫ 1

u
ρ(dv)

]
du.

This is the Lévy exponent defined by the Laplace transform of a homogeneous
Z process. For integers (i, k), let

ψi,k(s) =
∫ ∞

0
(1 − e−yi)e−ykτ (dy|s) =

∫ 1

0

(
1 − (1 − u)i

)
(1 − u)kρ(du|s).

In the homogeneous case, set ψi,k = ∫ ∞
0 (1 − e−yi)e−ykτ (dy) and note that for

each j , φ(j) = ψj,0 = ∫ ∞
0 (1 − e−jy)τ (dy). Finally, we define cumulants

κmj ,rj−1(ρ|s) =
∫ 1

0
umj (1 − u)rj−1ρ(du|s)

and

κmj ,rj−1(ρ) =
∫ 1

0
umj (1 − u)rj−1ρ(du).

Our first task will be to obtain a nice expression for the expectation of the prod-
uct of survival functions that appears in (6). First notice that[

n∏
i=1

S(Ti−)

]
=

[ n(p)∏
j=1

S(T ∗
j −)ej,n

]
=

[ n(p)∏
j=1

S
(
T(j : n)−)mj

]
.(9)

These equivalences lead to the following result.

LEMMA 5.1. Let ν(du, ds, dx) = ρ(du|s)�0(ds, dx) be the mean intensity
of a Poisson random measure N . Then

E

[ n(p)∏
j=1

S
(
T(j : n)−)mj |ν

]
=

n(p)∏
j=1

e
− ∫ T(j : n)

0 ψmj ,rj−1 (s)�0(ds)
.

The expression reduces to
∏n

j=1 exp(−∫ T(j : n)

0 ψ1,j−1(s)�0(ds)) when there are no
ties.

Lemma 5.1 is instrumental in obtaining the following initial description of M.

LEMMA 5.2. Let M denote the exchangeable distribution of (T,X) defined
in (7). Then M(dT, dX) can be expressed as[ n(p)∏

j=1

e
− ∫ T(j : n)

0 ψmj ,rj−1 (s)�0(ds)
κmj ,rj−1

(
ρ|T(j : n)

)] n(p)∏
l=1

�0(dT ∗
l , dX∗

l ).
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We now show how one can obtain calculations using M. For each m ∈ Sn(p)

and integrable function g(T), define

L(g;m) =
∫ ∞

0

∫ ∞
tn(p)

· · ·
∫ ∞
t2

g((t,m))

n(p)∏
j=1

e
− ∫ tj

0 ψmj ,rj−1 (s)�0(ds)

× κmj ,rj−1(ρ|tj )�0(dtj ),

where t1 > t2 > · · · > tn(p) denotes one of n(p)! orderings of the unique values.
With some abuse of notation, the vector (t,m) = (t) denotes the collection of n

points whose n(p) unique values are ordered according to m. For example, suppose
one has the function g(T1, T2, T3). Then in the instance where T1 = T2 < T3, one
has n(p) = 2 unique values and one evaluates g(T(2 : 2), T(2 : 2), T(1 : 2)) or, using the
notation above, g(t2, t2, t1).

We now use L to obtain very general formulae for expected values of complex
integrals of NTR processes. This plays a key role in obtaining the EPPF π(p) and
related quantities.

LEMMA 5.3. Assume that the random functional I(g) = ∫
g(t)

∏n
i=1 F(dti)

is integrable, where F is an NTR process specified by the Poisson law P(dN |ν).
Then it follows from Lemma 5.2 that

E[I(g)|ν] = ∑
p

[ ∑
m∈Sn(p)

L(g;m)

]
.

In the homogeneous case, ρ(du|s) = ρ(du), the expression reduces to

∑
p

[ ∑
m∈Sn(p)

[ n(p)∏
j=1

κmj ,rj−1(ρ)

]

×
∫ ∞

0

∫ ∞
tn(p)

· · ·
∫ ∞
t2

g(t,m)

n(p)∏
j=1

e
−�0(tj )ψmj ,rj−1 �0(dtj )

]
.

PROOF. The result follows from an application of Fubini’s theorem and
Lemma 5.2, which yields∫

M
I(g)P(dN |ν) =

∫
g(t)M(dt, dx). �

REMARK 8. The case where g may depend also on X is obvious. It is impor-
tant to note that Lemma 5.3 may viewed as a generalization of Lo ([32], Lemma 2).

We now use Lemma 5.3 to obtain a simpler description of the distribution of
(T,X), which also yields easily the EPPF formulae and a corresponding distri-
bution on (m,p). Note again that we do this without resorting to the types of
combinatorial arguments used, for instance, in [1] and [32].
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PROPOSITION 5.1. Let (T,X) denote the random variables with the ex-
changeable distribution M described in Lemma 5.2. Then this distribution may
be expressed in terms of a conditional distribution of T,X|m,p and a distribution
of (m,p) as follows:

(i) There exists a marginal distribution of T,X|m,p, given by π(dT, dX|m,p)

proportional to[ n(p)∏
j=1

e
− ∫ T (j : n)

0 ψmj ,rj−1 (s)�0(ds)
κmj ,rj−1

(
ρ|T(j : n)

)] n(p)∏
l=1

�0
(
dT(j : n), dX∗

j

)
,

where T(1 : n) > T(2 : n) > · · · > T(n(p):n) denotes the order statistics of the unique
values T∗. In the homogeneous case the result reduces to

π(dT, dX|m,p)

(10)

=
[ n(p)∏

j=1

φ(rj )

][ n(p)∏
j=1

e
−ψmj ,rj−1�0(T(j : n))

] n(p)∏
l=1

�0
(
dT(j : n), dX∗

j

)
.

In both cases
∏n(p)

j=1 P0(dX∗
j |T(j :n)) is the conditional distribution of X|T,m.

(ii) The distribution of (m,p), is described as follows. The EPPF derived by
i.i.d. sampling from F is expressible as

π(p) = ∑
m∈Sn(p)

L(1;m).

The representations imply the existence of a joint distribution of (m,p) given by
π(m,p) = L(1;m). Additionally, in the case where ρ(du|s) = ρ(du), the formu-
lae reduce to

π(p) = ∑
m∈Sn(p)

∏n(p)
j=1 κmj ,rj−1(ρ)∏n(p)

j=1 φ(rj )
and π(m,p) =

∏n(p)
j=1 κmj ,rj−1(ρ)∏n(p)

j=1 φ(rj )
.(11)

PROOF. Statement (i) follows from (ii) and Lemma 5.2. The proof of (ii) in the
general case follows from Lemma 5.3 with g := 1. In the case of ρ(du|s) = ρ(du),
π(p) is equivalent to

∑
m∈Sn(p)

[ n(p)∏
j=1

κmj ,rj−1(ρ)

]∫ ∞
0

∫ ∞
tn(p)

· · ·
∫ ∞
t2

n(p)∏
j=1

e
−�0(tj )ψmj ,rj−1 �0(dtj ).

The result is concluded by evaluating
∫ ∞

0
∫ ∞
tn(p)

· · · ∫ ∞
t2

∏n(p)
j=1 e

−�0(tj )ψmj ,rj−1 ×
�0(dtj ). This is done by noting that for any positive C,

∫ ∞
t e−C�0(u)�0(du) =

C−1e−C�0(t). In addition, ψm1,0 = φ(m1), and for each j , φ(rj−1) + ψmj ,rj−1 =
φ(rj ). �
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Equation (10) in Proposition 5.1 can be used to deduce an explicit Markov prop-
erty in the homogeneous case that has the interpretation that the distribution of the
next death time only depends on the previous death time. Moreover, it demon-
strates that it is fairly simple to sample from (10).

PROPOSITION 5.2. Given (m,p), let T(1 : n), . . . , T(n(p) : n) be distributed ac-
cording to (10). Moreover, set �0(t) = t . Then, conditional on T(j+1 : n), . . . , Tn(p),
the distribution of T(j : n) depends only on T(j+1) = tj+1 and is given by the trun-
cated exponential distribution with density

P
(
T(j : n) ∈ dtj |T(j+1 : n) = tj+1

) = φ(rj )e
−φ(rj )[tj−tj+1] dtj

for tj > tj+1. In particular, the smallest value, or equivalently the first of n(p)

death times, T(n(p) : n), has a marginal distribution that is exponential with para-
meter φ(n), that is,

P
(
T(n(p) : n) ∈ dy

) = φ(n)e−φ(n)y dy.

5.1. Some connections to exponential functionals and means of NTR processes.
We now relate some of our results to those of Epifani, Lijoi and Prünster [11]
and Carmona, Petit and Yor [5] concerning moment formulae for means of NTR
processes. Briefly, using the relationship in (2), Epifani, Lijoi and Prünster ([11],
Proposition 5) established the following moment formulae, expressed in our nota-
tion, that characterizes the distribution of I :

E[In|ν] = n!
∫ ∞

0

∫ ∞
tn(p)

· · ·
∫ ∞
t2

n∏
j=1

exp
(
−

∫ tj

0

∫ ∞
0

(1 − e−y)

(12)
× e−y(j−1)τ (dy|s)�0(ds)

)
dtj .

The authors also provide conditions under which the moments exist, which
amounts to the finiteness of the moment of order n of F0; that is,

∫ ∞
0 tnF0(dt)< ∞.

In addition, when ρ(du|s) = ρ(du) and �0(t) = t , the expression in (12) reduces
to the interesting formulae of Carmona, Petit and Yor ([5], Proposition 3.3), viewed
within the context of exponential functionals of a subordinator,

E[In|ν] = n!∏n
j=1 φ(j)

.(13)

Notice that the specification �0(t) = t is equivalent to specifying F0 as an expo-
nential(1) distribution. In addition, Carmona, Petit and Yor ([5], Proposition 3.1)
establish the following result for any λ ≥ 1 and more general Lévy processes:

E[Iλ] = λ

φ(λ)
E[Iλ−1].
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Lemma 5.3 offers a complementary result to theirs in that one can express E[In|ν]
in terms of sums over partitions p. Apparently, for NTR processes, a result of this
type is only widely known in the case of the Dirichlet process, which follows as a
special case of Lo [32]. The result is as follows.

COROLLARY 5.1. Let I be defined as in (2). Then setting g(t) = ∏n
i=1 ti =∏n(p)

j=1 t
mj

(j) in Lemma 5.3, one has I = I(g) and hence

E[In|ν] = ∑
p

[ ∑
m∈Sn(p)

L(g;m)

]
.

In particular, in the case where ρ(du|s) = ρ(du) and �0(t) = t , Lemma 5.3 com-
bined with the result of Carmona, Petit and Yor [5] yields the identity

∑
p

[ ∑
m∈Sn(p)

[n(p)∏
j=1

κmj ,rj−1(ρ)

]

×
∫ ∞

0

∫ ∞
tn(p)

· · ·
∫ ∞
t2

n(p)∏
j=1

t
mj

j e
−tjψmj ,rj−1 dtj

]
= n!∏n

j=1 φ(j)
.

Another relationship to the formula for E[In|ν], (13), given in [5], is seen in the
next corollary, derived from Proposition 5.1, which describes the formula for the
case where all cells are of the same size.

COROLLARY 5.2. Suppose that ρ(du|s) = ρ(du) and n = kn(p). Then with
respect to the EPPF given in (11), the probability of the event p = {E1, . . . ,En(p)},
such that the size of each cell is k, is

π(p) = n(p)!∏n(p)
j=1

∫ 1
0 uk(1 − u)(j−1)kρ(du)∏n(p)

j=1 φ(jk)
.

As special cases, when n(p) = n, the probability of no ties in the sample corre-
sponds to the probability of the event p = {{1}, {2}, . . . , {n}} given by

π(p) = n!∏n
j=1

∫ 1
0 u(1 − u)j−1ρ(du)∏n

j=1 φ(j)
= E[In|ν]

n∏
j=1

∫ 1

0
u(1 − u)j−1ρ(du),

for E[In|ν] given in (13). When n(p) = 1, p = {1,2, . . . , n} corresponds to the
event that all the values in the sample are the same, and the probability is given by

π(p) =
∫ 1

0 unρ(du)

φ(n)
=

∫ ∞
0 (1 − e−y)

n
τ (dy)∫ ∞

0 (1 − e−ny)τ (dy)
.
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REMARK 9. The event of no ties, n(p) = n, corresponds to the common as-
sumption in the literature for observed data. Analogous to Antoniak [1] for the
Dirichlet process, it follows that when n(p) = n, using Corollary 5.2, the distribu-
tion of T,X|p in the homogeneous case is

E[In|ν]−1

[
n∏

i=1

e−�0(T(i : n))ψ1,i−1

]
n∏

j=1

�0(dTj , dXj ).

REMARK 10. Gnedin and Pitman [18], independent of this work and by dif-
ferent arguments, obtain formulae for what are called regenerative compositions
that contain our results in (11). Their formulae are derived from a discretization of
subordinators. In fact, the authors show that all such regenerative compositions are
determined uniquely by their construction via subordinators. The authors’ result is
more general, in the homogeneous case, because they include the result for subor-
dinators with drift components. It is, however, a simple matter to adjust our results
to allow for a drift (see [24], Remark 28). They do not cover the inhomogeneous
cases we consider. We discovered these connections through a mutual exchange
of manuscripts in progress. The authors’ description via a decrement function and
composition structure contain additional binomial coefficients. Explicitly in terms
of our notation, their composition structure is expressed as

n!∏n(p)
j=1 ej !

π(m,p).

The authors identify some particularly interesting composition structures and we
will show how this translates into an interesting class of spatial NTR models. See
also [10, 17, 35] for relevant references. See also [19, 20] for important results
related to the rates of various n(p).

5.2. Sampling M: modified Chinese restaurant processes. Propositions 5.1,
5.2 and 4.1 dictate how one might sample (T,X) from M. This is especially true in
the homogeneous case. One proceeds essentially by first obtaining a draw of (m,p)

from π(m,p), then using Proposition 5.1 or 5.2 to draw the ordered unique val-
ues (T(j : n)) from the relevant truncated exponential distributions. The X∗

j are then
drawn from P0(dX∗

j |T(j : n)) for j = 1, . . . , n(p). Additionally one can then (ap-
proximately) draw F |T,X, by using the representation F ∗

n from Proposition 4.1,
which suggests to draw (Jj,n), and then applying methods in the literature to ap-
proximate quantities such as �n (see, e.g., [4]). These are precisely the type of
steps that would lead to efficient approximations in more complex mixture mod-
els, that is to say, models where (T,X) are missing values obtained from M and
are not directly observed. Also, by sampling from M one can approximate quan-
tities such as those that appear in Lemma 5.3. In this section it is shown how one
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might generate (m,p) from π(m,p) in the case where ρ(du|s) = ρ(du) via a se-
quential seating scheme with probabilities derived from the prediction rule given
(m,p). This idea also holds in the nonhomogeneous case. The scheme bears sim-
ilarities to generalized Chinese restaurant processes that can be used to generate
general EPPFs, π(p) = p(e1, . . . , en(p)). Using the description in [37], page 60, the
generalized Chinese restaurant scheme assumes that an initially empty Chinese
restaurant has an unlimited number of tables labeled 1,2, . . . . Customers num-
bered 1,2, . . . arrive one by and are seated sequentially according to probabilities
derived from ratios of the EPPF. Basically customers are seated with probabili-
ties that depend on the size or number of customers already seated at the existing
tables.

5.2.1. Ordered generalized Chinese restaurant processes. In general, to draw
from p̃(m1, . . . ,mn(p)) := π(m,p), we introduce a new scheme, which is a modi-
fied Chinese restaurant process that also records the rank of the entering customers
relative to the already seated customers. The first customer is seated and assigned
an initial rank of 1. Now, given a configuration based on n customers seated at
n(p) existing tables labeled with ranks from j = 1, . . . , n(p), the next customer
n + 1 is seated at an occupied table j , denoting that customer n + 1 is equivalent
to the j th largest seated customers, with probability

pj : n = p̃(. . . ,mj + 1, . . .)

p̃(m1, . . . ,mn(p))
(14)

= κmj+1,rj−1(ρ)
∏n(p)

l=j+1 κml,rl−1+1(ρ)

κmj ,rj−1(ρ)
∏n(p)

l=j+1 κml,rl−1(ρ)

n(p)∏
l=j

φ(rl)

φ(rl + 1)
.

Customer n+ 1 is seated at a new table with probability 1 −∑n(p)
j=1 pj : n. However,

if customer n + 1 is new, it is also necessary to know the customer’s rank and as
such to rerank by one position all customers smaller than the new customer. Hence
the probability that customer n + 1 is new and is the j th largest among n(p) + 1
possible ranks is

qj : n = p̃(. . . ,mj−1,1,mj , . . .)

p̃(m1, . . . ,mn(p))

= κ1,rj−1(ρ)

φ(rj−1 + 1)

∏n(p)
l=j κml,rl−1+1(ρ)∏n(p)
l=j κml,rl−1(ρ)

n(p)∏
l=j

φ(rl)

φ(rl + 1)

with qn(p)+1 : n = κ1,n(ρ)/φ(n + 1). Note that in the calculation of κ1,rj−1(ρ),
rj−1 + 1 is to be used rather than rj = rj−1 + mj .

As an example, consider the choice of a homogeneous beta process that corre-
sponds to c(s) = θ in (4). Then it is easily seen that φ(rj ) = ∑rj

l=1 θ/(θ + l − 1)
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and it follows that, in this case,

pj : n = mj

n + θ

n(p)∏
l=j

φ(rl)

φ(rl + 1)

and

qj : n = 1

n + θ

1∑rj−1+1
i=1 1/(θ + i − 1)

n(p)∏
l=j

φ(rl)

φ(rl + 1)
.

5.3. Species sampling models generated by spatial NTR processes. The avail-
ability of the EPPF, coupled with Pitman’s [34] theory of species sampling random
probability models, implies that there exists a new explicit class of random proba-
bility measures of the form

PF (·) =
∫ ∞

0
S(s−)�(ds, ·) =

∞∑
i=1

QiδZi
(·),(15)

where Zi are i.i.d. random elements in X with some nonatomic law P0 and where,
independent of (Zi), (Qi) denotes a collection of random probabilities that sum
to 1 and whose law is completely determined by the EPPF π(p) given in Propo-
sition 5.1. We will call PF an NTR species sampling model. We do point out that
although there are technically a large number of possible species sampling mod-
els, to date there are only two well-known classes: the species sampling models
based on the Poisson–Kingman models described in [38] (see also [24]) and the
stick-breaking models described in [22]. See also [40].

The NTR species sampling model, which is defined for the first time here, rep-
resents a third case where, due to the present analysis, much is known. All three
classes contain the Dirichlet process. In fact, rather remarkably, all three classes
contain the two-parameter (α, θ) Poisson–Dirichlet family of random probability
measures with parameters 0 ≤ α < 1 and θ ≥ 0. We will describe this in a forth-
coming section. The next proposition describes how one can always formally ob-
tain an NTR species sampling model generated by an F with an independent prior
specification, F0(ds, dx) = F0(ds)P0(dx). Moreover, we give a description of its
posterior distribution.

PROPOSITION 5.3. Let ν(du, ds, dx) = ρ(du|s)�0(ds, dx) denote the mean
intensity of a Poisson random measure N on W , where �0 is chosen such that
�0(ds, dx) = �0(ds)P0(dx). Then the corresponding spatial NTR process, F ,
generates an NTR species sampling model, PF , given in (15), by the representa-
tions PF (dx) := F(∞, dx) = ∫ ∞

0 S(s−)�(ds, dx) or, equivalently, the marginal
distribution of X = (X∗,p) is given by

E

[
n∏

i=1

PF (dXi)|ν
]

= π(p)

n(p)∏
j=1

P0(dX∗
j ).
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Additionally, the posterior distribution of PF given (T,X), or just X, is charac-
terized by Proposition 4.1 and 5.1. Specifically, it is equivalent to the appropriate
conditional laws of the random measure F ∗

n (∞, dx).

PROOF. Under the specifications F0(ds, dx) = F0(ds)P0(dx), M(dT, dX) is
such that given p, the vectors T∗ and X∗ are independent, where X∗ has joint law∏n(p)

j=1 P0(dX∗
j ). The result is concluded by integrating out T∗. �

It is interesting to note that while the Dirichlet process is an example of PF , it
also arises without the independence specification. In most cases π(p) will not be
easy to work with directly; as such one can work with π(m,p). As an example,
we present a description for the prediction rule of PF given (X,m). It will be
clear that one can employ the ordered generalized Chinese restaurant algorithm in
Section 5.2.1 to draw easily from a joint distribution of (X,m).

PROPOSITION 5.4. Let PF denote an NTR species sampling model defined
by the choice ρ(du|s) = ρ(du). Suppose that X = {X1, . . . ,Xn} given PF are
i.i.d. PF . Then one can define a prediction rule for Xn+1 given X,m as

P(Xn+1 ∈ dx|X,m) =
(

1 −
n(p)∑
j=1

pj : n

)
P0(dx) +

n(p)∑
j=1

pj : nδX∗
j
(dx),

where (pj : n) are given in (14). Note also that π(m,p)
∏n(p)

i=1 P0(dXj ) is the dis-
tribution of (X,m), which means that the distribution of X|m is such that the
unique values (X∗

j ) given m are i.i.d. P0. The prediction rule given X is obtained
by P(Xn+1 ∈ dx|X) = ∑

m∈Sn(p)
P(Xn+1 ∈ dx|X,m)π(m|p).

6. Examples.

6.1. Generalized gamma models. An interesting class of measures is the fam-
ily of generalized gamma random measures discussed in [4]. Using the description
of Brix [4], these are Z processes with Lévy measure

τα,b(dy)�0(ds, dx) = 1

φα,b(1)�(1 − α)
y−α−1 exp(−by)dy�0(ds, dx),

where φα,b(1) = 1
α
[(b + 1)α − (b)α]. The values for α and b are restricted to sat-

isfy 0 < α < 1 and 0 ≤ b < ∞ or −∞ < α ≤ 0 and 0 < b < ∞. Different choices
for α and b in ρα,b yield various subordinators. These include the stable subordi-
nator when b = 0, the gamma process subordinator when α = 0 and the inverse-
Gaussian subordinator when α = 1/2 and b > 0. When α < 0, this results in a
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class of gamma compound Poisson processes. Generalized gamma NTR processes
with b > 0 are discussed in [11]. Here, from our results,

ψmj ,rj−1 = [(rj + b)α − (rj−1 + b)α]
[(1 + b)α − bα] ,

φ(rj ) = [(rj + b)α − bα]
[(1 + b)α − bα]

and

κmj ,rj−1(ρ) =
∑mj

l=0 (−1)l+1(mj

l

)
(b + rj−1 + l)α

[(1 + b)α − bα] .

Hence

π(m,p) =
∏n(p)

j=1
∑mj

l=0

(mj

l

)
(−1)l+1(b + rj−1 + l)α∏n(p)

j=1 [(b + rj )α − bα]
.

The process F(ds, dx) is such that marginally F(ds,X) is a generalized gamma
NTR process and PF (dx) = F(∞, dx) is a species sampling model. Additionally
one can use Proposition 5.2 to generate the T(j : n). In particular, when b = 0 and
�0(t) = t , the density corresponding to the stable process with index 0 < α < 1 is

P
(
T(j : n) ∈ dtj |T(j+1 : n) = tj+1

) = rα
j e

−rα
j [tj−tj+1] for tj > tj+1.

6.2. The spatial NTR two-parameter Poisson–Dirichlet model. We now de-
scribe perhaps the most remarkable class of spatial NTR processes. Gnedin and
Pitman ([18], Section 10) were able to deduce that one can generate the EPPF of
the two-parameter (α, θ) Poisson–Dirichlet distribution with parameters 0 ≤ α < 1
and θ ≥ 0 by specifying a homogeneous ρ such that∫ 1

u
ρ(dv) = �(θ + 2 − α)

�(1 − α)�(1 + θ)
u−α(1 − u)θ(16)

and, hence,

φ(rj ) = rj�(θ + rj )�(θ + 2 − α)

�(θ + 1)�(θ − α + rj + 1)
.

Due to Proposition 5.2, this is enough to generate the distribution of the (T(j : n)).
Note for this model one can directly sample from the well-known EPPF.

6.2.1. The ordered ESF and the Dirichlet process. An interesting case is when
α = 0; that is, ρ(du) = θ(θ + 1)(1 − u)θ−1 du. This choice generates the ordered
Ewens sampling formula as described in [10]. Moreover, the spatial NTR process
F(ds, dx) is such that F(ds,X) is an NTR process but not a Dirichlet process,
and it follows from Proposition 5.3 that PF (dx) = F(∞, dx) is a Dirichlet process
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with shape θP0. Hence, this shows that a Dirichlet process may be generated via
a homogeneous NTR process derived from a compound Poisson process. Note
of course that when x ∈ R, this process is marginally an NTR process in both
coordinates. Setting �0(t) = t , the corresponding distribution of the T(j : n) is given
by

P
(
T(j : n) ∈ dtj |T(j+1 : n) = tj+1

) = (θ + 1)rj

(θ + rj )
e−((θ+1)rj /(θ+rj ))[tj−tj+1]

for tj > tj+1.

Note also that the distribution of the jumps that depends on (T(j : n)) is

P
(
Jj,n ∈ du|T(j : n)

) = �(θ + rj + 1)

�(mj + 1)�(θ + rj−1)
umj (1 − u)θ+rj−1−1;

that is, they are beta distributed with parameters (mj + 1, θ + rj−1). Note that
these are not the jumps of a posterior Dirichlet process. However, since F(∞, dx)

is a Dirichlet process, its posterior distribution given X is a Dirichlet process with
shape θP0 + ∑n

i=1 δXi
.

6.2.2. Representations for the general two-parameter (α, θ) case. We can use
the result above to provide some new results related to the two-parameter (α, θ)

Poisson–Dirichlet family and spatial NTR processes. For clarity, we first recall the
definition of the two-parameter (α, θ) Poisson–Dirichlet class of random proba-
bility measures. The two-parameter (α, θ) Poisson–Dirichlet random probability
measure with parameters 0 ≤ α < 1 and θ ≥ 0 has the known representation

Pα,θ (dx) = µα,θ (dx)

Tα,θ

,

where µα,θ is a finite random measure on X with law P(dµα,θ ) and where
Tα,θ = µα,θ (X) is a random variable. The law of the random measure µα,θ can
be described as follows. When α = 0, µ0,θ is a gamma process with shape θP0;
hence, P0,θ is a Dirichlet process with shape θP0. When θ = 0, µα,0 is a stable
random measure of index 0 < α < 1. Note that both µα,0 and µ0,θ are completely
random measures and can be represented in terms of a Poisson random measure.
However, this is not true for the case where both α and θ are positive. Here for
0 < α < 1 and θ > 0 one has the absolute continuity relationship

P(dµα,θ ) = T −θ
α,0 P(dµα,0)

E[T −θ
α,0 ] ,

where Tα,0 is a stable law random variable. This class of models also has a repre-
sentation in terms of stick-breaking processes. See, for instance, [22, 34, 39] for
further details. We now arrive at the following interesting observations.
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PROPOSITION 6.1. Let F(ds, dx) denote a spatial NTR process specified by
the choice of ρ in (16) and let F0(ds, dx) = P0(dx)F0(ds). Then PF is a two-
parameter (α, θ) Poisson–Dirichlet process. This yields the representations

PF (dx) =
∫ ∞

0
S(s−)�(ds, dx)

=
∞∑

k=1

Vk

k−1∏
i=1

(1 − Vi)δZk
(dx)

= µα,θ (dx)/Tα,θ = Pα,θ (dx),

where (Vk) are independent beta (1 − α, θ + kα) random variables independent
of the (Zk), which are i.i.d. P0; that is, a two-parameter (α, θ) Poisson–Dirichlet
process can be represented as the marginal probability measure of a spatial NTR
process as described above.

PROOF. The general result follows from an application of Proposition 5.3
combined with the calculations of the EPPF using ρ in (16) by Gnedin and Pitman
([18], Section 10). The case of the Dirichlet process that corresponds to the choice
of ρ(du) = θ(θ + 1)(1 − u)θ−1 du could be deduced as well from [10] in combi-
nation with Proposition 5.3. See also [35] for the (α,α) model. �

APPENDIX

Proofs of Proposition 4.1 and Lemmas 5.1 and 5.2. We now show that
the proofs of Proposition 4.1 and Lemmas 5.1 and 5.2 follow as a simple con-
sequence of the Poisson partition calculus methods as laid out in [24, 26]. First set
Wi = (Ji, Ti,Xi) for i = 1, . . . , n, elements of W . The collection J = {J1, . . . , Jn}
with values in [0,1] will play the role of the latent jumps. Its unique values
are the (Jj,n). Set W = (J,T,X) and let W ∗

j = (Jj,n, T(j : n),X
∗
j ) denote the

j = 1, . . . , n(p) unique triples. Using Proposition 2.3 of [26] yields the following
statement. Suppose that (W,N) are measurable elements in the space Wn × M,
where N is Poisson random measure with sigma finite nonatomic mean measure ν.
Then for each nonnegative measurable f such that G(f ) < ∞, the following dis-
integration holds:[

n∏
i=1

N(dWi)

]
e−N(f )

P(dN |ν)

(17)

= e−G(f )
P(dN |νf ,W)

n(p)∏
j=1

e
−f (W ∗

j )
ν(dW ∗

j ),

where P(dN |νf ,W) denotes the law of the random measure N + ∑n(p)
j=1 δW ∗

j
,

where N is a Poisson random measure with mean intensity E[N(du,ds, dx)|νf ] =
νf (du, ds, dx) := e−f (u,s,x)ν(du, ds, dx).
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To apply the results above we first express (9) in terms of an exponential func-
tional of a Poisson random measure as follows. For each j , set fT(j : n)−(u, s, x) =
I {s < T(j : n)}[− log(1 − u)]. Now it follows that one can define

fn(u, s, x) =
n(p)∑
j=1

mjfT(j : n)−(u, s, x) = −Yn(s) log(1 − u)

and hence one has[ n(p)∏
j=1

S
(
T(j : n)−)mj

]
=

n(p)∏
j=1

e
−N(mjfT(j : n)− ) = e−N(fn).

Note also that e−fn(u,s,x) = (1 − u)Yn(s) and e
−fn(Jj,n,T(j : n),X

∗
j ) = (1 − Jj,n)

rj−1 for
j = 1, . . . , n(p).

The next step is to write �(dTi, dXi) = ∫ 1
0 JiN(dJi, dTi, dXi). Now remov-

ing those integrals in (6) yields an augmentation of the distribution of (T,X,N)

in terms of a distribution of (J,T,X,N). It follows that the distribution of
(J,T,X,N) can be expressed similar to the left-hand side of (17) with fn in place
of f as [ n(p)∏

j=1

J
mj

j,n

][
n∏

i=1

N(dJi, dTi, dXi)

]
e−N(fn)

P(dN |ν).

Note that
∏n

i=1 Ji = ∏n(p)
j=1 J

mj

j,n . Hence now applying the right-hand side of (17)
one has that the joint distribution of (J,T,X,N) is given by

P
(
dN |e−fnνfn,W

)
e−G(fn)

(18)

×
[ n(p)∏

j=1

J
mj

j,n (1 − Jj,n)
rj−1ρ

(
dJj,n|T(j : n)

)] n(p)∏
l=1

�0(T
∗
l ,X∗

l ),

where E[e−N(fn)|ν] = e−G(fn) and now P(dN |νfn,W) corresponds to the law, for

fixed W, of a random measure Nn + ∑n(p)
j=1 δJj,n,T(j : n),X

∗
j
, where Nn is a Poisson

random measure with mean described in (8) and P(dN |νfn,W) is the posterior
distribution of N |J,T,X. The joint distribution of (J,T,X) is obtained by inte-
grating out N in (18). Now using the fact that one can decompose (J,T,X) as
((Jj,n),T∗,X∗,p), it follows that an expression for the marginal distribution of
(T,X), or equivalently (T∗,X∗,p), is obtained by integrating out N and the (Jj,n).
For clarity, this takes the form

M(dT, dX) = e−G(fn)

[ n(p)∏
j=1

κmj ,rj−1

(
ρ|T(j : n)

)] n(p)∏
l=1

�0(dT ∗
l ,X∗

l ).
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The description of the posterior distribution of N |T,X is given in terms of the
distribution of N |J,T,X mixed over the distribution of the (Jj,n) given (T,X).
The distribution of (Jj,n) follows by an appeal to the classical Bayes rule; that
is, one integrates out N in (18) and then divides the remaining quantity by M.
This yields the results in Proposition 4.1. Now it follows that the description of
M given in Lemma 5.2 is completed by verifying Lemma 5.1. This is obtained by
using repeatedly the exponential change of measure described in Proposition 2.1
of [26]. This is the same as working with (17) after removing all the terms that
involve W; that is, the disintegration e−N(f )

P(dN |ν) = P(dN |νf )E[e−N(f )|ν].
We apply this repeatedly to the measure [∏n(p)

j=1 e
−N(mjfT(j : n)− )]P(dN |ν). To see

this, first set gj := mjfT(j : n)− for j = 1, . . . , n(p) and let each gj now play the role
of an f . We demonstrate the first two steps. Notice that the first term is obtained
as

e−N(g1)P(dN |ν) = P
(
dN |νg1

)
e− ∫ T(1 : n)

0 ψm1,r0 (s)�0(ds)

= P
(
dN |νg1

)
E

[
e−N(g1)|ν]

.

The next term is obtained as

e−N(g2)P
(
dN |νg1

) = P
(
dN |νg1+g2

)
e− ∫ T(2 : n)

0 ψm2,r1 (s)�0(ds).

The last expression follows from the fact that for s < T(2 : n), e−g2(s,u,x) =
(1 − u)m2 and e−g1(s,u,x) = (1 − u)m1 with r1 = m1. The next term would then ex-
ploit this type of relationship for g1, g2 and g3 on s < T(3 : n), where m1 +m2 = r2.
It is clear that continuing in this way leads to the conclusion of Lemma 5.1.

REMARK 11. More details, including an analysis of semiparametric mod-
els subject to censoring mechanisms, is given in an older version of this manu-
script [25].
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