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SHARP ADAPTIVE ESTIMATION OF THE DRIFT
FUNCTION FOR ERGODIC DIFFUSIONS

BY ARNAK DALALYAN

Université Paris VI

The global estimation problem of the drift function is considered for a
large class of ergodic diffusion processes. The unknown drift S(·) is sup-
posed to belong to a nonparametric class of smooth functions of order k ≥ 1,
but the value of k is not known to the statistician. A fully data-driven pro-
cedure of estimating the drift function is proposed, using the estimated risk
minimization method. The sharp adaptivity of this procedure is proven up to
an optimal constant, when the quality of the estimation is measured by the
integrated squared error weighted by the square of the invariant density.

1. Introduction.

1.1. The problem. In this paper we consider the statistical problem of esti-
mating the drift function of a diffusion process X, given as the solution of the
stochastic differential equation

dXt = S(Xt) dt + σ(Xt) dWt, X0 = ξ, t ≥ 0,(1)

where W is a standard Brownian motion and the initial value ξ is a random
variable independent of W . We assume that a continuous record of observations
XT = (Xt ,0 ≤ t ≤ T ) is available. The goal is to estimate the function S(·), which
is commonly referred to as the drift function and is interpreted as the instantaneous
mean of the process X.

In our setup, the diffusion coefficient σ 2 is identifiable using the quadratic vari-
ation of the semi-martingale X. Therefore, the problem of its estimation is not
interesting from the viewpoint of asymptotic statistics. In the sequel, we suppose
that σ(·)2 is a known function satisfying some boundedness and smoothness con-
ditions.

During the past decade statistical inference for continuous time Markov
processes has been widely developed due to its numerous applications, namely,
in mathematical finance and econometrics. In fact, the diffusion processes and
their extensions, such as jump-diffusions and the solutions of stochastic differen-
tial equations driven by Lévy processes, are often used to model the evolution of
asset prices and derivative securities.
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Estimation problems based on both continuous time and discretely sampled ob-
servations have been considered in the statistical literature. The first one is more
interesting from the point of view of financial econometrics (see [1, 25]), since in
finance, even if the underlying process is time continuous, only its values at a finite
number of points are available.

However, the theoretical development of statistical inference with a continuous
time record of observations turns out to be technically simpler than inference based
on discretely observed data. It permits one, therefore, to go further in the statistical
analysis of the model and to answer some questions open up to now for discretely
observed diffusions.

Note also that the continuous-time model can be considered as the limit of a
discrete-time model when the step of discretization goes to zero (see [30]). There-
fore, if the available data is “dense enough” with respect to the observation time,
the asymptotic behavior of estimation procedures, in practice, may be close to the
asymptotic behavior proven theoretically for continuous-time observations. Thus,
the knowledge of the best estimator based on continuous-time data is of practical
interest as well.

The purpose of the present paper is to estimate the drift function globally, that
is, at any point x ∈ R. We consider the case of ergodic diffusions, which means that
the Markov process X admits an invariant measure. Let fS denote the density of
this invariant measure with respect to the Lebesgue measure on R (cf. [18], Chap-
ter 4, Section 18, for more details). To quantify the performance of an estimator
ST (·) = ST (·,XT ) of the drift S(·), we use the weighted L2-risk

RT (ST , S) =
∫

R

ES

[(
ST (x) − S(x)

)2]
f 2

S (x) dx,(2)

where ES is the expectation with respect to the law PS of X defined by (1). We
call an estimating procedure adaptive if its realization does not require any a priori
information on the estimated function. The only information that we may (and
should) use is that contained in the observations. We call an estimating procedure
minimax sharp adaptive, or simply sharp adaptive, if its minimax risk converges
with the best possible rate to the best possible constant.

The main focus of this paper is constructing an estimating procedure which is
minimax sharp adaptive with respect to the risk (2), when T → ∞.

The estimator of the drift we propose enjoys the following properties:

– It is fully data-driven; particularly, it does not depend on the smoothness of the
estimated function.

– In the case when the observed path is generated by a stationary diffusion, the
estimator is minimax rate-optimal over the Sobolev balls on any compact inter-
val. The quality of estimation is then measured by the mean integrated squared
error (MISE).
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– Still in the case of an ergodic diffusion, if the risk function is defined by (2), the
estimator is asymptotically sharp adaptive over a large scale of Sobolev balls:
it attains not only the optimal rate of convergence, but also the best possible
constant. Moreover, the accuracy of the adaptive procedure is asymptotically as
good as the accuracy of the best possible nonadaptive procedure.

1.2. Adaptive estimation. The first result concerning minimax sharp adaptiv-
ity in nonparametric curve estimation is due to Efromovich and Pinsker [11]. It was
extended by Golubev [19] and Golubev and Nussbaum [22] for nonparametric re-
gression and by Efromovich [9] and Golubev [21] for density estimation from i.i.d.
data. Similar results have been obtained in some other contexts as well (we refer to
Chapter 7.4 of [10] for a comprehensive discussion), but they all deal with either
independent or Gaussian observations. Thus, the main difference of our study is
that the observations we have at our disposal are neither independent nor Gaussian.
Moreover, as follows from heuristics presented in Section 4.1, our model exhibits
heteroscedastic structure.

1.3. Estimation for diffusions. For a complete review of parametric and non-
parametric methods for diffusion processes, we refer to [14], [24] and [27].

There are a number of papers devoted to the estimation of the drift in the case
when the parameters (such as smoothness, Lipschitz constant) describing the non-
parametric class are known and when continuous-time observations are available.
Banon [3] proved the consistency in probability of kernel-type estimators, and
Pham [31] obtained the rate of convergence in the same setup. These results have
been extended by van Zanten [35], Galtchouk and Pergamenshchikov [17] and
Kutoyants [27]. Pinsker’s constant in this problem is obtained in [6]. More re-
cently, an approach making use of a random rate of convergence is developed
in [8].

The adaptive estimation of the drift at a fixed point based on continuous-time ob-
servations has been studied by Spokoiny [34], who has applied the Lepskii method
(see [28]) to the locally linear smoothers in order to construct an adaptive rate-
optimal procedure. For discretely sampled diffusions, a rate-optimal adaptive pro-
cedure for estimating the drift function has been proposed by Hoffmann [23].

In the problem of estimation and validation of the model with discretely sam-
pled high frequency observations, which is frequently used in mathematical fi-
nance, recent progress has been achieved by Fan and Zhang [15] and Aït-Sahalia
and Mykland [2].

Note also that the diffusion processes can be regarded as continuous-time ana-
logues of autoregressive processes. A theoretical result establishing the connection
between these two models has been proven by Milstein and Nussbaum [29].

The paper is divided into five sections. The description of the adaptive procedure
is given in Section 2. In Section 3 the assumptions on the model, as well as the
main result describing the asymptotic behavior of the procedure, are formulated.
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Some comments related to this result and its proof are given in Sections 4 and 5,
respectively.

2. Construction of the adaptive estimator. The construction of the adaptive
estimator proposed in this paper relies hardly on the papers [4] and [21]. It can be
divided into three steps according to the following scheme. First, we present an
estimator of the drift function involving two kernel-type functions and two band-
widths. This estimator is rate-optimal if the orders of the bandwidths are chosen
in a correct way. Second, we derive an asymptotically exact upper bound of the
risk of this estimator. The minimization of the maximum of this risk bound over
the Sobolev ball of smoothness k and radius R provides the explicit forms of the
optimal kernel and the optimal bandwidth, depending on k and R. The last step is
to substitute some “good” data-driven approximation for these parameters.

2.1. The nonadaptive estimator. Let K(·),Q(·) ∈ L2(R) be two positive
k-times (k ≥ 1) continuously differentiable symmetric functions such that

∫
K =∫

Q = 1, and let α = αT and ν = νT be two positive functions of T decreasing
to zero. According to the Girsanov formula, for two drift functions S and S0, the
log-likelihood log( dPS

dPS0
(XT )) in the model (1) is given by

�T (S,S0,X
T ) =

∫ T

0

S(Xt) − S0(Xt)

σ 2(Xt)
dXt − 1

2

∫ T

0

S2(Xt) − S2
0(Xt)

σ 2(Xt)
dt.

We have supposed in the above formula that the law of the initial value does not
depend on S. A widely used idea for constructing nonparametric estimators is
to find a local (around the state x) approximation �̃(θ,XT , x) of �T (S,S0,X

T )

depending only on a finite-dimensional parameter θ and to define the estimator as
the value of the parameter θ maximizing �̃(θ,XT , x). We use the following “local
constant” approximation of the log-likelihood:

�̃(θ,XT , x) = θ

αT σ 2(x)

∫ T

0
K

(
x − Xt

αT

)
dXt − θ2

2νT σ 2(x)

∫ T

0
Q

(
x − Xt

νT

)
dt

(in this expression, the terms not depending on θ are dropped, since they have no
influence on the definition of the MLE). It is evident that the maximum of this
expression is attained by

θT (x) = 1

αT

∫ T

0
K

(
x − Xt

αT

)
dXt

[
1

νT

∫ T

0
Q

(
x − Xt

νT

)
dt

]−1

,(3)

provided that the denominator is different from 0. A similar algorithm but with
local linear smoothers is used in [34]. As it is explained in Section 4.4 of [6], for
symmetric functions K and Q, the asymptotic properties of the estimators defined
via the local constant and the local linear smoothers coincide. That is why we
restrict ourselves to the local constant approximation.
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One drawback of the estimator (3) is that it is not defined when the denominator
is null. Different approaches for overcoming this problem have been proposed.
Banon [3] has suggested increasing artificially the denominator by a deterministic
term ε/(T νT ), which asymptotically vanishes but allows the denominator to stay
positive. We adopt in this paper this approach, but with a more careful choice of the
term to be added. Note that, in the context of nonparametric regression, a similar
approach is developed in [13].

The second drawback of the estimator (3) is the presence of the stochastic in-
tegral. To explain why this integral is undesirable, let us recall that our final goal
is to choose all the parameters and, in particular, the bandwidth αT in a data-
dependent way. If we replace α by an approximation depending on the observed
path (Xt ,0 ≤ t ≤ T ), we obtain an anticipative stochastic integral. The manipu-
lation of such integrals is technically more difficult than the manipulation of the
Riemann integrals.

In order to replace the stochastic integral by a Riemann integral, we apply the
Itô formula to the primitive of the function α−1K((x − ·)/α) and to the semi-
martingale X:∫ XT

X0

K

(
x − y

α

)
dy =

∫ T

0
K

(
x − Xt

α

)
dXt − 1

2α

∫ T

0
K ′

(
x − Xt

α

)
σ 2(Xt) dt.

We show that, in the ergodic case, the term
∫ XT

X0
K((x − y)/α)dy is asymp-

totically negligible with respect to the other terms. Therefore, the stochastic
integral

∫ T
0 K((x − Xt)/α)dXt can be approximated by (2α)−1 ∫ T

0 K ′((x −
Xt)/α)σ 2(Xt) dt .

According to these considerations, we modify the estimator (1) as

θ̂T (x) = (1/α2)
∫ T

0 K ′((x − Xt)/α)σ 2(Xt) dt

(2/ν)
∫ T

0 Q((x − Xt)/ν) dt + (2ε/ν)e−	T |x| ,(4)

where ε = εT = e
√

logT and 	T = (logT )−1. It is proved in [27] that if the un-
known drift function is k-times continuously differentiable, then the bandwidths
αT = T −1/(2k+1) and νT = T −1/2 lead to a locally and globally rate-optimal es-
timator θ̂T (x). The rate of convergence of this estimator is then T −k/(2k+1). This
choice of the bandwidth αT is clearly nonadaptive, since it depends on the un-
known parameter k.

In the case of an ergodic diffusion, one can arrive at the same estimator using
the well-known formula (

σ 2(x)fS(x)
)′ = 2S(x)fS(x),(5)

where fS is the invariant density of the process X. Using the occupations time
formula and the martingale representation of the local time, one can check that
(T α2)−1 ∫ T

0 K ′((x − Xt)/α)σ 2(Xt) dt is a consistent estimator of (σ 2(x)fS(x))′.
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Likewise, 2(T ν)−1 ∫ T
0 Q((x − Xt)/ν) dt is a consistent estimator of 2fS(x). It

is now quite natural to define the estimator of S(x) as the quotient of these two
estimators.

2.2. The minimax sharp adaptive estimator. To simplify the exposition, we
suppose in this section that the diffusion coefficient σ(·) is identically equal to one.
For any function h ∈ L2(R), let us denote by ϕh(·) the Fourier transform of h(·) de-
fined as ϕh(λ) = ∫

R
eiλxh(x) dx. To avoid double subscripts, we write ϕf instead

of ϕfS
. Recall that, for any estimator ST (·) = ST (·,XT ) of the drift function S(·),

we have defined

RT (ST , S) =
∫

R

ES

[(
ST (x) − S(x)

)2]
f 2

S (x) dx.

Some heuristic explanations of this choice of the risk function are presented in Sec-
tion 4.1. It is proven in [6] that, in order that the estimator (4) be asymptotically
minimax over a properly chosen Sobolev ball �(k,R) (k is the order of smooth-
ness and R is the radius), one should choose the kernels and the bandwidths as

α∗
T =

(
4k

πRT (k + 1)(2k + 1)

)1/(2k+1)

,

(6)

K∗(x) = 1

π

∫ 1

0
(1 − uk+ρT ) cos(ux) du;

νT = T −1/2 and Q(x) is any positive, differentiable, symmetric function with
support in [−1,1] and

∫
Q(x)dx = 1. In equality (6), we used the notation

ρT = 1/ log log(1 + T ). The estimator (4) defined by such a bandwidth and kernel
will be denoted by S∗

T (·). Note here that the Fourier transform of the kernel K∗
is ϕK∗(λ) = (1 − |λ|k+ρT )+. The exact asymptotic behavior of the maximum
over �(k,R) of the risk of this estimator is T −2k/(2k+1)P (k,R) (see [6], Theo-
rem 4 and Definition 2), where P(k,R) is Pinsker’s constant [32]. Moreover, the
following asymptotic relation holds:

RT (S∗
T , S) ≤ �T (α,ϕK∗, ϕf )(1 + oT (1))

2πT
,

where oT (1) is a term tending to zero uniformly in S and the functional �T is
defined by

�T (α,h,ϕf ) = T

∫
R

∣∣λ(
1 − h(αλ)

)
ϕf (λ)

∣∣2 dλ + 4
∫

R

|h(αλ)|2 dλ.

Since for known k the optimal kernel is given by (6), it will be natural to select the
adaptive kernel among the functions {Kβ(x) = π−1 ∫ 1

0 (1 − uβ) cos(ux) du|β > 0}
in a data-driven way. Thus, it suffices to give a good adaptive choice of the real
parameters α and β in order to obtain an adaptive estimator of S. The values of
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these parameters that are of interest for us are those minimizing the risk RT (ST , S)

or, equivalently, �T (α,hβ,ϕf ), where

hβ(λ) = (1 − |λ|β)+.

The minimizers of �T depend obviously on the unknown function S, so they
cannot be used in an estimation procedure. A standard method for overcoming
this difficulty is to estimate �T (α,h,ϕf ) by a data dependent functional lT (α,h)

that does not involve the function S. Then the minimizers of the latter func-
tional might be chosen as parameters for the adaptive procedure. Perhaps the most
straightforward idea for estimating �T (α,h,ϕf ) is to utilize the plug-in estimator
�T (α,h, ϕ̂T ), ϕ̂T being the empirical characteristic function

ϕ̂T (λ) = 1

T

∫ T

0
eiλXt dt.

But it is well known that the plug-in estimators of quadratic functionals have a
large bias (cf., e.g., [12]). That is why a smarter solution consists in applying the
plug-in method to �T considered as a linear functional of |ϕf (·)|2. According
to Lemma 1, a good estimate of |ϕf (λ)|2 is |ϕ̂T (λ)|2 − 4/(T λ2). On the other
hand, the minimization of �T (α,hβ,ϕf ) w.r.t. parameters α and β is obviously
equivalent to the minimization of

�̃T (α,hβ,ϕf ) = T

∫
R

λ2(
h2

β(αλ) − 2hβ(αλ)
)|ϕf (λ)|2 dλ + 4

∫
R

|hβ(αλ)|2 dλ,

since it is just �T (α,hβ,ϕf ) − T
∫
R

λ2|ϕf (λ)|2 dλ. For this reason, we define the
functional

lT (h) = T

∫
R

λ2(
h2(λ) − 2h(λ)

)|ϕ̂T (λ)|2 dλ − 4
∫

R

(
h2(λ) − 2h(λ)

)
dλ

+ 4
∫

R

|h(λ)|2 dλ(7)

= T

∫
R

λ2(
h2(λ) − 2h(λ)

)|ϕ̂T (λ)|2 dλ + 8
∫

R

h(λ)dλ.

This functional depends on the observed path via the empirical characteristic func-
tion ϕ̂T . To obtain the adaptive kernel Kβ and the adaptive bandwidth α, one
should minimize the expression lT (h) over a suitably chosen subset HN

T of the
set

HT = {h :x 	→ hβ(αx) = (1 − |αx|β)+|α ∈ [T −1/3, (logT )−1], β ≥ 1},
such that #HN

T = N . The subset HN
T is defined as in [4]. For any pair of positive

integers i and j , let us denote

αi =
(

1 + 1

logT

)−i

and βj =
(

1 − j

logT

)−1

.(8)



2514 A. S. DALALYAN

The finite subset HN
T of HT is defined as

HN
T = {h :x 	→ (1 − |αix|βj )+|αi ∈ [T −1/3, (logT )−1], j = 1, . . . , 
logT �},

where 
a� denotes the largest integer strictly smaller than the real number a. It
is evident that the cardinality of HN

T is less than (logT )3. From now on, we de-
note the N elements of this set by h1, h2, . . . , hN . Thus, to construct the adaptive
estimator, the functional lT is maximized over a set of cardinality not exceeding
(logT )3. Let us now summarize the method.

2.3. Brief description of the procedure. We start by computing the values
αi and βj according to (8). Then we determine the function h̃T ∈ HN

T such
that lT (h̃T ) = minh∈HN

T
lT (h). If the function satisfying the latter equality is not

unique, we denote by h̃T one of them. Next we apply the inverse Fourier transform
to h̃T in order to define the kernel

K̃T (x) = 1

2π

∫
R

h̃T (λ) cos(λx) dλ.

This form of the kernel comprises the bandwidth since h̃T (λ) = hβ̃T
(α̃T λ), where

α̃T and β̃T are the values of αi and βj corresponding to h̃T . Further, we choose
another kernel function Q(·) which is positive, differentiable, symmetric, sup-
ported in [−1,1] and with integral equal to one. Finally, we set εT = e

√
logT ,

	T = 1/logT and define the estimator

S̃T (x) =
∫ T

0 K̃ ′
T (x − Xt) dt

2
√

T
∫ T

0 Q(
√

T (x − Xt)) dt + 2
√

T εT e−	T |x| .

Note that the function K̃T (·) is differentiable, since minβj > 1.

3. Assumptions and main results. We introduce four conditions playing an
important role throughout this paper. They ensure the existence of the observed
diffusion process as a solution of (1) and provide us with some technical tools
permitting us to deal with this process. Before stating these conditions, we need
some additional notation.

Recall that the solution of the stochastic differential equation (1) is a strong
Markov process. We denote by Pt(S, x,A) the transition probability correspond-
ing to the instant t , that is,

Pt(S, x,A) = PS(Xt ∈ A|X0 = x) ∀x ∈ R,∀A ∈ B(R).

Here PS denotes the probability measure on (C(R),BC(R)) induced by the
process (1). For every x ∈ R and t ≥ 0, the probability measure Pt(S, x, ·) is
absolutely continuous with respect to the Lebesgue measure. The corresponding
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density will be denoted by pt(S, x, y), so that, for any integrable function g(·), we
have

ES[g(Xt)|Fs] =
∫

R

g(y)pt−s(S,Xs, y) dy.(9)

Let k be a strictly positive integer. Denote by �(k) the set of all functions satisfying
the following conditions:

C1. The function S is k-times continuously differentiable in the whole real line
and lim sup|x|→∞ S(x) sgnx < 0.

C2. There exist positive numbers C and ν such that |S(k)(x)| ≤ C(1 + |x|ν),
∀x ∈ R.

The problem we consider is the following: we know that xT is a sample path
of the process XT given by (1) with a drift function S ∈ � = ⋃

k≥1 �(k) and we
want to estimate the function S(·). To obtain minimax results, we consider the local
setting. For any function S0 ∈ �(k) and for all δ > 0, we define the neighborhoods
Vδ(S0) = {S ∈ �| supx∈R |S(x) − S0(x)| ≤ δ} and

Ṽδ(S0) =
{
S ∈ �(k)

∣∣∣ sup
x∈R

∣∣S(i)(x) − S
(i)
0 (x)

∣∣ ≤ δ, i = 0,1, . . . , k − 1
}
.

The center of localization S0(·) is assumed to fulfill the following additional as-
sumptions:

C3. There exist a positive number κ and a q > 1 such that the quantity
supt>κ ES0[supy∈R p

q
κ (S0,Xt−κ, y)] is finite.

C4. Let ϕ0(·) be the Fourier transform of the invariant density fS0(·). There exists
τ > 0 such that

∫
R

|λ|2k+2+τ |ϕ0(λ)|2 dλ < ∞.

Conditions C1–C4 need perhaps some comments. The first one ensures the er-
godicity (see [18]) of the solution of the stochastic differential equation (1). This
condition entails also the exponential smallness of the tails of fS(·). The second
condition guarantees the square integrability of the functions f

(i)
S (·), for every

i = 0,1, . . . , k.
Condition C3 is a technical one and can be considered a mixing property of the

underlying diffusion process. It can be viewed as a weakened version of the condi-
tion G2(s, α) from [3]. Some sufficient conditions for C3 are given in Section 4.4.

Finally, C4 means that the central function S0(·) is a little bit smoother than
the other functions of the neighborhood. For example, if S0(·) is (k + 1)-times
differentiable and S

(k+1)
0 (·) increases at most polynomially, then C4 is satisfied

with τ = 2.
We define now the Sobolev balls; in our setup they also are weighted by the

square of the invariant density. Let us denote

�̃δ(k,R,S0) =
{
S ∈ Ṽδ(S0)

∣∣∣ ∫
R

[
(S − S0)

(k)(x)
]2

f 2
S (x) dx ≤ R

}
.
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To simplify the notation, we write �̃δ instead of �̃δ(k,R,S0).
We state now the main theorem of this work describing the asymptotic behavior

of the estimator S̃T constructed in the previous section.

THEOREM 1. Let S0 satisfy assumptions C1–C4 and let the risk RT (·, ·) be
defined by (2). If the initial condition ξ follows the invariant law, then

lim sup
δ→0

lim sup
T →∞

sup
S∈�̃δ

T 2k/(2k+1)RT (S̃T , S) = P(k,R),

where P(k,R) = (2k + 1)( k
π(k+1)(2k+1)

)2k/(2k+1)R1/(2k+1) is Pinsker’s constant
(cf. [32]).

Note that this asymptotic bound cannot be improved, since it coincides with the
lower bound obtained in [6], Theorem 3. Hence, the adaptive estimator S̃T behaves
asymptotically as well as the best possible nonadaptive estimator, provided that the
specific form (2) of the risk function is used.

Consequence. As an immediate consequence of the above theorem, one ob-
tains the rate-optimality of the estimator S̃T when the error of estimation is quan-
tified using the MISE over a compact set K ⊂ R. That is, for sufficiently small
values of δ, we have

lim sup
T →∞

sup
S∈�̃δ

T −2k/(2k+1)ES

∫
K

(
S̃T (x) − S(x)

)2
dx ≤ C < ∞.

The reason for this is the uniform in S ∈ �̃δ boundedness of the functions
fS and f −1

S on any compact set K .

4. Remarks and extensions.

4.1. The weight function. The choice of the weight function in the risk defi-
nition is mainly motivated by the weak equivalence of experiments. In fact, as is
explained in detail in [6], the Gaussian white noise experiment having almost the
same statistical properties as our model is

dYt = S(t) dt + [Tf0(t)]−1/2 dBt , t ∈ R,(10)

where Bt is a two-sided standard Brownian motion and f0 = fS0 . On the other
hand, according to Golubev [20], the asymptotically optimal lower bound of the
maximum of MISE (over the Sobolev ball of smoothness k and radius R) in the
model

dZt = θ(t) dt + εI−1/2(θ0, t) dBt , t ∈ I,

is equal to ε4k/(2k+1)P (k,R)[∫I I−1(θ0, t) dt]2k/(2k+1). Our aim is to find a nor-
malization of the MISE via a weight function such that the resulting limit of the
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minimax risk does not depend on the central function θ0. This would hold if the in-
tegral of the Fisher information I−1(θ0, ·) were independent of θ0. Obviously, this
is not the case for (10). In order to obtain a model enjoying the desired property,
we transform (10) by multiplying it by f0. We get

dỸt = S(t)f0(t) dt +
√

T −1f0(t) dBt , t ∈ R.(11)

The integral of the inverse of the Fisher information associated with the last model
is one, since f0 is a probability density. On the other hand, since the function fS is a
regular functional of S, it can be estimated with more precision than the function S.
At a heuristic level, this is the reason why estimating the function SfS in L2 is
equivalent to estimating S in L2 with the weight function f 2

S .
Note also that the use of a weight function for estimating S over the whole real

line is unavoidable, otherwise the risk of estimation will explode. Moreover, any
deterministic weight function has to depend on the unknown function S (or, at
least, on an upper estimate of S). Indeed, if we observe a path XT , it contains no
information about the values of S that are outside of the interval [x∗, x∗], where
x∗ = mint∈[0,T ] Xt and x∗ = maxt∈[0,T ] Xt . Thus, the error of estimating S at a
point x /∈ [x∗, x∗] is large when S(x) is large. Consequently, in order that the in-
tegral

∫
R
(ST − S)2qS be finite, the weight function qS should be small when S is

large.

4.2. The case of a general diffusion coefficient. Let us consider the case where
σ is an arbitrary positive function such that σ 2 + σ−2 is bounded by some poly-
nomial function. It is also assumed that σ is (k + 1)-times differentiable and the
condition C1 is replaced by lim sup|x|→∞ S(x) sgnx/σ 2(x) < 0.

In this case, the functional �T = �T (α,h,ϕσ 2f ,‖σ‖2
L2(f )

) has the form

T

∫
R

∣∣λ(
1 − h(αλ)

)
ϕσ 2f (λ)

∣∣2 dλ + 4
∫

R

σ 2(x)fS(x) dx

∫
R

|h(αλ)|2 dλ.

It follows from this expression that, in order to construct an estimator lT of �T , one
has to estimate not only the square of the Fourier transform |ϕσ 2f (λ)|, but also the
term ‖σ‖2

L2(f )
= ∫

R
σ 2(x)fS(x) dx. Fortunately, this latter quantity is just a linear

functional of fS and therefore can be estimated with a parametric rate T −1/2. Let
us denote σ̂ 2

T = T −1 ∫ T
0 σ 2(Xt) dt ; it is an efficient estimator of ‖σ‖2

L2(f )
. An al-

most unbiased estimate of |ϕσ 2f (λ)|2 is then |ϕ̂T (λ)|2 −4σ̂ 2
T /(T λ2). The empirical

characteristic function in this case has the form ϕ̂T (λ) = T −1 ∫ T
0 eiλXt σ 2(Xt) dt .

Accordingly, the functional lT is defined in this case as

lT (h) = T

∫
R

λ2(
h2(λ) − 2h(λ)

)|ϕ̂T (λ)|2 dλ + 8σ̂ 2
T

∫
R

h(λ)dλ.
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The remaining steps of the construction of the adaptive procedure do not need any
modification. That is, we define h̃T by lT (h̃T ) = minh∈HN

T
lT (h). Next we apply

to h̃T the inverse Fourier transform in order to define the kernel

K̃T (x) = 1

2π

∫
R

h̃T (λ) cos(λx) dλ.

Further, we choose another kernel function Q(·), which is positive, differentiable,
symmetric, supported in [−1,1] and with

∫
Q(u)du = 1. Finally, we set εT =

e
√

logT , 	T = 1/logT and define the estimator

S̃T (x) =
∫ T

0 σ 2(Xt)K̃
′
T (x − Xt) dt

2
√

T
∫ T

0 Q(
√

T (x − Xt)) dt + 2
√

T εT e−	T |x| .

The only thing that changes in Theorem 1 is the limiting constant. In this case the
choice of a specific weight function does not allow one to obtain a limiting bound
independent of S0. The constant that we obtain is

P(S0, σ, k,R) = P(k,R)

(∫
R

σ 2(x)f0(x) dx

)2k/(2k+1)

.

4.3. What happens if the diffusion is not ergodic? Note first that a diffusion,
like any Markov process, can be positively recurrent, null recurrent or transient.
Our method of adaptation, as well as the other methods suggested in the statis-
tical literature for estimating adaptively the drift function, uses heavily the fact
that the variance of the stochastic component in the risk decomposition is of order
1/(T αT ), where αT is the bandwidth or a smoothing parameter. This condition, as
can be derived from the asymptotic equivalence result proven in [7], is not satis-
fied in the case of a null recurrent diffusion. The variance in that case is of order
1/(

√
T αT ) and, consequently, the rates of convergence of drift estimators are sig-

nificantly worse.
As to transient diffusions, even the simple feature of consistency fails for any

estimator, since the amount of information concerning the value of S at a point x

contained in the observed path XT does not increase when T increases to infinity.
That is the main reason for separating the ergodic case from the others.

4.4. Sufficient conditions for C3. A wide class of drift functions S satisfy-
ing C3 is the set of all bounded functions: it is proven in [16] that there exist two
positive constants c1 and c2 such that pt(S, x, y) ≤ c1t

−1/2 e−c2|x−y|2 .
In the case when Xt follows the invariant law, condition C3 is satisfied (with

any q < 2 and any κ > 0) if S is differentiable, satisfies condition C1 and S(x)2 +
S′(x) > c for some constant c ∈ R. Indeed, formula (7) on page 95 in [18] implies

pt(S, x, y) ≤ e−ct/2φ

(
x − y

t

)√
fS(y)/fS(x) ≤ CfS(x)−1/2,
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where φ(·) stands for the density of the standard normal law. Therefore,∫
R

sup
y

p
q
t (S, x, y)fS(x) dx ≤ C

∫
R

f
1−q/2
S (x) dx < ∞,

since, under condition C1, the function fS decreases exponentially fast.

5. Proofs.

5.1. An auxiliary result. We start with a proposition reducing the study of the
performance of drift estimators to that of the invariant density and its derivative
estimators. From now on we suppose for simplicity that σ ≡ 1. Suppose now that
f̄T (·) and f̄

(1)
T (·) are estimators of the invariant density fS(·) and its derivative

f ′
S(·), satisfying the conditions

E1. There exist C1, γ > 0 such that ES[f̄T (x)−fS(x)]2p ≤ C
p
1 T −pe−γ |x| for any

x ∈ R, p ≥ 1 and S ∈ �̃δ .
E2. There exist two positive numbers C2 and q such that ES[f̄ (1)

T (x)4] ≤ C2T
q ,

for any x ∈ R and S ∈ �̃δ .
E3. The estimator f̄

(1)
T (·) is asymptotically efficient, that is,

lim
δ→0

lim
T →∞ sup

S∈�̃δ

T 2k/(2k+1)ES

∫
R

(
f̄

(1)
T (x) − f ′

S(x)
)2

dx = 4P(k,R).

Following some heuristics related to the identity S(x) = f ′
S(x)/2fS(x) and pre-

sented in Section 2.1, we define the estimator of S(x) as

ŜT (x) = f̄
(1)
T (x)

2f̄T (x) + 2T −1/2εT e−	T |x| ,(12)

where εT = T 1/
√

logT = e
√

logT and 	T = (logT )−1.

PROPOSITION 1. If conditions E1–E3 are fulfilled and S0 ∈ �(k) satisfies C4,
then we have

lim
δ→0

lim
T →∞ sup

S∈�̃δ

T 2k/(2k+1)RT (ŜT , S) = P(k,R);

that is, the estimator ŜT is asymptotically minimax.

PROOF. The proof of this result relies on the Markov inequality and the expo-
nential inequalities proven in Lemma 4 of [6]. It is quite similar to the proofs of
Theorems 4 and 5 of [6] and therefore will be omitted here. For more details, we
refer the reader to Theorem 6 of [5]. �
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5.2. Proof of Theorem 1. In the sequel the letters C and D stand for generic
constants; the notation ‖h‖ is used for the L2(R, dx)-norm of a function h. We
assume that the initial value ξ follows the invariant law; thus, the process X is
stationary in the strict sense.

Note that the estimator S̃T defined in Section 2.3 is of the form (12) with
f̄

(1)
T (x) = T −1 ∫ T

0 K̃ ′
T (x − Xt) dt and f̄T (x) = T −1/2 ∫ T

0 Q(
√

T (x − Xt)) dt .
Therefore, it suffices to verify that conditions E1–E3 hold. It is easy to see that
Lemmas 4 and 5 and the arguments of Section 4.3 in [6] yield E1.

Condition E2 states that the fourth moment of f̄
(1)
T (x) is bounded in x and

increases in T at most as a polynomial. This condition is evidently fulfilled, since

K̃ ′
T (x) = −(2π)−1

∫
R

λh̃T (λ) sin(λx) dλ

and the integrand above is bounded in absolute value by |λ|1[−T 1/3,T 1/3](λ) (re-

call that h̃T is supported by the interval [−α̃−1
T , α̃−1

T ], which is a subset of

[−T 1/3, T 1/3]). Therefore, ES[f̄ (1)
T (x)4] is bounded by CT 8/3.

It remains to verify E3, which is the most important part of the proof. For any
estimator f̂

(1)
T (·) of f ′

S(·), we define the risk rT (f̂
(1)
T , f ′

S) as the mean integrated

squared error, that is, rT (f̂
(1)
T , f ′

S) = ES‖f̂ (1)
T − f ′

S‖2. Due to the Plancherel iden-
tity, we have

rT
(
f̄

(1)
T , f ′

S

) = 1

2π
ES

∫
R

∣∣ϕ
f̄

(1)
T

(λ) − ϕf ′(λ)
∣∣2 dλ

= 1

2π
ES

∫
R

|ϕ̂T (λ)ϕ
K̃ ′(λ) − ϕf ′(λ)|2 dλ,

where we have used the notation ϕ̂T (λ) = T −1 ∫
R

eiλXt dt and the fact that the
Fourier transform of the convolution of two functions is the product of the Fourier
transforms of the functions. Now, due to the formula of the Fourier transform of a
derivative, we have

rT
(
f̄

(1)
T , f ′

S

) = 1

2π
ES

∫
R

|λ|2∣∣[(ϕ̂T − ϕf )(λ)]h̃T (λ) − ϕf (λ)
(
1 − h̃T (λ)

)∣∣2 dλ.

This latter form of the risk is convenient since the term ϕ̂T (λ)−ϕf (λ) is unbiased.
Unfortunately, the randomness of the function h̃T does not allow us to apply to the
risk rT the standard bias-variance decomposition. To bound this risk, more careful
treatment of the main part of the stochastic component is required.

LEMMA 1. For any λ ∈ R, we have

λ
(
ϕ̂T (λ) − ϕf (λ)

) = 2iζT (λ) + T −1/2mS(λ,XT ),

where ζT (λ) = T −1/2 ∫ T
0 eiλXt dWt and mS(λ,XT ) is a measurable function tak-

ing complex values such that, for sufficiently small values of δ > 0, supS∈�δ

∫ T
0 ES

|mS(λ,XT )|2 dλ < C.



ADAPTIVE ESTIMATION OF THE DRIFT 2521

From now on, for two functions of T , say, aT and bT , we write aT ∼ bT if the
function aT /bT tends to one as T → ∞ uniformly in all the parameters entering
in the definitions of these functions (in particular, uniformly in S ∈ �δ , for suffi-
ciently small values of δ). Using Lemma 1 and the fact that αi ≥ T −1/3, one can
show that

RT

(
f̄

(1)
T , f ′

S

) ∼ 1

2π
ES

∫
R

∣∣2iT −1/2ζT (λ)h̃T (λ) + λϕf (λ)
(
1 − h̃T (λ)

)∣∣2 dλ.

The last expression is obviously of the same order as

4

2πT
ES

∫
R

|ζT (λ)h̃T (λ)|2 dλ + 1

2π
ES

∫
R

(
1 − h̃T (λ)

)2|λϕf (λ)|2 dλ

− 4

2π
√

T
Im ES

∫
R

λh̃T (λ)
(
1 − h̃T (λ)

)
ζT (λ)ϕf (−λ)dλ,

where Im z is the imaginary part of the complex number z. This relation can be
rewritten as

RT

(
f̄

(1)
T , f ′

S

) ∼ 1

2πT

(
ES[�T (1, h̃T , ϕf )] + A1 − ImA2

)
,(13)

where A1 = 4ES

∫
R

h̃2
T (λ)(|ζT (λ)|2 − 1) dλ and

A2 = 4
√

T ES

∫
R

λh̃T (λ)
(
1 − h̃T (λ)

)
ζT (λ)ϕf (−λ)dλ.

Note also that, from the definition of the functional lT , one gets

lT (h) =
∫

R

8h(λ)dλ + T

∫
R

(
h2(λ) − 2h(λ)

)|λϕf (λ)|2 dλ

− 2T Re
∫

R

(
h2(λ) − 2h(λ)

)
λϕf (−λ)

(
ϕ̂T (λ) − ϕf (λ)

)
dλ

+ T

∫
R

λ2(
h2(λ) − 2h(λ)

)|ϕ̂T (λ) − ϕf (λ)|2 dλ.

Using once more Lemma 1, we get

lT (h) ∼ �T (1, h,ϕf ) + 4
√

T Im
∫

R

(
h2(λ) − 2h(λ)

)
λϕf (−λ) ζT (λ) dλ

+ 4
∫

R

(
h2(λ) − 2h(λ)

)(|ζT (λ)|2 − 1
)
dλ − T ‖ϕf ′‖2,

uniformly in h ∈ HT . This relation yields

ES[lT (h̃T )] ∼ ES[�T (1, h̃T , ϕf )] − T ‖ϕf ′‖2 + ImA3 + A4,(14)

with the notation A3 = 4
√

T ES

∫
R
(h̃2

T (λ) − 2h̃T (λ))λϕf (−λ)ζT (λ) dλ and

A4 = 4ES

∫
R

(
h̃2

T (λ) − 2h̃T (λ)
)(|ζT (λ)|2 − 1

)
dλ.
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We wish to show that the terms A1–A4 are asymptotically smaller than
ES[�T (1, h̃, ϕf )] when T tends to infinity. This can be done using the two follow-
ing lemmas, the proofs of which are deferred to Section 5.3.

LEMMA 2. Let h(·,w) be a bounded random function which takes only N dif-

ferent values h1, . . . , hN . Then ES | ∫
R

h(λ)ζT (λ) dλ| ≤ C

√
NES‖h‖2, where the

constant C depends only on k,R,S0.

As a consequence of this lemma, we obtain A2 ∨A3 ≤ C

√
NES[�T (1, h̃, ϕf )].

LEMMA 3. For any random function h(·,ω) taking only N different values
h1(·), . . . , hN(·) such that ‖hi‖2 ≤ T , the following inequality holds:

sup
S∈�̃δ

ES

[∫
R

h(λ)
(|ζT (λ)|2 − 1

)
dλ

]
≤ C

√
NεT

√
ES‖h‖2,

where εT = T 1/
√

logT and the constant C depends only on k,R,S0.

As a consequence of this lemma, we obtain the inequality∣∣∣∣ES

[∫
R

h̃n
T (λ)

(|ζT (λ)|2 − 1
)
dλ

]∣∣∣∣ ≤ C
√

NεT

√
ES‖h̃T ‖2

≤ CεT

√
�T (1, h̃T , ϕf ),

for any integer n > 0. This inequality implies that A1 ≤ CεT

√
�T (1, h̃T , ϕf ) and

A4 ≤ CεT

√
�T (1, h̃T , ϕf ). Now (13) and (14) can be rewritten in the form

RT

(
f̄

(1)
T , f ′

S

) ≤ 1

2πT

(√
ES[�T (1, h̃T , ϕf )] + CεT

)2
,

ES[lT (h∗
T )] ≤ (√

ES[�T (1, h∗
T , ϕf )] + CεT

)2 − T ‖ϕf ′‖2,

ES[lT (h̃T )] ≥ (√
ES[�T (1, h̃T , ϕf )] − CεT

)2 − T ‖ϕf ′‖2.

Here h∗
T (λ) = (1 − |α∗

T λ|k+ρT )+. Taking into account the fact that h̃T minimizes
the functional lT (·) over HN

T , we get ES[lT (h̃T )] ≤ minh∈HN
T

ES[lT (h)]. On the
other hand, by arguments very similar to those of Lemma 5 in [4], one checks
easily that minh∈HN

T
ES[lT (h)] ∼ minh∈HT

ES[lT (h)] ≤ ES[lT (h∗
T )]. Combining

all these estimates, we arrive at the inequality

RT

(
f̄

(1)
T , f ′

S

) ≤ 1

2πT

(√
�T (1, h∗

T , ϕf ) + CεT

)2(
1 + oT (1)

)
.



ADAPTIVE ESTIMATION OF THE DRIFT 2523

Therefore, the expression T k/(2k+1)
√

RT (f̄
(1)
T , f ′

S) is asymptotically bounded by√
T −1/(2k+1)�T (1, h∗

T , ϕf ), plus a residual term CT 1/
√

logT −1/(4k+2). It is well
known in the theory of minimax estimation that the supremum of the quantity
T −1/(2k+1)�T (1, h∗

T , ϕf ) over the Sobolev ball �(k + 1,4R) = {f :‖f (k+1) −
f

(k+1)
0 ‖2 ≤ 4R} tends to the constant 4P(k,R). This completes the proof of the

theorem, due to the inclusion �̃(k,R) ⊂ �(k + 1,4R + oδ(1)) (see the proof of
Theorem 5 in [6]).

5.3. Proofs of technical lemmas.

PROOF OF LEMMA 1. First of all, note that ES[ϕ̂T (λ)] = ϕfS
(λ). Now, taking

into account the occupation times formula ([33], page 224) and the martingale
representation of the local time estimator ([26], page 137), we obtain ϕ̂T (λ) −
ES[ϕ̂T (λ)] = T −1(HS(λ,XT ) − HS(λ,X0)) − T −1 ∫ T

0 gS(λ,Xt) dWt, where the
functions HS and gS are defined as

gS(λ,u) = 2
∫

R

eiλxfS(x)

(
1{u>x} − FS(u)

fS(u)

)
dx,

HS(λ,u) = 2
∫

R

eiλxfS(x)

[∫ u

0

(
1{v>x} − FS(v)

fS(v)

)
dv

]
dx.

The integration by parts formula yields

iλgS(λ,u) = 2eiλu − g̃S(λ,u),

where

g̃S(λ,u) = 2
∫

R

eiλxf ′
S(x)

(
1{u>x} − FS(u)

fS(u)

)
dx.

It implies that λ(ϕ̂T (λ) − ϕf (λ)) = T −12i
∫ T

0 eiλXt dWt + T −1/2mS(λ,XT )

with
√

T mS(λ,XT ) = λ(HS(λ,XT ) − HS(λ,X0)) + i
∫ T

0 g̃S(λ,Xt) dWt . In
the same way one can prove that |iλHS(λ,u)| = | ∫ u

0 iλgS(λ, v) dv| ≤ 2|u| +
| ∫ u

0 g̃S(λ, v) dv|. Using the Plancherel identity and Lemma 4 from [6], we get∫
R

ES |g̃S(λ, ξ)|2 dλ = 2π

∫
R

f ′
S(x)2ES

[
1{ξ>x} − FS(ξ)

fS(ξ)

]2

dx ≤ C,

where C is a constant independent of S ∈ �δ . Similarly, one checks that∫
R

ES | ∫ ξ
0 g̃S(λ, v) dv|2 dλ ≤ C. Thus, we have∫ T

0
ES |mS(λ,XT )|2 dλ ≤

∫ T

0

(
8

T
ES |iλHS(λ, ξ)|2 + 2ES |gS(λ, ξ)|2

)
dλ

≤ 16ES[ξ2] + 16
∫

R

ES

∣∣∣∣∫ ξ

0
g̃S(λ, v) dv

∣∣∣∣2 dλ

+ 2
∫

R

ES |g̃S(λ, ξ)|2 dλ < C,
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and the assertion of the lemma follows. �

PROOF OF LEMMA 2. Let us denote ξh = ‖h‖−1 ∫
R

hζT . It is evident that

ES

∣∣∣∣∫
R

h(λ)ζT (λ) dλ

∣∣∣∣ = ES(‖h‖ · |ξh|) ≤
√

ES‖h‖2ES |ξh|2

≤
[

ES

∥∥h∥∥2
N∑

i=1

ES

∣∣ξhi

∣∣2]1/2

.

Now, taking into account the explicit form of ζT , we have

ES

∣∣ξhi

∣∣2 = 1

T ‖hi‖2 ES

∣∣∣∣∫ T

0

∫
R

eiλXt hi(λ) dλdWt

∣∣∣∣2

= 1

‖hi‖2 ES

∣∣∣∣∫
R

eiλξhi(λ) dλ

∣∣∣∣2 = 1

‖hi‖2 ES

∣∣ϕhi
(ξ)

∣∣2
≤ C

‖hi‖2

[∫
R

∣∣ϕhi
(x)

∣∣2 dx

]
= C,

where C = supS∈�δ
supx∈R fS(x). This completes the proof of Lemma 2. �

PROOF OF LEMMA 3. The Itô formula implies that, for any continuous
martingale Mt , we have M2

T − M2
0 = 2

∫ T
0 Mt dMt + 〈M〉T , where 〈M〉t is

the quadratic variation of the martingale Mt . Applying this formula, we get
T |ζT (λ)|2 = 2

∫ T
0 Yt (λ) dWt + T , where we have used the notation Yt (λ) =

Re eiλXt
∫ t

0 e−iλXu dWu = Re eiλXt
√

t ζt (λ). Changing the order of the integrals
and using the Itô isometry, we get

US(h) := ES

∣∣∣∣∫
R

h(λ)
(|ζT (λ)|2 − 1

)
dλ

∣∣∣∣2
= 4

T 2 ES

[∫ T

0

∣∣∣∣∫
R

Yt (λ)h(λ) dλ

∣∣∣∣dWt

]2

= 4

T 2

∫ T

0
ES

∣∣∣∣∫
R

h(λ)Yt (λ) dλ

∣∣∣∣2 dt

≤ 4

T 2

∫ T

0
tES

∣∣∣∣∫
R

eiλXt ζt (λ)h(λ) dλ

∣∣∣∣2 dt.

We apply now the same method as in the proof of the first lemma. Let us introduce
ξh = ‖h‖−1 ∫

R
h(λ)(|ζT (λ)|2 − 1) dλ. The Cauchy–Schwarz inequality yields

ES

[∫
R

h(λ)
(|ζT (λ)|2 − 1

)
dλ

]
≤

N∑
i=1

√
ES‖h‖2

√
ES

∣∣ξhi

∣∣2.
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It remains to carry out the inequality ES |ξhi
|2 = ‖hi‖−2 US(hi) ≤ C, where C is a

constant depending only on k,R,S0. The proof of this inequality will be divided
into three steps.

First step. Suppose that T > κ , where κ is the positive number defined by con-
dition C3. Then we have the inequalities∫ κ

0
tES

∣∣∣∣∫
R

eiλXt ζt (λ)hi(λ) dλ

∣∣∣∣2 dt ≤ κ2
(∫

R

hi(λ) dλ

)2

≤ 4κ2α−2
i

≤ 12κ2T ‖hi‖2,

ES

∣∣∣∣∫
R

eiλXt hi(λ)

∫ t

t−κ
eiλXu dWu dλ

∣∣∣∣2 ≤ ES

[∫ α−1
i

−α−1
i

∣∣∣∣∫ t

t−κ
eiλXu dWu

∣∣∣∣dλ

]2

≤ 2α−1
i

∫ α−1
i

−α−1
i

ES

∣∣∣∣∫ t

t−κ
eiλXu dWu

∣∣∣∣2 dλ

≤ 4α−2
i κ ≤ 12κT ‖hi‖2.

These inequalities imply that

US(hi)

‖hi‖2 ≤ C + 4

‖hi‖2T 2

∫ T

κ
ES

∣∣∣∣∫
R

eiλXt hi(λ)

∫ t−κ

0
eiλXu dWu dλ

∣∣∣∣2dt

= C + 4ŨS(hi)

‖hi‖2T 2 .

We want to prove now that ŨS(hi) ≤ CεT T 2‖hi‖2 for a constant C. Recall that
Xu denotes the trajectory of X between 0 and u. Since the random variable
η(Xt−κ, λ) = ∫ t−κ

0 eiλXu dWu is Ft−κ -measurable and the law L (Xt |Ft−κ) =
L (Xt |Xt−κ), we have

ŨS(hi) =
∫ T

κ
ES

[∫
R

∣∣∣∣∫
R

eiλyη(Xt−κ, λ)hi(λ) dλ

∣∣∣∣2pκ(S,Xt−κ, y) dy

]
dt.

Let us denote Q(Xt−κ, y) = | ∫
R

eiλyη(Xt−κ, λ)hi(λ) dλ|.
Second step. To simplify the notation we suppose that κ = 1. Let us prove now

that, for any function Q(·), the following inequality holds:∫
R

Q2(y)p1(S, x, y) dy ≤ εT sup
y∈R

p1(S0, x, y)

∫
R

Q2(y) dy

(15)

+ 1

T 2

√∫
R

Q4(y)p1(S, x, y) dy,

for any S ∈ Vδ(S0) with δ ≤ 0.2. Indeed, if we denote by Ex
S the mathematical

expectation with respect to the measure induced by the solution of (1) with de-
terministic initial value X0 = x, then

∫
R

Q2(y)p1(S, x, y) dy = Ex
S[Q2(X1)] =
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Ex
S0

[Q2(X1)L(S,X1)], where

L1(S,X1) = exp
{∫ 1

0

(
S(Xu) − S0(Xu)

)
dWu − 1

2

∫ 1

0

(
S(Xu) − S0(Xu)

)2
du

}
is the likelihood ratio and X1 = (Xt , 0 ≤ t ≤ 1) denotes the trajectory of the
process X up to the time 1. Further, using the Cauchy–Schwarz inequality, we
get

Ex
S[Q2(X1)] ≤ εT Ex

S0
[Q2(X1)] +

√
Ex

S[Q4(X1)]
√

Px
S

(
L(S,X1) > εT

)
.

Note now that, for any n > 0, we have

L(S,X1)n = exp
{
M1 − 1

2
〈M〉1 + n2 − n

2

∫ 1

0

(
S(Xu) − S0(Xu)

)2
du

}
≤ eM1−(1/2)〈M〉1 en2δ2

,

where Mt = n
∫ t

0 (S − S0)(Xu)dWu is a local martingale. Therefore, taking
n = 5

√
logT and applying the Chebyshev inequality, we get Px

S(L(S,X1) > εT ) ≤
ε
−5

√
logT

T e25δ2 logT ≤ T −4, which leads to (15).
Third step. Inequality (15) yields ŨS(hi) ≤ ∫ T

1 (D1(t)+T −2√D2(t) ) dt , where
we have used the abbreviations

D1(t) = εT ES

[
sup
y∈R

p1(S0,Xt−1, y)

∫
R

∣∣∣∣∫
R

eiλyhi(λ)η(Xt−1, λ) dλ

∣∣∣∣2 dy

]
and D2(t) = ES

∫
R

Q4(Xt−1, y)p1(S,Xt−1, y) dy = ES[Q4(Xt−1,Xt)]. The term
D1 can be evaluated via the Plancherel identity and the Hölder inequality:

D1(t) = 2εT πES

[
sup
y

p1(S0,Xt−1, y)

∫
R

|hi(λ)η(Xt−1, λ)|2 dλ

]

≤ CqεT (t − 1)

(
ES

[
sup
y

p1(S0,X0, y)q
])1/q

‖hi‖2,

in view of the estimate E[|η(Xt−1, λ)|2s] ≤ Cs(t − 1)s , for any s > 0, which fol-
lows from the BDG inequality ([33], Theorem IV.4.1). Using condition C3 and the
[uniform in S ∈ Vδ(S0)] boundedness of fS/fS0 , we get D1(t) ≤ CεT (t −1)‖hi‖2.

One easily checks that |Q(Xt−1,Xt)|2 ≤ ∫
|αiλ|<1 |η(Xt−1, λ)|2 dλ‖hi‖2 and,

hence, D2(t) ≤ Ct2‖hi‖8 ≤ Ct2T 2‖hi‖4. Combining these estimates, one obtains
ŨS(hi) ≤ CT 2‖hi‖2, which completes the proof. �
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