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LOCAL RADEMACHER COMPLEXITIES

BY PETER L. BARTLETT, OLIVIER BOUSQUET ANDSHAHAR MENDELSON

University of California at Berkeley, Max Planck Institute for Biological
Cybernetics and Australian National University

We propose new bounds on the error of learning algorithms in terms of a
data-dependent notion of complexity. The estimates we establish give optimal
rates and are based on a local and empirical version of Rademacher averages,
in the sense that the Rademacher averages are computed from the data, on a
subset of functions with small empirical error. We present some applications
to classification and prediction with convex function classes, and with kernel
classes in particular.

1. Introduction. Estimating the performance of statistical procedures is
useful for providing a better understanding of the factors that influence their
behavior, as well as for suggesting ways to improve them. Although asymptotic
analysis is a crucial first step toward understanding the behavior, finite sample
error bounds are of more value as they allow the design of model selection (or
parameter tuning) procedures. These error bounds typically have the following
form: with high probability, the error of the estimator (typically a function in a
certain class) is bounded by an empirical estimate of error plus a penalty term
depending on the complexity of the class of functions that can be chosen by the
algorithm. The differences between the true and empirical errors of functions
in that class can be viewed as an empirical process. Many tools have been
developed for understanding the behavior of such objects, and especially for
evaluating their suprema—which can be thought of as a measure of how hard
it is to estimate functions in the class at hand. The goal is thus to obtain the
sharpest possible estimates on the complexity of function classes. A problem
arises since the notion of complexity might depend on the (unknown) underlying
probability measure according to which the data is produced. Distribution-free
notions of the complexity, such as the Vapnik–Chervonenkis dimension [35] or the
metric entropy [28], typically give conservative estimates. Distribution-dependent
estimates, based for example on entropy numbers in theL2(P ) distance, where
P is the underlying distribution, are not useful whenP is unknown. Thus, it is
desirable to obtain data-dependent estimates which can readily be computed from
the sample.
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One of the most interesting data-dependent complexity estimates is the so-
called Rademacher average associated with the class. Although known for a
long time to be related to the expected supremum of the empirical process
(thanks to symmetrization inequalities), it was first proposed as an effective
complexity measure by Koltchinskii [15], Bartlett, Boucheron and Lugosi [1]
and Mendelson [25] and then further studied in [3]. Unfortunately, one of the
shortcomings of the Rademacher averages is that they provideglobal estimates
of the complexity of the function class, that is, they do not reflect the fact that
the algorithm will likely pick functions that have a small error, and in particular,
only a small subset of the function class will be used. As a result, the best
error rate that can be obtained via the global Rademacher averages is at least
of the order of 1/

√
n (where n is the sample size), which is suboptimal in

some situations. Indeed, the type of algorithms we consider here are known
in the statistical literature asM-estimators. They minimize an empirical loss
criterion in a fixed class of functions. They have been extensively studied and
their rate of convergence is known to be related to the modulus of continuity of
the empirical process associated with the class of functions (rather than to the
expected supremum of that empirical process). This modulus of continuity is well
understood from the empirical processes theory viewpoint (see, e.g., [33, 34]).
Also, from the point of view ofM-estimators, the quantity which determines the
rate of convergence is actually a fixed point of this modulus of continuity. Results
of this type have been obtained by van de Geer [31, 32] (among others), who also
provides nonasymptotic exponential inequalities. Unfortunately, these are in terms
of entropy (or random entropy) and hence might not be useful when the probability
distribution is unknown.

The key property that allows one to prove fast rates of convergence is the
fact that around the best function in the class, the variance of the increments
of the empirical process [or theL2(P ) distance to the best function] is upper
bounded by a linear function of the expectation of these increments. In the
context of regression with squared loss, this happens as soon as the functions
are bounded and the class of functions is convex. In the context of classification,
Mammen and Tsybakov have shown [20] that this also happens under conditions
on the conditional distribution (especially about its behavior around 1/2). They
actually do not require the relationship between variance and expectation (of the
increments) to be linear but allow for more general, power type inequalities. Their
results, like those of van de Geer, are asymptotic.

In order to exploit this key property and have finite sample bounds, rather
than considering the Rademacher averages of the entire class as the complexity
measure, it is possible to consider the Rademacher averages of a small subset of
the class, usually the intersection of the class with a ball centered at a function
of interest. Theselocal Rademacher averages can serve as a complexity measure;
clearly, they are always smaller than the corresponding global averages. Several
authors have considered the use of local estimates of the complexity of the function
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class in order to obtain better bounds. Before presenting their results, we introduce
some notation which is used throughout the paper.

Let (X,P ) be a probability space. Denote byF a class of measurable functions
from X to R, and setX1, . . . ,Xn to be independent random variables distributed
according toP . Let σ1, . . . , σn be n independentRademacher random variables,
that is, independent random variables for which Pr(σi = 1) = Pr(σi = −1) = 1/2.

For a functionf :X → R, define

Pnf = 1

n

n∑
i=1

f (Xi), Pf = Ef (X), Rnf = 1

n

n∑
i=1

σif (Xi).

For a classF , set

RnF = sup
f ∈F

Rnf.

DefineEσ to be the expectation with respect to the random variablesσ1, . . . , σn,
conditioned on all of the other random variables. The Rademacher average ofF
is ERnF , and the empirical (or conditional) Rademacher averages ofF are

EσRnF = 1

n
E

(
sup
f ∈F

n∑
i=1

σif (Xi)|X1, . . . ,Xn

)
.

Some classical properties of Rademacher averages and some simple lemmas
(which we use often) are listed in Appendix A.1.

The simplest way to obtain the property allowing for fast rates of convergence is
to consider nonnegative uniformly bounded functions (or increments with respect
to a fixed null function). In this case, one trivially has for allf ∈ F , Var[f ] ≤ cPf .
This is exploited by Koltchinskii and Panchenko [16], who consider the case of
prediction with absolute loss when functions inF have values in[0,1] and there
is aperfect functionf ∗ in the class, that is,Pf ∗ = 0. They introduce an iterative
method involving local empirical Rademacher averages. They first construct a
functionφn(r) = c1Rn{f :Pnf ≤ 2r}+ c2

√
rx/n+ c3/n, which can be computed

from the data. For̂rN defined byr̂0 = 1, r̂k+1 = φn(r̂k), they show that with
probability at least 1− 2Ne−x ,

P f̂ ≤ r̂N + 2x

n
,

wheref̂ is a minimizer of the empirical error, that is, a function inF satisfying
Pnf̂ = inff ∈F Pnf . Hence, this nonincreasing sequence of local Rademacher av-
erages can be used as upper bounds on the error of the empirical minimizerf̂ . Fur-
thermore, ifψn is a concave function such thatψ(

√
r ) ≥ EσRn{f ∈ F :Pnf ≤ r},

and if the number of iterationsN is at least 1+ �log2 log2 n/x�, then with proba-
bility at least 1− Ne−x ,

r̂N ≤ c

(
r̂∗ + x

n

)
,
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where r∗ is a solution of the fixed-point equationψ(
√

r ) = r . Combining the
above results, one has a procedure to obtain data-dependent error bounds that are
of the order of the fixed point of the modulus of continuity at 0 of the empirical
Rademacher averages. One limitation of this result is that it assumes that there is a
functionf ∗ in the class withPf ∗ = 0. In contrast, we are interested in prediction
problems wherePf is the error of an estimator, and in the presence of noise there
may not be any perfect estimator (even the best in the class can have nonzero
error).

More recently, Bousquet, Koltchinskii and Panchenko [9] have obtained a more
general result avoiding the iterative procedure. Their result is that for functions
with values in[0,1], with probability at least 1− e−x ,

∀f ∈ F Pf ≤ c

(
Pnf + r̂∗ + t + log logn

n

)
,(1.1)

wherer̂∗ is the fixed point of a concave functionψn satisfyingψn(0) = 0 and

ψn

(√
r

) ≥ EσRn{f ∈ F :Pnf ≤ r}.
The main difference between this and the results of [16] is that there is
no requirement that the class contain a perfect function. However, the local
Rademacher averages are centered around the zero function instead of the one
that minimizesPf . As a consequence, the fixed pointr̂∗ cannot be expected to
converge to zero when inff ∈F Pf > 0.

In order to remove this limitation, Lugosi and Wegkamp [19] use localized
Rademacher averages of a small ball around the minimizerf̂ of Pn. However, their
result is restricted to nonnegative functions, and in particular functions with values
in {0,1}. Moreover, their bounds also involve some global information, in the form
of the shatter coefficientsSF (Xn

1) of the function class (i.e., the cardinality of
the coordinate projections of the classF on the dataXn

1). They show that there
are constantsc1, c2 such that, with probability at least 1− 8/n, the empirical
minimizer f̂ satisfies

P f̂ ≤ inf
f ∈F

Pf + 2ψ̂n(r̂n),

where

ψ̂n(r) = c1

(
EσRn{f ∈ F :Pnf ≤ 16Pnf̂ + 15r} + logn

n
+

√
logn

n

√
Pnf̂ + r

)
and r̂n = c2(logSF (Xn

1) + logn)/n. The limitation of this result is that̂rn has to
be chosen according to the (empirically measured) complexity of the whole class,
which may not be as sharp as the Rademacher averages, and in general, is not a
fixed point of ψ̂n. Moreover, the balls over which the Rademacher averages are
computed inψ̂n contain a factor of 16 in front ofPnf̂ . As we explain later, this
induces a lower bound on̂ψn when there is no function withPf = 0 in the class.
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It seems that the only way to capture the right behavior in the general, noisy case
is to analyze the increments of the empirical process, in other words, to directly
consider the functionsf − f ∗. This approach was first proposed by Massart [22];
see also [26]. Massart introduces the assumption

Var[�f (X) − �f ∗(X)] ≤ d2(f, f ∗) ≤ B(P�f − P�f ∗),

where�f is the loss associated with the functionf [in other words,�f (X,Y ) =
�(f (X),Y ), which measures the discrepancy in the prediction made byf ], d is
a pseudometric andf ∗ minimizes the expected loss. (The previous results could
also be stated in terms of loss functions, but we omitted this in order to simplify
exposition. However, the extra notation is necessary to properly state Massart’s
result.) This is a more refined version of the assumption we mentioned earlier
on the relationship between the variance and expectation of the increments of
the empirical process. It is only satisfied for some loss functions� and function
classesF . Under this assumption, Massart considers a nondecreasing functionψ

satisfying

ψ(r) ≥ E sup
f ∈F , d2(f,f ∗)2≤r

|Pf − Pf ∗ − Pnf + Pnf
∗| + c

x

n
,

such thatψ(r)/
√

r is nonincreasing (we refer to this property as the sub-root
property later in the paper). Then, with probability at least 1− e−x ,

∀f ∈ F P�f − P�f ∗ ≤ c

(
r∗ + x

n

)
,(1.2)

wherer∗ is the fixed point ofψ and c depends only onB and on the uniform
bound on the range of functions inF . It can be proved that in many situations of
interest, this bound suffices to prove minimax rates of convergence for penalized
M-estimators. (Massart considers examples where the complexity term can be
bounded using a priori global information about the function class.) However,
the main limitation of this result is that it does not involve quantities that can be
computed from the data.

Finally, as we mentioned earlier, Mendelson [26] gives an analysis similar
to that of Massart, in a slightly less general case (with no noise in the target
values, i.e., the conditional distribution ofY givenX is concentrated at one point).
Mendelson introduces the notion of thestar-hull of a class of functions (see the
next section for a definition) and considers Rademacher averages of this star-hull
as a localized measure of complexity. His results also involve a priori knowledge
of the class, such as the rate of growth of covering numbers.

We can now spell out our goal in more detail: in this paper we combine the
increment-based approach of Massart and Mendelson (dealing with differences
of functions, or more generally with bounded real-valued functions) with the
empirical local Rademacher approach of Koltchinskii and Panchenko and of
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Lugosi and Wegkamp, in order to obtain data-dependent bounds which depend
on a fixed point of the modulus of continuity of Rademacher averages computed
around the empirically best function.

Our first main result (Theorem 3.3) is a distribution-dependent result involving
the fixed pointr∗ of a local Rademacher average of the star-hull of the classF .
This shows that functions with the sub-root property can readily be obtained
from Rademacher averages, while in previous work the appropriate functions were
obtained only via global information about the class.

The second main result (Theorems 4.1 and 4.2) is an empirical counterpart
of the first one, where the complexity is the fixed point of an empirical local
Rademacher average. We also show that this fixed point is within a constant factor
of the nonempirical one.

Equipped with this result, we can then prove (Theorem 5.4) a fully data-
dependent analogue of Massart’s result, where the Rademacher averages are
localized around the minimizer of the empirical loss.

We also show (Theorem 6.3) that in the context of classification, the local
Rademacher averages of star-hulls can be approximated by solving a weighted
empirical error minimization problem.

Our final result (Corollary 6.7) concerns regression with kernel classes, that
is, classes of functions that are generated by a positive definite kernel. These
classes are widely used in interpolation and estimation problems as they yield
computationally efficient algorithms. Our result gives a data-dependent complexity
term that can be computed directly from the eigenvalues of the Gram matrix (the
matrix whose entries are values of the kernel on the data).

The sharpness of our results is demonstrated from the fact that we recover, in
the distribution-dependent case (treated in Section 4), similar results to those of
Massart [22], which, in the situations where they apply, give the minimax optimal
rates or the best known results. Moreover, the data-dependent bounds that we
obtain as counterparts of these results have the same rate of convergence (see
Theorem 4.2).

The paper is organized as follows. In Section 2 we present some preliminary
results obtained from concentration inequalities, which we use throughout.
Section 3 establishes error bounds using local Rademacher averages and explains
how to compute their fixed points from “global information” (e.g., estimates of
the metric entropy or of the combinatorial dimensions of the indexing class),
in which case the optimal estimates can be recovered. In Section 4 we give a
data-dependent error bound using empirical and local Rademacher averages, and
show the connection between the fixed points of the empirical and nonempirical
Rademacher averages. In Section 5 we apply our results to loss classes. We give
estimates that generalize the results of Koltchinskii and Panchenko by eliminating
the requirement that some function in the class have zero loss, and are more general
than those of Lugosi and Wegkamp, since there is no need have in our case to
estimate global shatter coefficients of the class. We also give a data-dependent
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extension of Massart’s result where the local averages are computed around the
minimizer of the empirical loss. Finally, Section 6 shows that the problem of
estimating these local Rademacher averages in classification reduces to weighted
empirical risk minimization. It also shows that the local averages for kernel classes
can be sharply bounded in terms of the eigenvalues of the Gram matrix.

2. Preliminary results. Recall that the star-hull ofF aroundf0 is defined by

star(F , f0) = {f0 + α(f − f0) :f ∈ F , α ∈ [0,1]}.
Throughout this paper, we will manipulate suprema of empirical processes, that
is, quantities of the form supf ∈F (Pf − Pnf ). We will always assume they are
measurable without explicitly mentioning it. In other words, we assume that
the classF and the distributionP satisfy appropriate (mild) conditions for
measurability of this supremum (we refer to [11, 28] for a detailed account of
such issues).

The following theorem is the main result of this section and is at the core
of all the proofs presented later. It shows that if the functions in a class have
small variance, the maximal deviation between empirical means and true means
is controlled by the Rademacher averages ofF . In particular, the bound improves
as the largest variance of a class member decreases.

THEOREM 2.1. Let F be a class of functions that map X into [a, b]. Assume
that there is some r > 0 such that for every f ∈ F , Var[f (Xi)] ≤ r . Then, for
every x > 0, with probability at least 1− e−x ,

sup
f ∈F

(Pf − Pnf ) ≤ inf
α>0

(
2(1+ α)ERnF +

√
2rx

n
+ (b − a)

(
1

3
+ 1

α

)
x

n

)
,

and with probability at least 1− 2e−x ,

sup
f ∈F

(Pf − Pnf )

≤ inf
α∈(0,1)

(
2

1+ α

1− α
EσRnF +

√
2rx

n
+ (b − a)

(
1

3
+ 1

α
+ 1+ α

2α(1− α)

)
x

n

)
.

Moreover, the same results hold for the quantity supf ∈F (Pnf − Pf ).

This theorem, which is proved in Appendix A.2, is a more or less direct
consequence of Talagrand’s inequality for empirical processes [30]. However,
the actual statement presented here is new in the sense that it displays the
best known constants. Indeed, compared to the previous result of Koltchinskii
and Panchenko [16] which was based on Massart’s version of Talagrand’s
inequality [21], we have used the most refined concentration inequalities available:
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that of Bousquet [7] for the supremum of the empirical process and that of
Boucheron, Lugosi and Massart [5] for the Rademacher averages. This last
inequality is a powerful tool to obtain data-dependent bounds, since it allows one
to replace the Rademacher average (which measures the complexity of the class
of functions) by its empirical version, which can be efficiently computed in some
cases. Details about these inequalities are given in Appendix A.1.

When applied to the full function classF , the above theorem is not useful.
Indeed, with only a trivial bound on the maximal variance, better results can be
obtained via simpler concentration inequalities, such as the bounded difference
inequality [23], which would allow

√
rx/n to be replaced by

√
x/n. However, by

applying Theorem 2.1 to subsets ofF or to modified classes obtained fromF ,
much better results can be obtained. Hence, the presence of an upper bound on the
variance in the square root term is the key ingredient of this result.

A last preliminary result that we will require is the following consequence of
Theorem 2.1, which shows that if the local Rademacher averages are small, then
balls in L2(P ) are probably contained in the corresponding empirical balls [i.e.,
in L2(Pn)] with a slightly larger radius.

COROLLARY 2.2. Let F be a class of functions that map X into [−b, b] with
b > 0. For every x > 0 and r that satisfy

r ≥ 10bERn{f :f ∈ F ,Pf 2 ≤ r} + 11b2x

n
,

then with probability at least 1− e−x ,

{f ∈ F :Pf 2 ≤ r} ⊆ {f ∈ F :Pnf
2 ≤ 2r}.

PROOF. Since the range of any function in the setFr = {f 2 :f ∈ F ,Pf 2 ≤ r}
is contained in[0, b2], it follows thatVar[f 2(Xi)] ≤ Pf 4 ≤ b2Pf 2 ≤ b2r . Thus,
by the first part of Theorem 2.1 (withα = 1/4), with probability at least 1− e−x ,
everyf ∈ Fr satisfies

Pnf
2 ≤ r + 5

2
ERn{f 2 :f ∈ F ,Pf 2 ≤ r} +

√
2b2rx

n
+ 13b2x

3n

≤ r + 5

2
ERn{f 2 :f ∈ F ,Pf 2 ≤ r} + r

2
+ 16b2x

3n

≤ r + 5bERn{f :f ∈ F ,Pf 2 ≤ r} + r

2
+ 16b2x

3n

≤ 2r,

where the second inequality follows from Lemma A.3 and we have used, in the
second to last inequality, Theorem A.6 applied toφ(x) = x2 (with Lipschitz
constant 2b on [−b, b]). �
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3. Error bounds with local complexity. In this section we show that
the Rademacher averages associated with a small subset of the class may be
considered as a complexity term in an error bound. Since theselocal Rademacher
averages are always smaller than the corresponding global averages, they lead to
sharper bounds.

We present a general error bound involving local complexities that is applicable
to classes of bounded functions for which the variance is bounded by a fixed
linear function of the expectation. In this case the local Rademacher averages are
defined asERn{f ∈ F :T (f ) ≤ r} whereT (f ) is an upper bound on the variance
[typically chosen asT (f ) = Pf 2].

There is a trade-off between the size of the subset we consider in these local
averages and its complexity; we shall see that the optimal choice is given by a
fixed point of an upper bound on the local Rademacher averages. The functions
we use as upper bounds aresub-root functions; among other useful properties,
sub-root functions have a unique fixed point.

DEFINITION 3.1. A functionψ : [0,∞) → [0,∞) is sub-root if it is nonneg-
ative, nondecreasing and ifr �→ ψ(r)/

√
r is nonincreasing forr > 0.

We only consider nontrivial sub-root functions, that is, sub-root functions that
are not the constant functionψ ≡ 0.

LEMMA 3.2. If ψ : [0,∞) → [0,∞) is a nontrivial sub-root function, then it
is continuous on [0,∞) and the equation ψ(r) = r has a unique positive solution.
Moreover, if we denote the solution by r∗, then for all r > 0, r ≥ ψ(r) if and only
if r∗ ≤ r .

The proof of this lemma is in Appendix A.2. In view of the lemma, we will
simply refer to the quantityr∗ as theunique positive solution of ψ(r) = r , or as
thefixed point of ψ .

3.1. Error bounds. We can now state and discuss the main result of this
section. It is composed of two parts: in the first part, one requires a sub-root upper
bound on the local Rademacher averages, and in the second part, it is shown that
better results can be obtained when the class over which the averages are computed
is enlarged slightly.

THEOREM3.3. Let F be a class of functions with ranges in [a, b] and assume
that there are some functional T :F → R

+ and some constant B such that for
every f ∈ F , Var[f ] ≤ T (f ) ≤ BPf . Let ψ be a sub-root function and let r∗ be
the fixed point of ψ .

1. Assume that ψ satisfies, for any r ≥ r∗,

ψ(r) ≥ BERn{f ∈ F :T (f ) ≤ r}.
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Then, with c1 = 704and c2 = 26, for any K > 1 and every x > 0, with probability
at least 1− e−x ,

∀f ∈ F Pf ≤ K

K − 1
Pnf + c1K

B
r∗ + x(11(b − a) + c2BK)

n
.

Also, with probability at least 1− e−x ,

∀f ∈ F Pnf ≤ K + 1

K
Pf + c1K

B
r∗ + x(11(b − a) + c2BK)

n
.

2. If, in addition, for f ∈ F and α ∈ [0,1], T (αf ) ≤ α2T (f ), and if ψ satisfies,
for any r ≥ r∗,

ψ(r) ≥ BERn{f ∈ star(F ,0) :T (f ) ≤ r},
then the same results hold true with c1 = 6 and c2 = 5.

The proof of this theorem is given in Section 3.2.
We can compare the results to our starting point (Theorem 2.1). The im-

provement comes from the fact that the complexity term, which was essentially
supr ψ(r) in Theorem 2.1 (if we had applied it to the classF directly) is now re-
duced tor∗, the fixed point ofψ . So the complexity term is always smaller (later,
we show how to estimater∗). On the other hand, there is some loss since the con-
stant in front ofPnf is strictly larger than 1. Section 5.2 will show that this is not
an issue in the applications we have in mind.

In Sections 5.1 and 5.2 we investigate conditions that ensure the assumptions of
this theorem are satisfied, and we provide applications of this result to prediction
problems. The condition that the variance is upper bounded by the expectation
turns out to be crucial to obtain these results.

The idea behind Theorem 3.3 originates in the work of Massart [22], who proves
a slightly different version of the first part. The difference is that we use local
Rademacher averages instead of the expectation of the supremum of the empirical
process on a ball. Moreover, we give smaller constants. As far as we know, the
second part of Theorem 3.3 is new.

3.1.1. Choosing the function ψ . Notice that the functionψ cannot be chosen
arbitrarily and has to satisfy the sub-root property. One possible approach is to
use classical upper bounds on the Rademacher averages, such as Dudley’s entropy
integral. This can give a sub-root upper bound and was used, for example, in [16]
and in [22].

However, the second part of Theorem 3.3 indicates a possible choice forψ ,
namely, one can takeψ as the local Rademacher averages of the star-hull ofF
around 0. The reason for this comes from the following lemma, which shows that if
the class is star-shaped andT (f ) behaves as a quadratic function, the Rademacher
averages are sub-root.
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LEMMA 3.4. If the class F is star-shaped around f̂ (which may depend
on the data), and T :F → R

+ is a ( possibly random) function that satisfies
T (αf ) ≤ α2T (f ) for any f ∈ F and any α ∈ [0,1], then the (random) function ψ

defined for r ≥ 0 by

ψ(r) = EσRn{f ∈ F :T (f − f̂ ) ≤ r}
is sub-root and r �→ Eψ(r) is also sub-root.

This lemma is proved in Appendix A.2.
Notice that making a class star-shaped only increases it, so that

ERn{f ∈ star(F , f0) :T (f ) ≤ r} ≥ ERn{f ∈ F :T (f ) ≤ r}.
However, this increase in size is moderate as can be seen, for example, if one
compares covering numbers of a class and its star-hull (see, e.g., [26], Lemma 4.5).

3.1.2. Some consequences. As a consequence of Theorem 3.3, we obtain an
error bound whenF consists of uniformly bounded nonnegative functions. Notice
that in this case the variance is trivially bounded by a constant times the expectation
and one can directly useT (f ) = Pf .

COROLLARY 3.5. Let F be a class of functions with ranges in [0,1]. Let ψ be
a sub-root function, such that for all r ≥ 0,

ERn{f ∈ F :Pf ≤ r} ≤ ψ(r),

and let r∗ be the fixed point of ψ . Then, for any K > 1 and every x > 0, with
probability at least 1− e−x , every f ∈ F satisfies

Pf ≤ K

K − 1
Pnf + 704Kr∗ + x(11+ 26K)

n
.

Also, with probability at least 1− e−x , every f ∈ F satisfies

Pnf ≤ K + 1

K
Pf + 704Kr∗ + x(11+ 26K)

n
.

PROOF. Whenf ∈ [0,1], we haveVar[f ] ≤ Pf so that the result follows from
applying Theorem 3.3 withT (f ) = Pf . �

We also note that the same idea as in the proof of Theorem 3.3 gives a converse
of Corollary 2.2, namely, that with high probability the intersection ofF with an
empirical ball of a fixed radius is contained in the intersection ofF with anL2(P )

ball with a slightly larger radius.
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LEMMA 3.6. Let F be a class of functions that map X into [−1,1]. Fix x > 0.
If

r ≥ 20ERn{f :f ∈ star(F ,0),Pf 2 ≤ r} + 26x

n
,

then with probability at least 1− e−x ,

{f ∈ star(F ,0) :Pnf
2 ≤ r} ⊆ {f ∈ star(F ,0) :Pf 2 ≤ 2r}.

This result, proved in Section 3.2, will be useful in Section 4.

3.1.3. Estimating r∗ from global information. The error bounds involve fixed
points of functions that define upper bounds on the local Rademacher averages.
In some cases these fixed points can be estimated from global information on the
function class. We present a complete analysis only in a simple case, whereF is a
class of binary-valued functions with a finite VC-dimension.

COROLLARY 3.7. Let F be a class of {0,1}-valued functions with VC-dimen-
sion d < ∞. Then for all K > 1 and every x > 0, with probability at least 1− e−x ,
every f ∈ F satisfies

Pf ≤ K

K − 1
Pnf + cK

(
d log(n/d)

n
+ x

n

)
.

The proof is in Appendix A.2.
The above result is similar to results obtained by Vapnik and Chervonenkis [35]

and by Lugosi and Wegkamp (Theorem 3.1 of [19]). However, they used
inequalities for weighted empirical processes indexed by nonnegative functions.
Our results have more flexibility since they can accommodate general functions,
although this is not needed in this simple corollary.

The proof uses a similar line of reasoning to proofs in [26, 27]. Clearly, it
extends to any class of real-valued functions for which one has estimates for the
entropy integral, such as classes with finite pseudo-dimension or a combinatorial
dimension that grows more slowly than quadratically. See [26, 27] for more details.

Notice also that the rate of logn/n is the best known.

3.1.4. Proof techniques. Before giving the proofs of the results mentioned
above, let us sketch the techniques we use. The approach has its roots in classical
empirical processes theory, where it was understood that the modulus of continuity
of the empirical process is an important quantity (hereψ plays this role). In
order to obtain nonasymptotic results, two approaches have been developed: the
first one consists of cutting the classF into smaller pieces, where one has
control of the variance of the elements. This is the so-calledpeeling technique
(see, e.g., [31–34] and references therein). The second approach consists of
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weighting the functions inF by dividing them by their variance. Many results
have been obtained on such weighted empirical processes (see, e.g., [28]). The
results of Vapnik and Chervonenkis based on weighting [35] are restricted to
classes of nonnegative functions. Also, most previous results, such as those of
Pollard [28], van de Geer [32] or Haussler [13], give complexity terms that involve
“global” measures of complexity of the class, such as covering numbers. None
of these results uses the recently introduced Rademacher averages as measures of
complexity. It turns out that it is possible to combine the peeling and weighting
ideas with concentration inequalities to obtain such results, as proposed by
Massart in [22], and also used (for nonnegative functions) by Koltchinskii and
Panchenko [16].

The idea is the following:

(a) Apply Theorem 2.1 to the class of functions{f/w(f ) :f ∈ F }, wherew is
some nonnegative weight of the order of the variance off . Hence, the functions
in this class have a small variance.

(b) Upper bound the Rademacher averages of this weighted class, by “peeling
off” subclasses ofF according to the variance of their elements, and bounding the
Rademacher averages of these subclasses usingψ .

(c) Use the sub-root property ofψ , so that its fixed point gives a common upper
bound on the complexity of all the subclasses (up to some scaling).

(d) Finally, convert the upper bound for functions in the weighted class into a
bound for functions in the initial class.

The idea of peeling—that is, of partitioning the classF into slices where
functions have variance within a certain range—is at the core of the proof of
the first part of Theorem 3.3 [see, e.g., (3.1)]. However, it does not appear
explicitly in the proof of the second part. One explanation is that when one
considers the star-hull of the class, it is enough to consider two subclasses:
the functions withT (f ) ≤ r and the ones withT (f ) > r , and this is done by
introducing the weighting factorT (f ) ∨ r . This idea was exploited in the work of
Mendelson [26] and, more recently, in [4]. Moreover, when one considers the set
Fr = star(F ,0) ∩ {T (f ) ≤ r}, any functionf ′ ∈ F with T (f ′) > r will have a
scaled down representative in that set. So even though it seems that we look at the
class star(F ,0) only locally, we still take into account all of the functions inF
(with appropriate scaling).

3.2. Proofs. Before presenting the proof, let us first introduce some additional
notation. Given a classF , λ > 1 andr > 0, let w(f ) = min{rλk : k ∈ N, rλk ≥
T (f )} and set

Gr =
{

r

w(f )
f :f ∈ F

}
.
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Notice thatw(f ) ≥ r , so thatGr ⊆ {αf :f ∈ F , α ∈ [0,1]} = star(F ,0). Define

V +
r = sup

g∈Gr

Pg − Png and V −
r = sup

g∈Gr

Png − Pg.

For the second part of the theorem, we need to introduce another class of functions,

G̃r :=
{

rf

T (f ) ∨ r
:f ∈ F

}
,

and define

Ṽ +
r = sup

g∈G̃r

Pg − Png and Ṽ −
r = sup

g∈G̃r

Png − Pg.

LEMMA 3.8. With the above notation, assume that there is a constant B > 0
such that for every f ∈ F , T (f ) ≤ BPf . Fix K > 1, λ > 0 and r > 0. If
V +

r ≤ r/(λBK), then

∀f ∈ F Pf ≤ K

K − 1
Pnf + r

λBK
.

Also, if V −
r ≤ r/(λBK), then

∀f ∈ F Pnf ≤ K + 1

K
Pf + r

λBK
.

Similarly, if K > 1 and r > 0 are such that Ṽ +
r ≤ r/(BK), then

∀f ∈ F Pf ≤ K

K − 1
Pnf + r

BK
.

Also, if Ṽ −
r ≤ r/(BK), then

∀f ∈ F Pnf ≤ K + 1

K
Pf + r

BK
.

PROOF. Notice that for allg ∈ Gr , Pg ≤ Png + V +
r . Fix f ∈ F and define

g = rf/w(f ). When T (f ) ≤ r , w(f ) = r , so thatg = f . Thus, the fact that
Pg ≤ Png + V +

r implies thatPf ≤ Pnf + V +
r ≤ Pnf + r/(λBK).

On the other hand, ifT (f ) > r , then w(f ) = rλk with k > 0 andT (f ) ∈
(rλk−1, rλk]. Moreover,g = f/λk , Pg ≤ Png + V +

r , and thus

Pf

λk
≤ Pnf

λk
+ V +

r .

Using the fact thatT (f ) > rλk−1, it follows that

Pf ≤ Pnf + λkV +
r < Pnf + λT (f )V +

r /r ≤ Pnf + Pf/K.
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Rearranging,

Pf ≤ K

K − 1
Pnf <

K

K − 1
Pnf + r

λBK
.

The proof of the second result is similar. For the third and fourth results, the
reasoning is the same.�

PROOF OFTHEOREM3.3,FIRST PART. LetGr be defined as above, wherer is
chosen such thatr ≥ r∗, and note that functions inGr satisfy‖g − Pg‖∞ ≤ b − a

since 0≤ r/w(f ) ≤ 1. Also, we haveVar[g] ≤ r . Indeed, ifT (f ) ≤ r , theng = f ,
and thusVar[g] = Var[f ] ≤ r . Otherwise, whenT (f ) > r , g = f/λk (wherek is
such thatT (f ) ∈ (rλk−1, rλk]), so thatVar[g] = Var[f ]/λ2k ≤ r .

Applying Theorem 2.1, for allx > 0, with probability 1− e−x ,

V +
r ≤ 2(1+ α)ERnGr +

√
2rx

n
+ (b − a)

(
1

3
+ 1

α

)
x

n
.

Let F (x, y) := {f ∈ F :x ≤ T (f ) ≤ y} and definek to be the smallest integer
such thatrλk+1 ≥ Bb. Then

ERnGr ≤ ERnF (0, r) + E sup
f ∈F (r,Bb)

r

w(f )
Rnf

≤ ERnF (0, r) +
k∑

j=0

E sup
f ∈F (rλj ,rλj+1)

r

w(f )
Rnf

(3.1)

= ERnF (0, r) +
k∑

j=0

λ−j
E sup

f ∈F (rλj ,rλj+1)

Rnf

≤ ψ(r)

B
+ 1

B

k∑
j=0

λ−jψ(rλj+1).

By our assumption it follows that forβ ≥ 1, ψ(βr) ≤ √
βψ(r). Hence,

ERnGr ≤ 1

B
ψ(r)

(
1+ √

λ

k∑
j=0

λ−j/2

)
,

and takingλ = 4, the right-hand side is upper bounded by 5ψ(r)/B. Moreover, for
r ≥ r∗, ψ(r) ≤ √

r/r∗ψ(r∗) = √
rr∗, and thus

V +
r ≤ 10(1+ α)

B

√
rr∗ +

√
2rx

n
+ (b − a)

(
1

3
+ 1

α

)
x

n
.

SetA = 10(1 + α)
√

r∗/B + √
2x/n andC = (b − a)(1/3 + 1/α)x/n, and note

thatV +
r ≤ A

√
r + C.
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We now show thatr can be chosen such thatV +
r ≤ r/(λBK). Indeed, consider

the largest solutionr0 of A
√

r+C = r/(λBK). It satisfiesr0 ≥ λ2A2B2K2/2 ≥ r∗
andr0 ≤ (λBK)2A2 + 2λBKC, so that applying Lemma 3.8, it follows that every
f ∈ F satisfies

Pf ≤ K

K − 1
Pnf + λBKA2 + 2C

= K

K − 1
Pnf + λBK

(
100(1+ α)2r∗/B2 + 20(1+ α)

B

√
2xr∗

n
+ 2x

n

)

+ (b − a)

(
1

3
+ 1

α

)
x

n
.

Settingα = 1/10 and using Lemma A.3 to show that
√

2xr∗/n ≤ Bx/(5n) +
5r∗/(2B) completes the proof of the first statement. The second statement is
proved in the same way, by consideringV −

r instead ofV +
r . �

PROOF OFTHEOREM 3.3, SECOND PART. The proof of this result uses the
same argument as for the first part. However, we consider the classG̃r defined
above. One can easily check thatG̃r ⊂ {f ∈ star(F ,0) :T (f ) ≤ r}, and thus
ERnG̃r ≤ ψ(r)/B. Applying Theorem 2.1 toG̃r , it follows that, for all x > 0,
with probability 1− e−x ,

Ṽ +
r ≤ 2(1+ α)

B
ψ(r) +

√
2rx

n
+ (b − a)

(
1

3
+ 1

α

)
x

n
.

The reasoning is then the same as for the first part, and we use in the very last step
that

√
2xr∗/n ≤ Bx/n + r∗/(2B), which gives the displayed constants.�

PROOF OFLEMMA 3.6. The mapα �→ α2 is Lipschitz with constant 2 when
α is restricted to[−1,1]. Applying Theorem A.6,

r ≥ 10ERn{f 2 :f ∈ star(F ,0),Pf 2 ≤ r} + 26x

n
.(3.2)

Clearly, if f ∈ F , thenf 2 maps to[0,1] andVar[f 2] ≤ Pf 2. Thus, Theorem 2.1
can be applied to the classGr = {rf 2/(Pf 2 ∨ r) :f ∈ F }, whose functions have
range in[0,1] and variance bounded byr . Therefore, with probability at least
1− e−x , everyf ∈ F satisfies

r
Pf 2 − Pnf

2

Pf 2 ∨ r
≤ 2(1+ α)ERnGr +

√
2rx

n
+

(
1

3
+ 1

α

)
x

n
.

Selectα = 1/4 and notice that
√

2rx/n ≤ r/4+ 2x/n to get

r
Pf 2 − Pnf

2

Pf 2 ∨ r
≤ 5

2
ERnGr + r

2
+ 19x

3n
.
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Hence, one either hasPf 2 ≤ r , or whenPf 2 ≥ r , since it was assumed that
Pnf

2 ≤ r ,

Pf 2 ≤ r + Pf 2

r

(
5

2
ERnGr + r

4
+ 19x

3n

)
.

Now, if g ∈ Gr , there existsf0 ∈ F such thatg = rf 2
0 /(Pf 2

0 ∨ r). If Pf 2
0 ≤ r ,

then g = f 2
0 . On the other hand, ifPf 2

0 > r , then g = rf 2
0 /Pf 2

0 = f 2
1 with

f1 ∈ star(F ,0) andPf 2
1 ≤ r , which shows that

ERnGr ≤ ERn{f 2 :f ∈ star(F ,0),Pf 2 ≤ r}.
Thus, by (3.2),Pf 2 ≤ 2r , which concludes the proof.�

4. Data-dependent error bounds. The results presented thus far use distrib-
ution-dependent measures of complexity of the class at hand. Indeed, the sub-
root functionψ of Theorem 3.3 is bounded in terms of the Rademacher averages
of the star-hull ofF , but these averages can only be computed if one knows
the distributionP . Otherwise, we have seen that it is possible to compute an
upper bound on the Rademacher averages using a priori global or distribution-free
knowledge about the complexity of the class at hand (such as the VC-dimension).
In this section we present error bounds that can be computed directly from the data,
without a priori information. Instead of computingψ , we compute an estimate,̂ψn,
of it. The functionψ̂n is defined using the data and is an upper bound onψ with
high probability.

To simplify the exposition we restrict ourselves to the case where the functions
have a range which is symmetric around zero, say[−1,1]. Moreover, we can
only treat the special case whereT (f ) = Pf 2, but this is a minor restriction as
in most applications this is the function of interest [i.e., for which one can show
T (f ) ≤ BPf ].

4.1. Results. We now present the main result of this section, which gives an
analogue of the second part of Theorem 3.3, with a completely empirical bound
(i.e., the bound can be computed from the data only).

THEOREM 4.1. Let F be a class of functions with ranges in [−1,1] and
assume that there is some constant B such that for every f ∈ F , Pf 2 ≤ BPf .
Let ψ̂n be a sub-root function and let r̂∗ be the fixed point of ψ̂n. Fix x > 0 and
assume that ψ̂n satisfies, for any r ≥ r̂∗,

ψ̂n(r) ≥ c1EσRn{f ∈ star(F ,0) :Pnf
2 ≤ 2r} + c2x

n
,

where c1 = 2(10∨ B) and c2 = c1 + 11. Then, for any K > 1 with probability at
least 1− 3e−x ,

∀f ∈ F Pf ≤ K

K − 1
Pnf + 6K

B
r̂∗ + x(11+ 5BK)

n
.
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Also, with probability at least 1− 3e−x ,

∀f ∈ F Pnf ≤ K + 1

K
Pf + 6K

B
r̂∗ + x(11+ 5BK)

n
.

Although these are data-dependent bounds, they are not necessarily easy to
compute. There are, however, favorable interesting situations where they can be
computed efficiently, as Section 6 shows.

It is natural to wonder how close the quantityr̂∗ appearing in the above theorem
is to the quantityr∗ of Theorem 3.3. The next theorem shows that they are close
with high probability.

THEOREM4.2. Let F be a class of functions with ranges in [−1,1]. Fix x > 0
and consider the sub-root functions

ψ(r) = ERn{f ∈ star(F ,0) :Pf 2 ≤ r}
and

ψ̂n(r) = c1EσRn{f ∈ star(F ,0) :Pnf
2 ≤ 2r} + c2x

n
,

with fixed points r∗ and r̂∗, respectively, and with c1 = 2(10∨ B) and c2 = 13.
Assume that r∗ ≥ c3x/n, where c3 = 26∨ (c2 + 2c1)/3. Then, with probability at
least 1− 4e−x ,

r∗ ≤ r̂∗ ≤ 9(1+ c1)
2r∗.

Thus, with high probability,r̂∗ is an upper bound onr∗ and has the same
asymptotic behavior. Notice that there was no attempt to optimize the constants in
the above theorem. In addition, the constant 9(1+ c1)

2 (equal to 3969 ifB ≤ 10)
in Theorem 4.2 does not appear in the upper bound of Theorem 4.1.

4.2. Proofs. The idea of the proofs is to show that one can upper boundψ

by an empirical estimate (with high probability). This requires two steps: the
first one uses the concentration of the Rademacher averages to upper bound the
expected Rademacher averages by their empirical versions. The second step uses
Corollary 2.2 to prove that the ball over which the averages are computed [which
is anL2(P ) ball] can be replaced by an empirical one. Thus,ψ̂n is an upper bound
on ψ , and one can apply Theorem 3.3, together with the following lemma, which
shows how fixed points of sub-root functions relate when the functions are ordered.

LEMMA 4.3. Suppose that ψ, ψ̂n are sub-root. Let r∗ (resp. r̂∗) be the fixed
point of ψ (resp. ψ̂n). If for 0 ≤ α ≤ 1 we have αψ̂n(r

∗) ≤ ψ(r∗) ≤ ψ̂n(r
∗), then

α2r̂∗ ≤ r∗ ≤ r̂∗.



LOCAL RADEMACHER COMPLEXITIES 1515

PROOF. Denoting byr̂∗
α the fixed point of the sub-root functionαψ̂n, then, by

Lemma 3.2r̂∗
α ≤ r∗ ≤ r̂∗. Also, sinceψ̂n is sub-root,̂ψn(α

2r̂∗) ≥ αψ̂n(r̂
∗) = αr̂∗,

which meansαψ̂n(α
2r̂∗) ≥ α2r̂∗. Hence, Lemma 3.2 yieldŝr∗

α ≥ α2r̂∗. �

PROOF OFTHEOREM 4.1. Consider the sub-root function

ψ1(r) = c1

2
ERn{f ∈ star(F ,0) :Pf 2 ≤ r} + (c2 − c1)x

n
,

with fixed pointr∗
1 . Applying Corollary 2.2 whenr ≥ ψ1(r), it follows that with

probability at least 1− e−x ,

{f ∈ star(F ,0) :Pf 2 ≤ r} ⊆ {f ∈ star(F ,0) :Pnf
2 ≤ 2r}.

Using this together with the first inequality of Lemma A.4 (withα = 1/2) shows
that if r ≥ ψ1(r), with probability at least 1− 2e−x ,

ψ1(r) = c1

2
ERn{f ∈ star(F ,0) :Pf 2 ≤ r} + (c2 − c1)x

n

≤ c1EσRn{f ∈ star(F ,0) :Pf 2 ≤ r} + c2x

n

≤ c1EσRn{f ∈ star(F ,0) :Pnf
2 ≤ 2r} + c2x

n

≤ ψ̂n(r).

Choosingr = r∗
1 , Lemma 4.3 shows that with probability at least 1− 2e−x ,

r∗
1 ≤ r̂∗.(4.1)

Also, for all r ≥ 0,

ψ1(r) ≥ BERn{f ∈ star(F ,0) :Pf 2 ≤ r},
and so from Theorem 3.3, with probability at least 1− e−x , everyf ∈ F satisfies

Pf ≤ K

K − 1
Pnf + 6Kr∗

1

B
+ (11+ 5BK)x

n
.

Combining this with (4.1) gives the first result. The second result is proved in a
similar manner. �

PROOF OFTHEOREM 4.2. Consider the functions

ψ1(r) = c1

2
ERn{f ∈ star(F ,0) :Pf 2 ≤ r} + (c2 − c1)x

n

and

ψ2(r) = c1ERn{f ∈ star(F ,0) :Pf 2 ≤ r} + c3x

n
,
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and denote byr∗
1 andr∗

2 the fixed points ofψ1 andψ2, respectively. The proof of
Theorem 4.1 shows that with probability at least 1− 2e−x , r∗

1 ≤ r̂∗.
Now apply Lemma 3.6 to show that ifr ≥ ψ2(r), then with probability at

least 1− e−x ,

{f ∈ star(F ,0) :Pnf
2 ≤ r} ⊆ {f ∈ star(F ,0) :Pf 2 ≤ 2r}.

Using this together with the second inequality of Lemma A.4 (withα = 1/2)
shows that ifr ≥ ψ2(r), with probability at least 1− 2e−x ,

ψ̂n(r) = c1EσRn{f ∈ star(F ,0) :Pnf
2 ≤ 2r} + c2x

n

≤ c1
√

2EσRn{f ∈ star(F ,0) :Pnf
2 ≤ r} + c2x

n

≤ c1
√

2EσRn{f ∈ star(F ,0) :Pf 2 ≤ 2r} + c2x

n

≤ 3
√

2

2
c1ERn{f ∈ star(F ,0) :Pf 2 ≤ 2r} + (c2 + 2c1)x

n

≤ 3c1ERn{f ∈ star(F ,0) :Pf 2 ≤ r} + (c2 + 2c1)x

n

≤ 3ψ2(r),

where the sub-root property was used twice (in the first and second to last
inequalities). Lemma 4.3 thus givesr̂∗ ≤ 9r∗

2 .
Also notice that for allr , ψ(r) ≤ ψ1(r), and hencer∗ ≤ r∗

1 . Moreover, for
all r ≥ ψ(r) (hencer ≥ r∗ ≥ c3x/n), ψ2(r) ≤ c1ψ(r) + r , so thatψ2(r

∗) ≤
(c1 + 1)r∗ = (c1 + 1)ψ(r∗). Lemma 4.3 implies thatr∗

2 ≤ (1+ c1)
2r∗. �

5. Prediction with bounded loss. In this section we discuss the application of
our results to prediction problems, such as classification and regression. For such
problems there are aninput space X and anoutput space Y, and the productX×Y
is endowed with an unknown probability measureP . For example, classification
corresponds to the case whereY is discrete, typicallyY = {−1,1}, and regression
corresponds to the continuous case, typicallyY = [−1,1]. Note that assuming the
boundedness of the target values is a typical assumption in theoretical analysis
of regression procedures. To analyze the case of unbounded targets, one usually
truncates the values at a certain threshold and bounds the probability of exceeding
that threshold (see, e.g., the techniques developed in [12]).

The training sample is a sequence(X1, Y1), . . . , (Xn,Yn) of n independent
and identically distributed (i.i.d.) pairs sampled according toP . A loss function
� :Y × Y → [0,1] is defined and the goal is to find a functionf :X → Y from a
classF that minimizes the expected loss

E�f = E�
(
f (X),Y

)
.
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Since the probability distributionP is unknown, one cannot directly minimize the
expected loss overF .

The key property that is needed to apply our results is the fact thatVar[f ] ≤ BPf

(or Pf 2 ≤ BPf to obtain data-dependent bounds). This will trivially be the case
for the class{�f :f ∈ F }, as all its functions are uniformly bounded and nonnega-
tive. This case, studied in Section 5.1, is, however, not the most interesting. Indeed,
it is when one studies the excess risk�f − �f ∗ that our approach shows its superi-
ority over previous ones; when the class{�f −�f ∗} satisfies the variance condition
(and Section 5.2 gives examples of this), we obtain distribution-dependent bounds
that are optimal in certain cases, and data-dependent bounds of the same order.

5.1. General results without assumptions. Define the following class of
functions, called theloss class associated with F :

�F = {�f :f ∈ F } = {
(x, y) �→ �

(
f (x), y

)
:f ∈ F

}
.

Notice that�F is a class of nonnegative functions. Applying Theorem 4.1 to this
class of functions gives the following corollary.

COROLLARY 5.1. For a loss function � :Y × Y → [0,1], define

ψ̂n(r) = 20EσRn{f ∈ star(�F ,0) :Pnf
2 ≤ 2r} + 13x

n
,

with fixed point r̂∗. Then, for any K > 1 with probability at least 1− 3e−x ,

∀f ∈ F P�f ≤ K

K − 1
Pn�f + 6Kr̂∗ + x(11+ 5K)

n
.

A natural approach is to minimize the empirical lossPn�f over the classF .
The following result shows that this approach leads to an estimate with expected
loss near minimal. How close it is to the minimal expected loss depends on the
value of the minimum, as well as on the local Rademacher averages of the class.

THEOREM 5.2. For a loss function � :Y ×Y → [0,1], define ψ(r), ψ̂n(r), r∗
and r̂∗ as in Theorem 5.1.Let L∗ = inff ∈F P�f . Then there is a constant c such
that with probability at least 1− 2e−x , the minimizer f̂ ∈ F of Pn�f satisfies

P�
f̂

≤ L∗ + c
(√

L∗r∗ + r∗)
.

Also, with probability at least 1− 4e−x ,

P�
f̂

≤ L∗ + c
(√

L∗r̂∗ + r̂∗)
.
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The proof of this theorem is given in Appendix A.2.
This theorem has the same flavor as Theorem 4.2 of [19]. We have not used

any property besides the positivity of the functions in the class. This indicates that
there might not be a significant gain compared to earlier results (as without further
assumptions the optimal rates are known). Indeed, a careful examination of this
result shows that whenL∗ > 0, the difference betweenP�

f̂
andL∗ is essentially

of order
√

r∗. For a class of{0,1}-valued functions with VC-dimensiond, for
example, this would be

√
d logn/n. On the other hand, the result of [19] is more

refined since the Rademacher averages are not localized around 0 (as they are
here), but rather around the minimizer of the empirical error itself. Unfortunately,
the small ball in [19] is not defined asPn�f ≤ Pn�f̂

+r but asPn�f ≤ 16Pn�f̂
+r .

This means that in the general situation whereL∗ > 0, sincePn�f̂
does not

converge to 0 with increasingn (as it is expected to be close toP�
f̂

which itself
converges toL∗), the radius of the ball around�

f̂
(which is 15Pn�f̂

+ r) will
not converge to 0. Thus, the localized Rademacher average over this ball will
converge at speed

√
d/n. In other words, our Theorem 5.2 and Theorem 4.2 of [19]

essentially have the same behavior. But this is not surprising, as it is known that
this is the optimal rate of convergence in this case. To get an improvement in the
rates of convergence, one needs to make further assumptions on the distributionP

or on the classF .

5.2. Improved results for the excess risk. Consider a loss function� and
function classF that satisfy the following conditions.

1. For every probability distributionP there is anf ∗ ∈ F satisfyingP�f ∗ =
inff ∈F P�f .

2. There is a constantL such that� is L-Lipschitz in its first argument: for
all y, ŷ1, ŷ2,

|�(ŷ1, y) − �(ŷ2, y)| ≤ L|ŷ1 − ŷ2|.
3. There is a constantB ≥ 1 such that for every probability distribution and every

f ∈ F ,

P(f − f ∗)2 ≤ BP(�f − �f ∗).

These conditions are not too restrictive as they are met by several commonly used
regularized algorithms with convex losses.

Note that condition 1 could be weakened, and one could consider a function
which is only close to achieving the infimum, with an appropriate change to
condition 3. This generalization is straightforward, but it would make the results
less readable, so we omit it.

Condition 2 implies that, for allf ∈ F ,

P(�f − �f ∗)2 ≤ L2P(f − f ∗)2.
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Condition 3 usually follows from a uniform convexity condition on�. An
important example is the quadratic loss�(y, y′) = (y − y′)2, when the function
classF is convex and uniformly bounded. In particular, if|f (x) − y| ∈ [0,1] for
all f ∈ F , x ∈ X and y ∈ Y, then the conditions are satisfied withL = 2 and
B = 1 (see [18]). Other examples are described in [26] and in [2].

The first result we present is a direct but instructive corollary of Theorem 3.3.

COROLLARY 5.3. Let F be a class of functions with ranges in [−1,1] and
let � be a loss function satisfying conditions 1–3above. Let f̂ be any element of F
satisfying Pn�f̂

= inff ∈F Pn�f . Assume ψ is a sub-root function for which

ψ(r) ≥ BLERn{f ∈ F :L2P(f − f ∗)2 ≤ r}.
Then for any x > 0 and any r ≥ ψ(r), with probability at least 1− e−x ,

P(�
f̂

− �f ∗) ≤ 705
r

B
+ (11L + 27B)x

n
.

PROOF. One applies Theorem 3.3 (first part) to the class�f − �f ∗ with
T (f ) = L2P(f − f ∗)2 and uses the fact that by Theorem A.6, and by the sym-
metry of the Rademacher variables,LERn{f :L2P(f − f ∗)2 ≤ r} ≥ ERn{�f −
�f ∗ :L2P(f − f ∗)2 ≤ r}. The result follows from noticing thatPn(�f̂

− �f ∗) ≤ 0.
�

Instead of comparing the loss off to that off ∗, one could compare it to the loss
of the best measurable function (the regression function for regression function
estimation, or the Bayes classifier for classification). The techniques proposed here
can be adapted to this case.

Using Corollary 5.3, one can (with minor modification) recover the results
of [22] for model selection. These have been shown to match the minimax results
in various situations. In that sense, Corollary 5.3 can be considered as sharp.

Next we turn to the main result of this section. It is a version of Corollary 5.3
with a fully data-dependent bound. This is obtained by modifyingψ in three ways:
the Rademacher averages are replaced by empirical ones, the radius of the ball is
in theL2(Pn) norm instead ofL2(P ), and finally, the center of the ball iŝf instead
of f ∗.

THEOREM 5.4. Let F be a convex class of functions with range in [−1,1]
and let � be a loss function satisfying conditions 1–3above. Let f̂ be any element
of F satisfying Pn�f̂

= inff ∈F Pn�f . Define

ψ̂n(r) = c1EσRn{f ∈ F :Pn(f − f̂ )2 ≤ c3r} + c2x

n
,(5.1)
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where c1 = 2L(B ∨ 10L), c2 = 11L2 + c1 and c3 = 2824+ 4B(11L + 27B)/c2.
Then with probability at least 1− 4e−x ,

P(�
f̂

− �f ∗) ≤ 705

B
r̂∗ + (11L + 27B)x

n
,

where r̂∗ is the fixed point of ψ̂n.

REMARK 5.5. Unlike Corollary 5.3, the classF in Theorem 5.4 has to be
convex. This ensures that it is star-shaped around any of its elements (which
implies thatψ̂n is sub-root even thougĥf is random). However, convexity of the
loss class is not necessary, so that this theorem still applies to many situations of
interest, in particular to regularized regression, where the functions are taken in a
vector space or a ball of a vector space.

REMARK 5.6. Although the theorem is stated with explicit constants, there is
no reason to think that these are optimal. The fact that the constant 705 appears
actually is due to our failure to apply the second part of Theorem 3.3 to the initial
loss class, which is not star-shaped (this would have given a 7 instead). However,
with some additional effort, one can probably obtain much better constants.

As we explained earlier, although the statement of Theorem 5.4 is similar to
Theorem 4.2 in [19], there is an important difference in the way the localized
averages are defined: in our case the radius is a constant timesr , while in [19] there
is an additional term, involving the loss of the empirical risk minimizer, which may
not converge to zero. Hence, the complexity decreases faster in our bound.

The additional property required in the proof of this result compared to the
proof of Theorem 4.1 is that under the assumptions of the theorem, the minimizers
of the empirical loss and of the true loss are close with respect to theL2(P ) and
theL2(Pn) distances (this has also been used in [20] and [31, 32]).

PROOF OFTHEOREM 5.4. Define the functionψ as

ψ(r) = c1

2
ERn{f ∈ F :L2P(f − f ∗)2 ≤ r} + (c2 − c1)x

n
.(5.2)

Notice that sinceF is convex and thus star-shaped around each of its points,
Lemma 3.4 implies thatψ is sub-root. Now, forr ≥ ψ(r) Corollary 5.3 and
condition 3 on the loss function imply that, with probability at least 1− e−x ,

L2P(f̂ − f ∗)2 ≤ BL2P(�
f̂

− �f ∗) ≤ 705L2r + (11L + 27B)BL2x

n
.(5.3)

Denote the right-hand side bys. Sinces ≥ r ≥ r∗, thens ≥ ψ(s) (by Lemma 3.2),
and thus

s ≥ 10L2
ERn{f ∈ F :L2P(f − f ∗)2 ≤ s} + 11L2x

n
.
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Therefore, Corollary 2.2 applied to the classLF yields that with probability at
least 1− e−x ,

{f ∈ F , L2P(f − f ∗)2 ≤ s} ⊂ {f ∈ F ,L2Pn(f − f ∗)2 ≤ 2s}.
This, combined with (5.3), implies that with probability at least 1− 2e−x ,

Pn(f̂ − f ∗)2 ≤ 2
(

705r + (11L + 27B)Bx

n

)
(5.4)

≤ 2
(

705+ (11L + 27B)B

c2

)
r,

where the second inequality follows fromr ≥ ψ(r) ≥ c2x/n. Definec = 2(705+
(11L + 27B)B/c2). By the triangle inequality inL2(Pn), if (5.4) occurs, then any
f ∈ F satisfies

Pn(f − f̂ )2 ≤ (√
Pn(f − f ∗)2 +

√
Pn(f ∗ − f̂ )2

)2

≤ (√
Pn(f − f ∗)2 + √

cr
)2

.

Appealing again to Corollary 2.2 applied toLF as before, but now forr ≥ ψ(r),
it follows that with probability at least 1− 3e−x ,

{f ∈ F :L2P(f − f ∗)2 ≤ r}
⊆ {

f ∈ F :L2Pn(f − f̂ )2 ≤ (√
2+ √

c
)2

L2r
}
.

Combining this with Lemma A.4 shows that, with probability at least 1− 4e−x ,

ψ(r) ≤ c1EσRn{f ∈ F :L2P(f − f ∗)2 ≤ r} + c2x

n

≤ c1EσRn

{
f :Pn(f − f ∗)2 ≤ (√

2+ √
c

)2
r
} + c2x

n

≤ c1EσRn{f :Pn(f − f ∗)2 ≤ (4+ 2c)r} + c2x

n

≤ ψ̂n(r).

Settingr = r∗ in the above argument and applying Lemma 4.3 shows thatr∗ ≤ r̂∗,
which, together with (5.3), concludes the proof.�

6. Computing local Rademacher complexities. In this section we deal with
the computation of local Rademacher complexities and their fixed points. We first
propose a simple iterative procedure for estimating the fixed point of an arbitrary
sub-root function and then give two examples of situations where it is possible
to compute an upper bound on the local Rademacher complexities. In the case of
classification with the discrete loss, this can be done by solving a weighted error
minimization problem. In the case of kernel classes, it is obtained by computing
the eigenvalues of the empirical Gram matrix.
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6.1. The iterative procedure. Recall that Theorem 4.1 indicates that one can
obtain an upper bound in terms of empirical quantities only. However, it remains
to be explained how to compute these quantities effectively. We propose to use a
procedure similar to that of Koltchinskii and Panchenko [16], by applying the sub-
root function iteratively. The next lemma shows that applying the sub-root function
iteratively gives a sequence that converges monotonically and quickly to the fixed
point.

LEMMA 6.1. Let ψ : [0,∞) → [0,∞) be a (nontrivial) sub-root function. Fix
r0 ≥ r∗, and for all k > 0 define rk+1 = ψ(rk). Then for all N > 0, rN+1 ≤ rN ,
and

r∗ ≤ rN ≤
(

r0

r∗
)2−N

r∗.

In particular, for any ε > 0, if N satisfies

N ≥ log2

(
ln(r0/r∗)
ln(1+ ε)

)
,

then rN ≤ (1+ ε)r∗.

PROOF. Notice that ifrk ≥ r∗, thenrk+1 = ψ(rk) ≥ ψ(r∗) = r∗. Also,

ψ(rk)√
rk

≤ ψ(r∗)√
r∗ = √

r∗ ≤ √
rk,

and sork+1 ≤ rk andrk+1/r∗ ≤ (rk/r∗)1/2. An easy induction shows thatrN/r∗ ≤
(r0/r∗)2−N

. �

Notice that in the results of [16], the analysis of the iterative procedure was tied
to the probabilistic upper bounds. However, here we make the issues separate: the
bounds of previous sections are valid no matter how the fixed point is estimated.
In the above lemma, one can use a random sub-root function.

6.2. Local Rademacher complexities for classification loss classes. Consider
the case whereY = {−1,1} and the loss is the discrete loss,�(y, y′) = 1[y �= y′].
Since�2 = �, one can write

EσRn{f ∈ star(�F ,0) :Pnf
2 ≤ 2r}

= EσRn{α�f :α ∈ (0,1], f ∈ F ,Pn�
2
f ≤ 2r/α2}

= EσRn{α�f :α ∈ (0,1], f ∈ F ,Pn�f ≤ 2r/α2}
= sup

α∈(0,1]
αEσRn{�f :f ∈ F ,Pn�f ≤ 2r/α2}

= sup
α∈[√2r,1]

αEσRn{�f :f ∈ F ,Pn�f ≤ 2r/α2},
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where the last equality follows from the fact thatPn�f ≤ 1 for all f . Substituting
into Corollary 5.1 gives the following result.

COROLLARY 6.2. Let Y = {±1}, let � be the discrete loss defined on Y and
let F be a class of functions with ranges in Y. Fix x > 0 and define

ψ̂n(r) = 20 sup
α∈[√2r,1]

αEσRn{�f :f ∈ F ,Pn�f ≤ 2r/α2} + 26x

n
.

Then for all K > 1, with probability at least 1− 3e−x , for all f ∈ F ,

P�f ≤ K

K − 1
Pn�f + cK

(
r̂∗ + x

n

)
,

where r̂∗ is the fixed point of ψ̂n.

The following theorem shows that upper bounds onψ̂n(r) can by computed
whenever one can perform weighted empirical risk minimization. In other words,
if there is an efficient algorithm for minimizing a weighted sum of classification
errors, there is an efficient algorithm for computing an upper bound on the
localized Rademacher averages. The empirical minimization algorithm needs to be
run repeatedly on different realizations of theσi , but with fast convergence toward
the expectation as the number of iterations grows. A similar result was known for
global Rademacher averages and this shows that the localization and the use of
star-hulls do not greatly affect the computational complexity.

THEOREM 6.3. The empirical local Rademacher complexity of the classifica-
tion loss class, defined in Corollary 6.2,satisfies

ψ̂n(r) = c sup
α∈[√2r,1]

αEσRn{�f :f ∈ F ,Pn�f ≤ 2r/α2} + 26x

n

≤ c sup
α∈[√2r,1]

αEσ min
µ≥0

((
2r

α2 − 1

2

)
µ + 1

2n

n∑
i=1

|σi + µYi | − J (µ)

)
+ 26x

n
,

where

J (µ) = min
f ∈F

1

n

n∑
i=1

|σi + µYi |�(
f (Xi),sign(σi + µYi)

)
.

The quantityJ (µ) can be viewed as the minimum of a certain weighted
empirical risk when the labels are corrupted by noise and the noise level is
determined by the parameter (Lagrange multiplier)µ. Using the fact thatJ (µ)

is Lipschitz inµ, a finite grid of values ofJ (µ) can be used to obtain a functionφ
that is an upper bound on̂ψn. Then the functionr �→ √

r supr ′ φ(r ′)/
√

r ′ is a sub-
root upper bound on̂ψn.
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In order to prove Theorem 6.3 we need the following lemma (adapted from [1])
which relates the localized Rademacher averages to a weighted error minimization
problem.

LEMMA 6.4. For every b ∈ [0,1],
EσRn{�f :f ∈ F ,Pn�f ≤ b}

= 1
2 − Eσ min

{
Pn�

(
f (X),σ

)
:f ∈ F ,Pn�

(
f (X),Y

) ≤ b
}
.

PROOF. Notice that fory, y′ ∈ {±1}, �(y, y′) = 1[y �= y′] = |y − y′|/2. Thus

2
n∑

i=1

σi�
(
f (Xi), Yi

) = ∑
i : Yi=1

σi |f (Xi) − 1| + ∑
i : Yi=−1

σi |f (Xi) + 1|

= ∑
i : Yi=1

σi

(
2− |f (Xi) + 1|) + ∑

i : Yi=−1

σi |f (Xi) + 1|

=
n∑

i=1

−Yiσi |f (Xi) + 1| + 2
∑

i : Yi=1

σi.

Because of the symmetry ofσi , for fixed Xi the vector(−Yiσi)
n
i=1 has the same

distribution as(σi)
n
i=1. Thus when we take the expectation, we can replace−Yiσi

by σi . Moreover, we have

n∑
i=1

σi |f (Xi) + 1| = ∑
i : σi=1

|f (Xi) + 1| + ∑
i : σi=−1

−|f (Xi) + 1|

= ∑
i : σi=1

(
2− |f (Xi) − 1|) + ∑

i : σi=−1

−|f (Xi) + 1|

=
n∑

i=1

−|f (Xi) − σi | + 2
∑

i : σi=−1

1,

implying that

EσRn{�f :f ∈ F ,Pn�f ≤ b}

= 1

n

(
Eσ

∑
i : Yi=1

σi + Eσ

∑
i : σi=−1

1

+ Eσ sup
{−Pn�

(
f (X),σ

)
:f ∈ F ,Pn�

(
f (X),Y

) ≤ b
})

,

which proves the claim. �
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PROOF OFTHEOREM 6.3. From Lemma 6.4,

ψ̂n(r) = c sup
α∈[√2r,1]

α

(
1

2
− Eσ min

{
Pn�

(
f (X),σ

)
:

f ∈ F ,Pn�
(
f (X),Y

) ≤ 2r

α2

})
+ 26x

n
.

Fix a realization of theσi . It is easy to see that whenµ ≥ 0, eachf for which
Pn�(f (X),Y ) ≤ 2r/α2 satisfies

Pn�
(
f (X),σ

) ≥ Pn�
(
f (X),σ

) + µ

(
Pn�

(
f (X),Y

) − 2r

α2

)
.

Let L(f,µ) denote the right-hand side and letg(µ) = minf ∈F L(f,µ). Then

min
{
Pn�

(
f (X),σ

)
:f ∈ F ,Pn�

(
f (X),Y

) ≤ 2r/α2} ≥ g(µ).

But, using the fact that�(y, ŷ) = (1− yŷ)/2,

g(µ) = min
f ∈F

1

n

n∑
i=1

(
�
(
f (Xi), σi

) + µ�
(
f (Xi), Yi

)) − 2r

α2

= min
f ∈F

1

n

n∑
i=1

(
1− f (Xi)σi

2
+ µ

1− f (Xi)Yi

2

)
− 2r

α2

= min
f ∈F

1

n

n∑
i=1

(
|σi + µYi |1− f (Xi)sign(σi + µYi)

2
− |σi + µYi |

2

)

+ 1+ µ

2
− 2r

α2

= min
f ∈F

1

n

n∑
i=1

|σi + µYi |�(
f (Xi),sign(σi + µYi)

)

− 1

2n

n∑
i=1

|σi + µYi | + 1+ µ

2
− 2r

α2 .

Substituting gives the result.�

6.3. Local Rademacher complexities for kernel classes. One case in which the
functionsψ andψ̂n can be computed explicitly is whenF is a kernel class, that
is, the unit ball in the reproducing kernel Hilbert space associated with a positive
definite kernelk. Observe that in this caseF is a convex and symmetric set.

Let k be a positive definite function onX, that is, a symmetric function such
that for alln ≥ 1,

∀x1, . . . , xn ∈ X, ∀α1, . . . , αn ∈ R

n∑
i,j=1

αiαjk(xi, xj ) ≥ 0.
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Recall the main properties of reproducing kernel Hilbert spaces that we require:

(a) The reproducing kernel Hilbert space associated withk is the unique Hilbert
spaceH of functions onX such that for allf ∈ F and allx ∈ X, k(x, ·) ∈ H and

f (x) = 〈f, k(x, ·)〉.(6.1)

(b) H can be constructed as the completion of the linear span of the
functionsk(x, ·) for x ∈ X, endowed with the inner product〈

n∑
i=1

αik(xi, ·),
m∑

j=1

βjk(yj , ·)
〉

=
n,m∑

i,j=1

αiβjk(xi, yj ).

We use‖ · ‖ to denote the norm inH .
One method for regression consists of solving the following least squares

problem in the unit ball ofH :

min
f ∈H : ‖f ‖≤1

1

n

n∑
i=1

(
f (Xi) − Yi

)2
.

Notice that considering a ball of some other radius is equivalent to rescaling the
class. We are thus interested in computing the localized Rademacher averages of
the class of functions

F = {f ∈ H :‖f ‖ ≤ 1}.
Assume thatEk(X,X) < ∞ and defineT :L2(P ) → L2(P ) as the integral

operator associated withk and P , that is, Tf (·) = ∫
k(·, y)f (y) dP (y). It is

possible to show thatT is a positive semidefinite trace-class operator. Let(λi)
∞
i=1

be its eigenvalues, arranged in a nonincreasing order. Also, given an i.i.d. sample
X1, . . . ,Xn from P , consider the normalized Gram matrix (orkernel matrix)
T̂n defined asT̂n = 1

n
(k(Xi,Xj ))i,j=1,...,n. Let (λ̂i)

n
i=1 be its eigenvalues, arranged

in a nonincreasing order.
The following result was proved in [24].

THEOREM 6.5. For every r > 0,

ERn{f ∈ F :Pf 2 ≤ r} ≤
(

2

n

∞∑
i=1

min{r, λi}
)1/2

.

Moreover, there exists an absolute constant c such that if λ1 ≥ 1/n, then for every
r ≥ 1/n,

ERn{f ∈ F :Pf 2 ≤ r} ≥ c

(
1

n

∞∑
i=1

min{r, λi}
)1/2

.

The following lemma is a data-dependent version.
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LEMMA 6.6. For every r > 0,

EσRn{f ∈ F :Pnf
2 ≤ r} ≤

(
2

n

n∑
i=1

min{r, λ̂i}
)1/2

.

The proof of this result can be found in Appendix A.2. The fact that we have
replacedPf 2 by Pnf

2 and conditioned on the data yields a result that involves
only the eigenvalues of the empirical Gram matrix.

We can now state a consequence of Theorem 5.4 for the proposed regression
algorithm on the unit ball ofH .

COROLLARY 6.7. Assume that supx∈X k(x, x) ≤ 1. Let F = {f ∈ H :
‖f ‖ ≤ 1} and let � be a loss function satisfying conditions 1–3. Let f̂ be any
element of F satisfying Pn�f̂

= inff ∈F Pn�f .
There exists a constant c depending only on L and B such that with probability

at least 1− 6e−x ,

P(�
f̂

− �f ∗) ≤ c

(
r̂∗ + x

n

)
,

where

r̂∗ ≤ min
0≤h≤n

(
h

n
+

√√√√1

n

∑
i>h

λ̂i

)
.

We observe that̂r∗ is at most of order 1/
√

n (if we takeh = 0), but can be of
order logn/n if the eigenvalues of̂Tn decay exponentially quickly.

In addition, the eigenvalues of the Gram matrix are not hard to compute, so that
the above result can suggest an implementable heuristic for choosing the kernelk

from the data. The issue of the choice of the kernel is being intensively studied in
the machine learning community.

PROOF. Because of the symmetry of theσi and becauseF is convex and
symmetric,

EσRn{f ∈ F :Pn(f − f̂ )2 ≤ c3r} = EσRn{f − f̂ :f ∈ F ,Pn(f − f̂ )2 ≤ c3r}
≤ EσRn{f − g :f,g ∈ F ,Pn(f − g)2 ≤ c3r}
= 2EσRn{f :f ∈ F ,Pnf

2 ≤ c3r/4}.
Combining with Lemma 6.6 gives

2c1EσRn{f ∈ F :Pn(f − f̂ )2 ≤ c3r} + (c2 + 2)x

n

≤ 4c1

(
2

n

n∑
i=1

min
{
c3r

4
, λ̂i

})1/2

+ (c2 + 2)x

n
.
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Let ψ̂n(r) denote the right-hand side. Notice thatψ̂n is a sub-root function, so the
estimate of Theorem 5.4 can be applied. To compute the fixed point ofBψ̂n, first
notice that adding a constanta to a sub-root function can increase its fixed point
by at most 2a. Thus, it suffices to show that

r ≤ 4c1

(
2

n

n∑
i=1

min
{
c3r

4
, λ̂i

})1/2

implies

r ≤ c min
0≤h≤n

(
h

n
+

√√√√1

n

∑
i>h

λ̂i

)
(6.2)

for some universal constantc. Under this hypothesis,(
r

4c1

)2

≤ 2

n

n∑
i=1

min
{
c3r

4
, λ̂i

}

= 2

n
min

S⊆{1,...,n}

(∑
i∈S

c3r

4
+ ∑

i /∈S

λ̂i

)

= 2

n
min

0≤h≤n

(
c3hr

4
+ ∑

i>h

λ̂i

)
.

Solving the quadratic inequality for each value ofh gives (6.2). �

APPENDIX

A.1. Additional material. This section contains a collection of results that is
needed in the proofs. Most of them are classical or easy to derive from classical
results. We present proofs for the sake of completeness.

Recall the following improvement of Rio’s [29] version of Talagrand’s concen-
tration inequality, which is due to Bousquet [7, 8].

THEOREM A.1. Let c > 0, let Xi be independent random variables distrib-
uted according to P and let F be a set of functions from X to R. Assume that all
functions f in F satisfy Ef = 0 and ‖f ‖∞ ≤ c.

Let σ be a positive real number such that σ 2 ≥ supf ∈F Var[f (Xi)]. Then, for
any x ≥ 0,

Pr(Z ≥ EZ + x) ≤ exp
(
−vh

(
x

cv

))
,

where Z = supf ∈F
∑n

i=1 f (Xi), h(x) = (1 + x) log(1 + x) − x and v = nσ 2 +
2cEZ. Also, with probability at least 1− e−x ,

Z ≤ EZ + √
2xv + cx

3
.
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In a similar way one can obtain a concentration result for the Rademacher
averages of a class (using the result of [5]; see also [6]). In order to obtain the
appropriate constants, notice that

Eσ sup
f ∈F

n∑
i=1

σif (Xi) = Eσ sup
f ∈F

n∑
i=1

σi

(
f (Xi) − (b − a)/2

)
and|f − (b − a)/2| ≤ (b − a)/2.

THEOREM A.2. Let F be a class of functions that map X into [a, b]. Let

Z = Eσ sup
f ∈F

n∑
i=1

σif (Xi) = nEσRnF .

Then for all x ≥ 0,

Pr
(
Z ≥ EZ + √

(b − a)xEZ + (b − a)x

6

)
≤ e−x

and

Pr
(
Z ≤ EZ − √

(b − a)xEZ
) ≤ e−x.

LEMMA A.3. For u, v ≥ 0,
√

u + v ≤ √
u + √

v,

and for any α > 0,

2
√

uv ≤ αu + v

α
.

LEMMA A.4. Fix x > 0, and let F be a class of functions with ranges
in [a, b]. Then, with probability at least 1− e−x ,

ERnF ≤ inf
α∈(0,1)

(
1

1− α
EσRnF + (b − a)x

4nα(1− α)

)
.

Also, with probability at least 1− e−x ,

EσRnF ≤ inf
α>0

(
(1+ α)ERnF + (b − a)x

2n

(
1

2α
+ 1

3

))
.

PROOF. The second inequality of Theorem A.2 and Lemma A.3 imply that
with probability at least 1− e−x ,

ERnF ≤ EσRnF +
√

(b − a)x

n
ERnF

≤ EσRnF + αERnF + (b − a)x

4nα
,
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and the first claim of the lemma follows. The proof of the second claim is similar,
but uses the first inequality of Theorem A.2.�

A standard fact is that the expected deviation of the empirical means from the
actual ones can be controlled by the Rademacher averages of the class.

LEMMA A.5. For any class of functions F ,

max
(

E sup
f ∈F

(Pf − Pnf ),E sup
f ∈F

(Pnf − Pf )

)
≤ 2ERnF .

PROOF. Let X′
1, . . . ,X

′
n be an independent copy ofX1, . . . ,Xn, and setP ′

n

to be the empirical measure supported onX′
1, . . . ,X

′
n. By the convexity of the

supremum and by symmetry,

E sup
f ∈F

(Pf − Pnf ) = E sup
f ∈F

(EP ′
nf − Pnf )

≤ E sup
f ∈F

(P ′
nf − Pnf )

= 1

n
E sup

f ∈F

[
n∑

i=1

σif (X′
i ) − σif (Xi)

]

≤ 1

n
E sup

f ∈F

n∑
i=1

σif (X′
i) + 1

n
E sup

f ∈F

n∑
i=1

−σif (Xi)

= 2E sup
f ∈F

Rnf .

Using an identical argument, the same holds forPnf − Pf . �

In addition, recall the following contraction property, which is due to Ledoux
and Talagrand [17].

THEOREMA.6. Let φ be a contraction, that is, |φ(x)−φ(y)| ≤ |x−y|. Then,
for every class F ,

EσRnφ ◦ F ≤ EσRnF ,

where φ ◦ F := {φ ◦ f :f ∈ F }.

The interested reader may find some additional useful properties of the
Rademacher averages in [3, 27].
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A.2. Proofs.

PROOF OF THEOREM 2.1. Define V + = supf ∈F (Pf − Pnf ). Since
supf ∈F Var[f (Xi)] ≤ r , and‖f −Pf ‖∞ ≤ b−a, Theorem A.1 implies that, with
probability at least 1− e−x ,

V + ≤ EV + +
√

2xr

n
+ 4x(b − a)EV +

n
+ (b − a)x

3n
.

Thus by Lemma A.3, with probability at least 1− e−x ,

V + ≤ inf
α>0

(
(1+ α)EV + +

√
2rx

n
+ (b − a)

(
1

3
+ 1

α

)
x

n

)
.

Applying Lemma A.5 gives the first assertion of Theorem 2.1. The second part
of the theorem follows by combining the first one and Lemma A.4, and noticing
that infα f (α) + infα g(α) ≤ infα(f (α) + g(α)). Finally, the fact that the same
results hold for supf ∈F (Pnf − Pf ) can be easily obtained by applying the above
reasoning to the class−F = {−f :f ∈ F } and noticing that the Rademacher
averages of−F andF are identical. �

PROOF OFLEMMA 3.2. To prove the continuity ofψ , letx > y > 0, and note
that sinceψ is nondecreasing,|ψ(x) − ψ(y)| = ψ(x) − ψ(y). From the fact that
ψ(r)/

√
r is nonincreasing it follows thatψ(x)/

√
y ≤ √

xψ(y)/y, and thus

ψ(x) − ψ(y) = √
y

ψ(x)√
y

− ψ(y) ≤ ψ(y)

√
x − √

y√
y

.

Letting x tend toy, |ψ(x) − ψ(y)| tends to 0, andψ is left-continuous aty.
A similar argument shows the right-sided continuity ofψ .

As for the second part of the claim, note thatψ(x)/x is nonnegative and
continuous on(0,∞), and since 1/

√
x is strictly decreasing on(0,∞), then

ψ(x)/x is also strictly decreasing.
Observe that ifψ(x)/x is always larger than 1 on(0,∞), then limx→∞ ψ(x)/√
x = ∞, which is impossible. On the other hand, ifψ(x)/x < 1 on (0,∞),

then limx→0 ψ(x)/
√

x = 0, contrary to the assumption thatψ is nontrivial. Thus
the equationψ(r)/r = 1 has a positive solution and this solution is unique by
monotonicity.

Finally, if for some r > 0, r ≥ ψ(r), then ψ(t)/t ≤ 1 for all t ≥ r [since
ψ(x)/x is nonincreasing] and thusr∗ ≤ r . The other direction follows in a similar
manner. �

PROOF OF LEMMA 3.4. Observe that, by symmetry of the Rademacher
random variables, one hasψ(r) = EσRn{f − f̂ :f ∈ F , T (f − f̂ ) ≤ r} so that,
by translating the class, it suffices to consider the case wheref̂ = 0.
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Note thatψ is nonnegative, since by Jensen’s inequality

Eσ sup
f ∈F

Rnf ≥ sup
f ∈F

EσRnf = 0.

Moreover,ψ is nondecreasing since{f ∈ F :T (f ) ≤ r} ⊂ {f ∈ F :T (f ) ≤ r ′}
for r ≤ r ′. It remains to show that for any 0< r1 ≤ r2, ψ(r1) ≥ √

r1/r2 · ψ(r2). To
this end, fix any sample and any realization of the Rademacher random variables,
and setf0 to be a function for which

sup
f ∈F ,T (f )≤r2

n∑
i=1

σif (xi)

is attained (if the supremum is not attained only a slight modification is required).
Since T (f0) ≤ r2, then T (

√
r1/r2 · f0) ≤ r1 by assumption. Furthermore,

sinceF is star-shaped, the function
√

r1/r2f0 belongs toF and satisfies that
T (

√
r1/r2f0) ≤ r1. Hence

sup
f ∈F : T (f )≤r1

n∑
i=1

σif (xi) ≥
n∑

i=1

σi

√
r1

r2
· f0(xi)

=
√

r1

r2
sup

f ∈F : T (f )≤r2

n∑
i=1

σif (xi),

and the result follows by taking expectations with respect to the Rademacher
random variables. �

PROOF OF COROLLARY 3.7. The proof uses the following result of [11],
which relates the empirical Rademacher averages to the empiricalL2 entropy of
the class. The covering numberN (ε,F ,L2(Pn)) is the cardinality of the smallest
subsetF̂ of L2(Pn) for which every element ofF is within ε of some element
of F̂ .

THEOREM A.7 ([11]). There exists an absolute constant C such that for every
class F and every X1, . . . ,Xn ∈ X,

EσRnF ≤ C√
n

∫ ∞
0

√
logN

(
ε,F ,L2(Pn)

)
dε.

Define the sub-root function

ψ(r) = 10ERn{f ∈ star(F ,0) :Pf 2 ≤ r} + 11 logn

n
.

If r ≥ ψ(r), then Corollary 2.2 implies that, with probability at least 1− 1/n,

{f ∈ star(F ,0) :Pf 2 ≤ r} ⊆ {f ∈ star(F ,0) :Pnf
2 ≤ 2r},
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and thus

ERn{f ∈ star(F ,0) :Pf 2 ≤ r} ≤ ERn{f ∈ star(F ,0) :Pnf
2 ≤ 2r} + 1

n
.

It follows thatr∗ = ψ(r∗) satisfies

r∗ ≤ 10ERn{f ∈ star(F ,0) :Pnf
2 ≤ 2r∗} + 1+ 11 logn

n
.(A.1)

But Theorem A.7 shows that

ERn{f ∈ star(F ,0) :Pnf
2 ≤ 2r∗}

≤ C√
n

E

∫ √
2r∗

0

√
logN

(
ε,star(F ,0),L2(Pn)

)
dε.

It is easy to see that we can construct anε-cover for star(F ,0) using anε/2-cover
for F and anε/2-cover for the interval[0,1], which implies

logN
(
ε,star(F ,0),L2(Pn)

) ≤ logN

(
ε

2
,F ,L2(Pn)

)(⌈
2

ε

⌉
+ 1

)
.

Now, recall that [14] for any probability distributionP and any classF with
VC-dimensiond < ∞,

logN

(
ε

2
,F ,L2(P )

)
≤ cd log

(
1

ε

)
.

Therefore

ERn{f ∈ star(F ,0) :Pnf
2 ≤ 2r∗} ≤

√
cd

n

∫ √
2r∗

0

√
log

(
1

ε

)
dε

≤
√

cdr∗ log(1/r∗)
n

≤
√

c

(
d2

n2 + dr∗ log(n/ed)

n

)
,

wherec represents an absolute constant whose value may change from line to line.
Substituting into (A.1) and solving forr∗ shows that

r∗ ≤ cd log(n/d)

n
,

providedn ≥ d. The result follows from Theorem 3.3.�

PROOF OF THEOREM 5.2. Let f ∗ = argminf ∈F P�f . (For simplicity,
assume that the minimum exists; if it does not, the proof is easily extended by
considering the limit of a sequence of functions with expected loss approaching
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the infimum.) Then, by definition off̂ , Pn�f̂
≤ Pn�f ∗ . Since the variance

of �f ∗(Xi, Yi) is no more than some constant timesL∗, we can apply Bernstein’s
inequality (see, e.g., [10], Theorem 8.2) to show that with probability at
least 1− e−x ,

Pn�f̂
≤ Pn�f ∗ ≤ P�f ∗ + c

(√
P�f ∗x

n
+ x

n

)
= L∗ + c

(√
L∗x
n

+ x

n

)
.

Thus, by Theorem 3.3, with probability at least 1− 2e−x ,

P�
f̂

≤ K

K − 1

(
L∗ + c

(√
L∗x
n

+ x

n

))
+ cK

(
r∗ + x

n

)
.

Setting

K − 1=
√

max(L∗, x/n)

r∗ ,

noting thatr∗ ≥ x/n and simplifying gives the first inequality. A similar argument
using Theorem 4.1 implies the second inequality.�

PROOF OFLEMMA 6.6. Introduce the operator̂Cn onH defined by

(Ĉnf )(x) = 1

n

n∑
i=1

f (Xi)k(Xi, x),

so that, using (6.1),

〈g, Ĉnf 〉 = 1

n

n∑
i=1

f (Xi)g(Xi),

and〈f, Ĉnf 〉 = Pnf
2, implying thatĈn is positive semidefinite.

Suppose thatf is an eigenfunction of̂Cn with eigenvalueλ. Then for alli

λf (Xi) = (Ĉnf )(Xi) = 1

n

n∑
j=1

f (Xj )k(Xj ,Xi).

Thus, the vector(f (X1), . . . , f (Xn)) is either zero (which implieŝCnf = 0 and
henceλ = 0) or is an eigenvector of̂Tn with eigenvalueλ. Conversely, ifT̂nv = λv

for some vectorv, then

Ĉn

(
n∑

i=1

vik(Xi, ·)
)

= 1

n

n∑
i,j=1

vik(Xi,Xj )k(Xj , ·) = λ

n

n∑
j=1

vjk(Xj , ·).

Thus, the eigenvalues of̂Tn are the same as then largest eigenvalues of̂Cn, and the
remaining eigenvalues of̂Cn are zero. Let(λ̂i) denote these eigenvalues, arranged
in a nonincreasing order.
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Let (
i)i≥1 be an orthonormal basis ofH of eigenfunctions ofĈn (such that

i is associated witĥλi ). Fix 0≤ h ≤ n and note that for anyf ∈ H

n∑
i=1

σif (Xi) =
〈
f,

n∑
i=1

σik(Xi, ·)
〉

=
〈

h∑
j=1

√
λ̂j 〈f,
j 〉
j,

h∑
j=1

1√
λ̂j

〈
n∑

i=1

σik(Xi, ·),
j

〉

j

〉

+
〈
f,

∑
j>h

〈
n∑

i=1

σik(Xi, ·),
j

〉

j

〉
.

If ‖f ‖ ≤ 1 and

r ≥ Pnf
2 = 〈f, Ĉnf 〉 = ∑

i≥1

λ̂i〈f,
i〉2,

then by the Cauchy–Schwarz inequality

n∑
i=1

σif (Xi) ≤
√√√√√r

h∑
j=1

1

λ̂j

〈
n∑

i=1

σik(Xi, ·),
j

〉2

(A.2)

+
√√√√√∑

j>h

〈
n∑

i=1

σik(Xi, ·),
j

〉2

.

Moreover,

1

n
Eσ

〈
n∑

i=1

σik(Xi, ·),
j

〉2

= 1

n
Eσ

n∑
i,�=1

σiσ�〈k(Xi, ·),
j 〉〈k(Xl, ·),
j 〉

= 1

n

n∑
i=1

〈k(Xi, ·),
j 〉2

= 〈
j, Ĉn
j 〉
= λ̂j .

Using (A.2) and Jensen’s inequality, it follows that

EσRn{f ∈ F :Pnf
2 ≤ r} ≤ 1√

n
min

0≤h≤n

{√
hr +

√√√√ n∑
j=h+1

λ̂j

}
,

which implies the result. �
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