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ESTIMATION OF A FUNCTION UNDER SHAPE RESTRICTIONS.
APPLICATIONS TO RELIABILITY
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Université de Poitiers and Université de Marne-La-Vallée

This paper deals with a nonparametric shape respecting estimation
method for U-shaped or unimodal functions. A general upper bound for the
nonasymptoticL1-risk of the estimator is given. The method is applied to
the shape respecting estimation of several classical functions, among them
typical intensity functions encountered in the reliability field. In each case, we
derive from our upper bound the spatially adaptive property of our estimator
with respect to theL1-metric: it approximately behaves as the best variable
binwidth histogram of the function under estimation.

1. Introduction. In this paper we study a data-driven nonparametric estima-
tion method for shape restricted functions. As an application of this study, we first
have in mind classical frameworks such as estimation of unimodal densities or re-
gression functions. We also place stress on building and studying shape respecting
estimators of typical intensity functions, namely the hazard rate of an absolutely
continuous distribution and the failure rate of a nonhomogeneous Poisson process,
which are key concerns in systems reliability studies: for a nonreparable system,
which is replaced by a new one after it fails, the failure behavior is modeled by
the distribution of its single lifetime, frequently specified via its hazard rate. For
reparable systems, repaired but not replaced after each failure, the failure behavior
in time can be modeled by a counting process. When repair times can be disre-
garded and the system has a large number of units, this counting process can be
approximated by a nonhomogeneous Poisson process. Such a process is totally
characterized by its cumulative intensity function or, when it exists, by its failure
rate.

Nonparametric estimation procedures have often been investigated first for
density estimation and regression and then generalized to other frameworks. The
more widely used are smoothing or projection methods with fixed parameters (see
[24] and [9] for densities and [25] for regression functions). Several estimators
of this type have been proposed and studied for the hazard rate, under censored
and uncensored schemes (see [28, 30, 33]). In other respects, Curioni [11] studies
histograms and kernel estimators of the failure rate of a nonhomogeneous Poisson
process, based on the observation of replications of the process. Even if the difficult
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problem of the choice of the smoothing parameter can be overcome by automatic
methods such as cross-validation (see [26] for density estimation, [19] and [10] in
reliability), the main handicap of those methods lies in their rigidity: they tend
to assume that the unknown function has homogeneous variation everywhere.
In other words, they are not sensitive enough to the local concentration of the
data. Such a drawback clearly appears in the problem of estimating the hazard
rate by fixed bandwidth kernel estimators: the local variance of those estimators
tends to increase towards infinity as the number of systems at risk decreases.
Obviously, these methods are totally misleading for estimating the failure rate of
a nonhomogeneous Poisson process in realistic situations, where one generally
observes a small number of replications of the failure time process on a finite
time period. Indeed, the system’s condition at timet depends on its whole history
beforet so that the situation is truly nonasymptotic. One therefore needs estimation
methods flexible enough to balance the lack of information collected by fitting the
data as well as possible, making a locally sensitive choice of the parameter. For that
purpose, variable bandwidth kernel estimators and variable binwidth histograms
have been studied, first for densities by Stone [29], and then for the hazard rate
by Müller and Wang [21, 22]. Bartoszyński, Brown, McBride and Thompson [3]
propose a variable bandwidth kernel estimator of the failure rate, based on the
observation of replications of the process. The choice of the local bandwidth is
generally done by the minimization of an asymptotic mean square error estimator.

Another way of building adaptive tools is to look for the nonparametric
maximum likelihood estimate over a restricted class of functions, under which the
likelihood is to be maximized. Contrary to kernel estimators, the construction of
these estimators does not require either a smoothing parameter or any smoothness
assumption on the unknown function and only relies on very natural shape
restrictions. Brunk [8] proposes the isotonic estimator for monotone regression
functions and Durot [14] studies its good asymptotic properties related to the
L1-metric. Such estimators for decreasing hazard rates have been put forward
by Barlow, Bartholomew, Bremner and Brunk [1] in complete life data models.
Similarly, Bartoszýnski, Brown, McBride and Thompson [3] and Barlow, Proschan
and Sheuer [2] propose the nonparametric maximum likelihood estimator for
decreasing failure rates. The shape restriction in the last two cases is very natural
since it corresponds to the observation of a system during its debugging period. For
a decreasing density, the nonparametric maximum likelihood estimate is known as
the Grenander estimator [15]. It has a very simple graphical meaning since it is the
slope of the least concave majorant of the empirical distribution function based on
a sample generated by the density under estimation. It takes the form of a variable
binwidth histogram, generating a partition which is approximately the best one in
theL1-metric sense. This property is checked by Birgé [5, 6] from a nonasymptotic
minimax risk point of view and Groeneboom [16] and Groeneboom, Hooghiemstra
and Lopuhaä [17] study its good asymptoticL1-properties. The construction of
the Grenander estimator and its properties can straightforwardly be extended to
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the case of a unimodal density with known mode. Nevertheless, a more realistic
assumption is that the mode is unknown. Actually, the nonparametric maximum
likelihood estimator does not exist any more on such a wide class. One can
solve the problem (see [31, 32]) by finding a prior estimate of the mode, but the
resulting properties rely on the choice of this estimate. In several studies, Birgé
[4, 7] proposes a totally data-driven estimation method for unimodal densities
with unknown mode: his estimator relies neither on the arbitrary choice of extra
parameters nor on any smoothness assumption on the unknown density. It still
approximately behaves as the best histogram in terms of the nonasymptotic
minimaxL1-risk, over restricted sets of unimodal densities.

Our purpose in this paper is to extend Birgé’s method to a more general
functional estimation framework. More precisely, we have in mind to define and
study estimators for positive integrable functionsg, assumed to be unimodal or
U-shaped (decreasing then increasing). The unimodal assumption is often realistic
for regression or density functions, while U-shaped hazard rate or failure rate
functions correspond to the failure behavior of a system which is observed during
its entire lifetime: after a debugging period where the number of failures tends to
decrease, the latter is stable during the exploitation period, and then turns out to
deteriorate from aging. Starting from a step function estimatorĜ of G = ∫ .

a g(t) dt

on I = [a, b], we define the shape respecting estimatorg̃ of g as the image of̂G
through some deterministic mapping. The definition of this mapping relies on a
convenient adaptation of the “Pool Adjacent Violators Algorithm” (see [1]) which
is involved in the definition of Grenander estimator.

This paper is organized as follows: in Section 2, we define and study this
mapping in a deterministic framework. The former study is applied in Section 3
to a statistical framework: we build a general upper bound for theL1-risk of
the shape respecting estimator of U-shaped or unimodal functions and investigate
conditions under which̃g behaves as a “clever” histogram, generating on its own
a partition which is optimal from anL1-risk point of view. Section 4 is devoted
to the application of our results to particular functions: we first study the shape
respecting estimator of unimodal regression and density functions. We next build
and study shape respecting estimators for a U-shaped hazard rate and a U-shaped
failure rate in realistic underinformed designs. The proofs of our results are given
in the three last sections.

2. Deterministic framework. Our general aim in this paper is to estimate a
shape restricted functiong defined on a given compact real intervalI = [a, b]. In
Section 3 we will show that we can define a shape respecting estimator ofg as
the image of a step function estimator ofG = ∫ .

a g(t) dt , through a deterministic
mapping. This section is thus devoted to the construction and the study of such a
mapping. More precisely, we are interested in mappings from the coneH(I ) of
nondecreasing, right-hand continuous with left-hand limits (cadlag) step functions
on I into particular sets of shape restricted, integrable functions onI . We focus
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here on the set of U-shaped functions and the set of unimodal functions onI ,
defined as follows:

DEFINITION 1. A functiong defined on an intervalI = [a, b] is a U-shaped
(resp. unimodal) function if there exists some numberm in I such that
g is nonincreasing (resp. nondecreasing) on[a,m] and nondecreasing (resp.
nonincreasing) on[m,b].

For the sake of simplicity, we shall restrict ourselves to the U-shaped case. The
unimodal case is briefly described in Remark 3. Moreover, we approachG by a
nondecreasing function, which implies thatg is positive, but this assumption may
probably be dropped (see Remark 5).

2.1. Construction of the mapping.Let m ∈ I be an arbitrary point. To be
clearer, we first define a mappingUm

S from H(I ) into Um
S (I ), whereUm

S (I )

is the set of U-shaped functions onI whose minimum is achieved atm (when
m coincides with one of the endpoints ofI , we get the important subsets
of nonincreasing and nondecreasing functions). This mapping generalizes the
isotonic mapping classically used in various contexts of functional estimation
under monotonicity restrictions: wheng is a decreasing function onI = [a, b],
it is defined as the slope of the least concave majorant of an approximationF of
G and can be computed using the “Pool Adjacent Violators Algorithm” (PAVA),
described in [1]. Formally, the mappingUm

S is defined as follows:

DEFINITION 2. Let I = [a, b] be a compact real interval and letm be an
arbitrary point inI . LetF ∈ H(I ). We defineUm

S (F ) as the right-hand continuous
slope of F̃ m

S , where F̃ m
S is defined on[a,m] as the least concave majorant of

the restriction ofF to [a,m] and is defined on[m,b] as the greatest convex
minorant of the restriction ofF to [m,b]. The functionF̃ m

S is called the U-shaped
regularization atm of F on I .

Let us notice that̃Fm
S is a continuous, piecewise affine function onI . We now

turn to the definition of our main mappingUS from H(I ) into US(I ), where
US(I ) = ⋃

m∈I Um
S (I ) is the set of all U-shaped functions onI . For this purpose,

we use an idea introduced by Birgé [4] in the context of the estimation of a
unimodal density. It consists in minimizing onI the functiondS defined by

dS(m) = sup
t∈I

|F(t) − F̃ m
S (t)|.

It is easy to see thatdS is a cadlag step function onI , whose discontinuity points
belong to the set of discontinuity points ofF . This property gives a sense to the
following:
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DEFINITION 3. Let F ∈ H(I ) and let m(F) denote the midpoint of the
interval where the functiondS defined above achieves its minimum. We define
the mappingUS from H(I ) into US(I ) by US(F ) = U

m(F)
S (F ).

It is worth noticing thatUS(F ) is easily computable in practice. The determi-
nation ofm(F) does not cause any trouble since we need to compare only a finite
number of regularizations. Moreover, for anym ∈ I , the regularizatioñFm

S can be
computed via the PAVA: the algorithm is applied on[a,m] to compute the least
concave majorant of the restriction ofF to [a,m], then on[m,b] to compute the
greatest convex minorant of the restriction ofF to [m,b].

2.2. AnL1-approximation upper bound.We now investigate theL1-properties
of our mapping. To fix ideas, let us take the point of view of approximation theory:
let I = [a, b] be a compact real interval and letF ∈ H(I ) be an approximation of
someG = ∫ .

a g(t) dt , whereg is a positive U-shaped function onI . ThenUS(F )

is a shape respecting approximation ofg. We seek to link theL1-approximation
quality of g by US(F ) to the properties of the underlying errorF − G. In order
to square with our stochastic framework, we will have a more general approach:
starting from someF of H(I ), we want to control theL1-distance betweenUS(F )

and any U-shaped functiong.
From now on, we will adopt the following:

NOTATION 1. (i) Let I = [a, b] denote a compact real interval, letf andg

belong toL1(I ) and letH be a subset ofL1(I ). We set

‖f − g‖ =
∫
I
|f (t) − g(t)|dt and d(f,H) = inf

h∈H
‖f − h‖.

(ii) Let π be a finite partition ofI in intervals such thatπ = ([tπk−1, t
π
k ))k∈Kπ .

Here,a = tπ0 < · · · < tπDπ = b, Kπ = {1, . . . ,Dπ } andDπ is arbitrary. We denote
by �(I) the set of all such partitions.

(iii) Let π ∈ �(I). We denote byHπ the set of cadlag step functions based
onπ (we mean cadlag step functions that are constant on every[tπk−1, t

π
k )).

With the above notation, we can state our main theorem (the proof is postponed
to Section 5):

THEOREM 1. Let I = [a, b] be a compact real interval. Let g be a U-shaped
function onI and let G = ∫ .

a g(t) dt . Let F ∈ H(I ) and let US(F ) be defined
by Definition3. SettingZ = F − G and f = US(F ), there exists some absolute
constantC ≥ 1 such that

‖f − g‖ ≤ inf
π∈�(I)

{
4d(g,Hπ) + C

∑
k∈Kπ

sup
t∈[tπk−1,t

π
k ]

|Z(t) − Z(tπk−1)|
}
.(1)

(C = 49 works.)
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2.3. Comments.

REMARK 1. Let us denote byRZ(π) the term in brackets in (1). The quantity
RZ(π) is the sum of a perturbation termd(g,Hπ), relying on the smoothness ofg,
and of a regularization term measuring the approximation error ofG both byF and
by a U-shaped regularization ofF . Theorem 1 thus stresses that the step function
US(F ) realizes over�(I) the best compromise between those two terms. Let us
notice that the perturbation term varies smoothly withπ , while the regularization
term achieves its infimum over the subset of partitions whose endpoints belong to
the set of discontinuity points ofF . Thus, the best trade-off will be reached for
such a partition.

REMARK 2. From an approximation theory point of view, such a tool, which
is able to make a sensitive choice of the image setHπ among all partitions
of I , is much more powerful than classical projection operators mapping onto
linear sets generated by a uniform partition. Indeed, letσ and π , respectively,
denote a uniform and a nonuniform partition ofI of cardinality D. Let pσg

and pπg be the orthogonal projections of some functiong on Hσ and Hπ ,
respectively. It is proved (see, e.g., [13]) that to achieve an approximation error
‖g − pσg‖ = O(D−α), one needs to impose ong smoothness conditions of
the typew(g) = O(D−α) (wherew is the continuity modulus ofg), while for
approximation bypπg, the conditions are less demanding: smoothness conditions
ong are needed only in the larger spaceLγ , γ = (α+1)−1. Typically, forg ∈ Bα

p,p

with p < 1, α = 1/p − 1, the approximation error is of orderD−α for pπg, while
for pσg one has to impose the conditiong ∈ Bα

1,1 to achieve this rate.

REMARK 3. Let us briefly describe the unimodal case. LetF ∈ Hπ and let
m ∈ I = [a, b]. Symmetrically, we can define the unimodal regularizationF̃ m

N atm
of F on I as follows: on[a,m] it is the greatest convex minorant of the restriction
of F to [a,m]; on [m,b] it is the least concave majorant of the restriction ofF

to [m,b]. We then defineUm
N (F) as its right-hand continuous slope. As̃Fm

S , the
functionF̃ m

N is piecewise affine. But whilẽFm
S is always continuous,̃Fm

N happens
to be discontinuous at the pointm wheneverF is discontinuous at this point. Next,
in order to define the shape restricting mappingUN , we minimize onI the function
dN defined by

dN(m) = sup
t∈I

|F(t) − F̃ m
N (t)|.

As shown by Birgé [7],dN is a continuous function onI and its minimum is
achieved at a unique pointm(F), which is a continuity point ofF . We thus
define the mappingUN from H(I ) into the set of unimodal functions onI by
UN(F) = U

m(F)
N (F ). The practical construction ofUN(F) is done by applying

the symmetric procedure with the PAVA, after having foundm(F). It may be
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computed numerically by using, for instance, a dichotomous algorithm, after
having found the interval where the minimum ofdN is achieved. Settingf =
UN(F), (1) holds for every unimodal functiong onI . The proof can be performed
by exchanging the roles of the intervals[a,m] and[m,b].

REMARK 4. The compactness assumption onI is made for sake of simplicity.
Actually it is sufficient to restrict oneself to intervalsI on whichG is bounded.

REMARK 5. In this paper the underlying functionF is assumed to be
nondecreasing. This means that our approximation method is applied in practice to
positive functionsg. On the other hand (see, e.g., the application to the estimation
of a regression function), one may wish to estimate a functiong that is not
positive. In such cases we will make the following conjecture:at the expense
of subsidiary technical complications, the monotonicity restriction onF can be
dropped.Checking this conjecture leads namely to show that the minimum of the
functiondS is still well defined.

3. Statistical framework. The previous results can be applied in a statistical
context to build shape respecting estimators for U-shaped or unimodal functions
g defined on a given intervalI = [a, b]. Let X be a random variable whose
law depends ong, whereg is assumed to belong toUS(I ) [resp.UN(I)]. Let
Ĝ ∈ H(I ) be an estimator ofG = ∫ .

a g(t) dt based on the observationX (e.g.,X
is a sample generated by an unknown unimodal densityg andĜ is the empirical
distribution function of the sample). We can apply the mappings previously defined
on Ĝ to build a shape respecting estimatorg̃ of g.

The aim of this section is to study the nonasymptotic properties of this estimator.
We first state in Theorem 2 a stochastic version of Theorem 1 that gives control of
theL1-risk of g̃. We next investigate some conditions of optimality of this control.

In order to be clearer, we still restrict ourselves to the U-shaped case, although
the results still hold in the unimodal case. Moreover, we use Notation 1. As a
straightforward consequence of Theorem 1, we get:

THEOREM 2. Let g be a U-shaped function onI = [a, b] and let X be a
random variable whose law depends ong. Let Ĝ ∈ H(I ) be an estimator of
G = ∫ .

a g(t) dt based onX and let US(Ĝ) be defined by Definition3. Setting
Z = Ĝ − G and g̃ = US(Ĝ), there exists some absolute constantC ≥ 1 such that

E‖g̃ − g‖ ≤ inf
π∈�(I)

RZ(π),(2)

where

RZ(π) = 4d(g,Hπ) + C
∑

k∈Kπ

E

(
sup

t∈[tπk−1,t
π
k ]

|Z(t) − Z(tπk−1)|
)
.

(C = 49 works.)
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Theorem 2 emphasizes the adaptive behavior of our tool: without advanced
knowledge ofg, it makes a sensitive choice of the partition of�(I) that minimizes
the quantityRZ(π); this quantity takes the form of a risk (it is the sum of a bias
term and of the expectation of a random error term). Asg̃ is by construction
a histogram based on a random partition, such a sensitive behavior leads us to
wonder about its quality, compared to classical histogram estimators ofg.

Histogram estimators are common tools for estimating a density functiong

defined on some intervalI : given an arbitrary partitionπ ∈ �(I), the histogram
estimator ofg based onπ is the empirical estimator of the orthogonal projection
of g onHπ . Similarly, given a general functiong and a step function estimator̂G

of G, we consider as an estimator ofg the histogram̂g π defined by

ĝ π (t) = ∑
k∈Kπ

Ĝ(tπk ) − Ĝ(tπk−1)

tπk − tπk−1
1[tπk−1,t

π
k )(t) for all t ∈ I.(3)

We now investigate conditions on̂G under which̃g turns out to do at least as well
as any variable binwidth histogram̂g π of g built from Ĝ. For that task we can
show the following result (see Section 6 for the proof ).

THEOREM 3. Let ĝ π be defined by(3). Assume that the conditions of
Theorem2 hold. Assume moreover that there exists some positive constantA such
that for all π ∈ �(I) and all k ∈ Kπ ,

E

(
sup

t∈[tπk−1,t
π
k ]

|Z(t) − Z(tπk−1)|
)

≤ AE
(|Z(tπk ) − Z(tπk−1)|

)
.(4)

Then we get for allπ ∈ �(I),

(CA + 8)−1RZ(π) ≤ E‖ĝ π − g‖ ≤ RZ(π).(5)

Moreover,

E‖g̃ − g‖ ≤ (CA + 8) inf
π∈�(I)

E‖ĝ π − g‖.(6)

The quality of estimation appears to rely on the expected variations of the process
Z = Ĝ − G on I : for sufficiently small ones,̃g generates on its own a partition
which is optimal from anL1-risk point of view. In particular, it will do better
than any variable binwidth histogram. Moreover, it is totally data-driven, which is
a serious practical advantage since it allows one to solve the problem of how to
check for the best partition. Further applications will show that the condition (4)
often holds.

REMARK 6. Theorem 2 gives control of theL1-risk of the estimator of a
U-shaped functiong with unknown minimum point. Now, suppose thatg is
U-shaped and that the location of its minimumm is known. An obvious estimator
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g̃ m of g can be obtained via the basic mappingUm
S of Definition 2 as̃g m = Um

S (Ĝ)

(when g is a decreasing density, it is merely a Grenander estimate). An upper
bound for theL1-risk of this estimator is derived in Section 5.1 as a by-product of
the proof of Theorem 1. Indeed, it follows from Lemma 1 that there exists some
absolute constantC′ such that

E‖g̃ m − g‖
(7)

≤ inf
π∈�(I)

{
4d(g,Hπ) + C′ ∑

k∈Kπ

E

(
sup

t∈[tπk−1,t
π
k ]

|Z(t) − Z(tπk−1)|
)}

.

Hence, even if the pointm is known, one does not lose much by assuming that it
is unknown and (2) is still a good control for theL1-risk of g̃ m, from a qualitative
point of view.

4. Applications. We now present examples of application of our study. We
first consider the shape respecting estimation of two classical functions: that of
a unimodal density, which allows one to recover Birgé’s results, and that of a
unimodal regression function. For this task, we use the mappingUN defined in
Remark 3. Our main focus is on the estimation of classical intensity functions
used in reliability theory, in realistic designs: for nonreparable systems, we study
the shape respecting estimator of a U-shaped hazard rate in right-censoring life
data models. In the reparable system field, we study the shape respecting estimator
of the U-shaped failure rate of a nonhomogeneous Poisson process, based on the
observation of a single process on a finite time period. Such a process is widespread
in reparable systems studies, since it models the failure behavior of a system
having a large number of units and whose repair times can be disregarded. It is
totally characterized by its failure rate. In these two last applications, the U-shaped
assumption is very natural and corresponds to the situation where a system is
observed during its entire lifetime. Moreover, the adaptivity property is particularly
important here since realistic reliability designs are often underinformed.

For each application,I = [a, b] is an interval and̂G ∈ H(I ) is an estimator
of G = ∫ .

a g(t) dt , whereg is the function under estimation. Moreover, we adopt
Notation 1 and the further:

NOTATION 2. We denote by�D(I) the subset of�(I) of partitions inD

intervals. Next, for a givenπ ∈ �(I), we call ĝ π the histogram estimator ofg,
defined by (3).

Short proofs of the results presented in the sequel are postponed to Section 7.

4.1. Estimation of a unimodal density.Let (X1, . . . ,Xn) be a sample gen-
erated by an absolutely continuous distributionG with densityg. Assume that
the restriction ofg to a given real intervalI is unimodal (I can be the real line
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here, see Remark 4). The shape respecting estimator ofg on I can be defined by
g̃ = UN(Ĝ), where

Ĝ(t) = 1

n

n∑
i=1

1Xi≤t for all t ∈ I.

As an application of Theorems 2 and 3, we get:

PROPOSITION1. There exists an absolute positive constantE such that

E‖g̃ − g‖ ≤ inf
D≤n

{
inf

π∈�D(I)
4d(g,Hπ) + E

√
D

n

}
.(8)

Moreover, there exists an absolute positive constantK such that

E‖g̃ − g‖ ≤ K inf
π∈�(I)

E‖ĝ π − g‖.(9)

Inequality (8) is similar from a qualitative point of view to Birgé’s Theorem 1 [7]
and gives an idea of how the shape respecting estimator operates: it first chooses
among theD-dimensional linear subsets of step functions the one which is closest
to the unknown functiong; it then checks the dimensionD which realizes the best
trade-off between the bias and the error terms of the estimation. Moreover, (9)
shows that the selected partition is optimal from a nonasymptoticL1-risk point of
view. This point had been investigated by Birgé from a minimax point of view,
since he showed that his estimator nearly achieves the minimax risk over the
class of unimodal densities with bounded support. We get here a result for every
unimodal density function.

4.2. Estimation of a unimodal regression function.Another classical problem
is that of the estimation of a unimodal regression function. Let us consider here
the model

Yi = g(xi) + εi, i = 1, . . . , n,

whereYi is the observation at timexi = i/n, theεi ’s are i.i.d. Gaussian centered
errors with varianceσ 2 > 0 andg is a unimodal function onI = [0,1]. We can
define the shape respecting estimator ofg by g̃ = UN(Ĝ), where

Ĝ(t) = 1

n

n∑
i=1

Yi 1xi≤t for all t ∈ [0,1].

Let us notice that̂G is not nondecreasing in general even ifg is positive. We
thus need to assume that the conjecture of Remark 5 holds in order to define and
studyg̃.
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PROPOSITION2. Assume that the conjecture of Remark5 holds. Then there
exists some positive constantE that depends only onσ and M = supt∈[0,1] g(t)

such that(8) holds. Moreover, (9) holds for some absolute positive constantK .

REMARK 7. The assumptionxi = i/n, i = 1, . . . , n, can be dropped as soon
as thexi ’s are approximately uniformly spread in[0,1]. Moreover, no particular
assumption is required on the distribution family of the errors to get (8), and the
common distribution has only to be bounded (not necessarily Gaussian) to get (9).

4.3. Estimation of a U-shaped hazard rate in right-censoring life data models.
Suppose one observesn copies of a nonreparable system in a usual right-censoring
scheme: let(T1, . . . , Tn) be the potential lifetimes of then copies, generated by
an absolutely continuous distributionF with densityf . Let (U1, . . . ,Un) be the
sample of times of censure (this means thatUj is the time beyond which thej th
copy can no longer be observed). Assume moreover that theUj ’s are independent
of theTj ’s. The random variableTj will be observed wheneverTj ≤ Uj . The set
of observable data is thus given by{

Xj = Tj ∧ Uj , δj = 1Xj=Tj
, j = 1, . . . , n

}
.

We want to estimate the hazard rateg = f/(1− F) of the system’s lifetimeT on
some compact real intervalI = [0, c], under the assumption thatg is U-shaped
on I . A shape respecting estimatorg̃ = US(Ĝ) of g on I can be derived from the
Nelson–Aalen estimator [23] of the log-survival functionG. It is defined onI by

Ĝ =
∫ .

0

dF̂ (s)

1− F̂−(s)
.

HereF̂ is the Kaplan–Meier product-limit estimator ofF [18] andF̂− is its left-
hand continuous version. We get:

PROPOSITION3. Assume thatL(c) < 1, whereL is the common distribution
function of theXj ’s. Then there exists an absolute constantC such that(8) holds
with E = C(1− F(c))−1/2.

The sensitive behavior of our tool is a serious advantage here. Indeed, one of
the typical drawbacks of hazard rate estimation methods is that the error term of
the estimation depends on a penalization factor relying on the value ofL near the
right-hand side pointc of the estimation interval, in such a way that for classical
methods such as fixed bandwidth kernels or fixed binwidth histograms, the local
error term near this point tends toward infinity. Usingg̃ minimizes the problem.
Here the penalization factor is(1 − L(c))−1/2, but the partition chosen by the
estimate will probably lead to a larger local binwidth when estimating nearc than
when estimating in the interior. Moreover, the automatic choice of the histogram
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binwidths is a serious practical advantage and its good behavior holds even for
moderate sample sizes. For all these reasons, our estimate should be preferred—at
least when the hazard rate is not known to be smooth—to data-adaptive bandwidth
kernel estimators, for which the choice of the optimal local bandwidths relies on
heavy procedures of asymptotic minimization of a mean square error estimate.

REMARK 8. The definition and properties of the shape respecting estimator
of g in complete life data models can be straightforwardly derived from the former
results, settingL = F .

4.4. Estimation of the U-shaped failure rate of a nonhomogeneous Poisson
process. Let (N(t))t≥0 be a nonhomogeneous Poisson process with mean
functionE(N(t)) = G(t). Suppose that(N(t))t≥0 describes the number of failures
in time of a reparable system. The failure rate of the process is, when it exists, the
derivativeg of G.

In the sequel, we propose to estimateg on a given finite time periodI = [0, T ],
where it is known to be U-shaped. For this task, we observe the failure times
(T1, . . . , TN(T )) falling in I of a single copy of the system. Let us define onI

g̃ = US(Ĝ) and

Ĝ(t) =
N(T )∑
k=1

1Tk≤t = N(t).

In order to describe theL1-behavior of g̃ on I , we need to use a normalized
L1-distance (which allows one to recover theL1-distance between two constant
rates onI ). We thus define for allf,g ∈ L1(I )

‖f − g‖ = 1

T

∫ T

0
|f (t) − g(t)|dt.

We can show that:

PROPOSITION4. There exists an absolute positive constantB such that

E‖g̃ − g‖ ≤ inf
D≤T

{
inf

π∈�D(I)
4d(g,Hπ) + B

√
G(T )

T

√
D

T

}
.(10)

Moreover, there exists an absolute positive constantK such that(9) holds.

The main difference between failure rate estimation and the former studied
estimation functions is that the underlying observations(T1, . . . , TN(T )) are not
i.i.d., except in the case whereg is constant. Therefore, in the realistic context of
the observation of a single system (or a small number of copies of the system),
nonadaptive methods are totally misleading. Now let us investigate in some
particular cases the quality of̃g with regard to classical estimators: in the case
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whereg ≡ λ, (10) allows one to recover the parametric rate. Indeed, the parametric
maximum likelihood estimate ofg is given in this case bŷg = N(T )/T and
satisfiesE‖ĝ−λ‖ ≤ √

λ/T , while our bound gives the same, up to a multiplicative
constant. (More generally, we find rates of orderT −1/2 wheneverg is a step
function.) Moreover, when the penalization factor

√
G(T )/T involved in (10) is

bounded, which includes nonincreasing and low nondecreasing functionsg, the
order of magnitude of the asymptotic risk will be at leastT −1/3 as for densities.
More generally, from a nonasymptotic point of view, we hope to obtain a good
estimator as soon as the penalization factor is not too large. In some cases, this
factor can be very important, in such a way that the quality of the estimate can be
quite bad, for instance for high increasing rates. (Fortunately, we are not interested
in such situations since they practically correspond to a substantial deterioration of
the system, which is retrieved as soon as possible from exploitation.) Nevertheless,
even in unfavorable situations, the locally sensitive property ofg̃ will allow one to
check break points in the slope ofg. This fact is interesting for its own sake for
trend studies.

REMARK 9. An adaptive estimator ofg has been proposed by Barlow,
Proschan and Scheuer [2] for decreasing failure rates. It is defined as the
nonparametric maximum likelihood estimator over this shape restricted class.
Although it has been used successfully in practice (it behaves reasonably well
compared with classical parametric models used in industrial reliability studies),
its properties have not been investigated so far. The shape respecting estimator we
present and study in the sequel generalizes Barlow et al.’s estimator to U-shaped
failure rates. Since a decreasingg can be seen as a degenerate U-shaped function,
with minimum point at the end of the estimation interval, it is worth noticing that
our study also applies to their estimate (see Remark 6).

5. Proof of Theorem 1. Let m be a point ofI whereg achieves its minimum.
Let F̃ m denote the U-shaped regularization ofF at m (see Definition 2) and set
f m = Um

S (F ). We shall prove the following two lemmas in Sections 5.1 and 5.2,
respectively (we use Notation 1).

LEMMA 1. There exists an absolute constantC′ ≥ 1 such that for allπ ∈
�(I),

‖f m − g‖ ≤ 4d(g,Hπ) + C′ ∑
k∈Kπ

sup
t∈[tπk−1,t

π
k ]

|Z(t) − Z(tk−1)|.(11)

LEMMA 2. We have

‖f m − f ‖ ≤ 4sup
t∈I

|Z(t)|.
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For allπ ∈ �(I) and allk, we thus get

sup
t∈[tπk−1,t

π
k ]

|Z(t)| ≤
k∑

i=1

sup
t∈[tπi−1,t

π
i ]

|Z(t) − Z(tπi−1)|,

so that

sup
t∈I

|Z(t)| ≤ ∑
k∈Kπ

sup
t∈[tπk−1,t

π
k ]

|Z(t) − Z(tπk−1)|.

Moreover,

‖f − g‖ ≤ ‖f m − g‖ + ‖f − f m‖
and Theorem 1 follows from Lemma 1 and Lemma 2 withC = C′ + 4.

5.1. Proof of Lemma1. For the sake of simplicity, we omit the subscriptπ in
Notation 1 and we adopt the following extra:

NOTATION 3. (i) For every subintervalJ of I and all functionsf and g

in L1(I ), we denote byl(J ) the length ofJ and we set

ḡ(J ) = 1

l(J )

∫
J

g(t) dt,

bg(J ) =
∫
J

|g(t) − ḡ(J )|dt and ‖f − g‖(J ) =
∫
J

|f (t) − g(t)|dt.

(ii) ∀ k ∈ K , we setIk = [tk−1, tk].

Note first that we may assume without loss of generality that there exists some
j ∈ K such thatm = tj . Indeed, assume that Lemma 1 holds over the restricted
class of partitions ofI includingm, for some absolute constantC′′. Then letπm

be a partition ofI with D + 1 endpointstmk such thattmj = m, and letπ be the
partition ofI with D endpointstk such thattk = tmk for all k < j andtk = tmk+1 for
all k ≥ j . For the term inj in (11), we get

sup
t∈Im

j

|Z(t) − Z(tmj−1)| + sup
t∈Im

j+1

|Z(t) − Z(tmj )|

≤ 2 sup
t∈Ij

|Z(t) − Z(tj−1)| + |Z(tmj ) − Z(tj−1)|

≤ 3 sup
t∈Ij

|Z(t) − Z(tj−1)|.

Moreover,

d(g,Hπm) ≤ d(g,Hπ).
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Thus, we obtain (11) over the set of all partitions ofI by adding constants
(C′ = 3C′′).

The main argument to show (11) is Proposition 1 of [5], which is the formal
translation of the PAVA. Let us recall this result:

LEMMA 3 (Birgé). Suppose that we are given a nondecreasing integrable
functionh and a nonincreasing integrable functiong on some finite intervalJ .
Then, using Notation3,

‖h̄(J ) − g‖(J ) ≤ ‖h − g‖(J )

(1) Let us first see what is happening on[a,m] in the case wherea < m. Recall
thattj = m. Fork ≤ j , defineF̃k as the least concave majorant of the restriction of
F on Ik . Next, let us defineH0 on [a,m] by H0(m) = F̃k(m) and

H0(t) = ∑
k≤j

F̃k(t)1[tk−1,tk[(t),

and leth0 be the right-hand continuous slope ofH0. Then H0 is a piecewise
affine, continuous function such that on[a,m], F ≤ H0 ≤ F̃ m. Moreover,h0 is
well defined on[a,m) and right-hand continuous. Its discontinuity points belong
to X, whereX = {x0, x1, . . . , xn} is the ordered set obtained as the union of the
set{t0, t1, . . . , tj } and that of the discontinuity points ofF . Now, for l ≥ 1, let us
defineHl andhl by iterating the following rule (we apply the PAVA toHl−1):

(a) If hl−1 is nonincreasing on[a,m), then we definehl = hl−1 andHl = Hl−1.
(b) If hl−1 is not nonincreasing on[a,m), then there exists some 0≤ i < n

such thathl−1(xi+1) > hl−1(xi). Let us define

i− = min
0≤k<n

{k :hl−1(xk+1) > hl−1(xk)}
and

i+ = min
i−<k<n

{k :hl−1(xk+1) ≤ hl−1(xk)},
where by convention, inf∅ = m. Then defineHl such thatHl = Hl−1 on [a, xi−] ∪
[xi+,m] andHl is affine on[xi−, xi+]. SinceHl is a piecewise affine, continuous
function on[a,m], we can define its right-hand continuous slopehl . We thus get

hl = hl−1 on J̄ = [a, xi−) ∪ [xi+,m),

hl = h̄l−1(J ) onJ = [xi−, xi+).

For all l ≥ 1, the functionHl is piecewise affine, continuous andF ≤ Hl−1 ≤
Hl ≤ F̃ m on [a,m]. The functionhl is a cadlag step function on[a,m) with
discontinuity points inX. Moreover, using Lemma 3, we get‖hl − g‖([a,m)) ≤
‖hl−1 − g‖([a,m)). Therefore,‖hl − g‖([a,m)) ≤ ‖h0 − g‖([a,m)).
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Within a finite number of iterations, we getHl = Hl−1 andhl = hl−1. Let l0 +1
be the first step where it happens. Thenhl0 is a nonincreasing function, soHl0 is
concave. By definition of̃Fm, we thus getHl0 ≥ F̃ m and thus,Hl0 = F̃ m on[a,m].
Therefore,hl0 = f m on [a,m). Finally,

‖f m − g‖([a,m)) ≤ ‖h0 − g‖([a,m)).(12)

(2) Let us now see what is happening on[m,b] in the case wherem ≤ b. The
same holds if we replaceF by its left-hand continuous versionF− on (m,b],
setting moreoverF−(m) = F(m). Let us defineH0 on [m,b] as the piecewise
affine, continuous function such that on eachIk , k > j , H0 is the greatest convex
minorant of the restriction ofF− to Ik . Let h0 be its right-hand continuous slope.
We iterate the symmetric rule: ifh0 is not nondecreasing, let[xi−, xi+) be the
first interval on which it happens. On this interval, we replaceh0 by its mean
andH0 by an affine function. We iterate this rule until we obtain a nondecreasing
functionhl0. We can check thathl0 = f m on [m,b) and that‖hl0 − g‖([m,b)) ≤
‖h0 − g‖([m,b)). Thus,

‖f m − g‖([m,b)) ≤ ‖h0 − g‖([m,b)).(13)

By summation of (12) and (13), we get

‖f m − g‖ ≤ ‖h0 − g‖.(14)

Now, by a straightforward decomposition, we get on eachIk

‖h0 − g‖(Ik) ≤ bh0(Ik) + |h̄0(Ik) − ḡ(Ik)|l(Ik) + bg(Ik).(15)

(3) Let k ≤ j ; by definition of H0, we getH0(tk) = F(tk) and H0(tk−1) =
F(tk−1). Therefore,

|h̄0(Ik) − ḡ(Ik)|l(Ik) = |Z(tk) − Z(tk−1)| ≤ sup
t∈Ik

|Z(t) − Z(tk−1)|.(16)

To compute the first term at the right-hand side of (15), we will use the following
result (see Section 5.3 for the proof ):

LEMMA 4. Let h be a nonincreasing function onJ = [t0, t1]. Let H =∫ .
t0

h(t) dt . Then, using Notation3,

bh(J ) = 2sup
t∈J

(
H(t) − H(t0) − (t − t0)h̄(J )

)
.

We apply Lemma 4 to the nonincreasing functionh0 on Ik . SinceH0(tk−1) =
F(tk−1), H0(tk) = F(tk) andH0 ≥ F on Ik , we get

bh0(Ik) ≥ 2 sup
t∈Ik

(
F(t) − F(tk−1) − t − tk−1

l(Ik)

(
F(tk) − F(tk−1)

))
.(17)
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But the restriction ofH0 to Ik is a function whose slope can only change at the
discontinuity points ofF whereH0 hits F , so that the supremum in Lemma 4 is
achieved at such points. Let us call this setY . We get

bh0(Ik) = 2sup
t∈Y

(
F(t) − F(tk−1) − t − tk−1

l(Ik)

(
F(tk) − F(tk−1)

))
.(18)

Equations (17) and (18) yield

bh0(Ik) = 2 sup
t∈Ik

(
F(t) − F(tk−1) − t − tk−1

l(Ik)

(
F(tk) − F(tk−1)

))
.(19)

A last decomposition of the right-hand side of (19), using the concavity ofG, gives

bh0(Ik) ≤ 4 sup
t∈Ik

|Z(t) − Z(tk−1)| + 2 sup
t∈Ik

(
G(t) − G(tk−1) − (t − tk−1)ḡ(Ik)

)
.

Finally, applying Lemma 4 tog, we get

bh0(Ik) ≤ 4 sup
t∈Ik

|Z(t) − Z(tk−1)| + bg(Ik).(20)

Replacing (16) and (20) in (15) leads to

‖h0 − g‖(Ik) ≤ 5 sup
t∈Ik

|Z(t) − Z(tk−1)| + 2bg(Ik).(21)

(4) Let k > j ; by definition ofH0, we getH0(tk−1) = F−(tk−1) andH0(tk) =
F−(tk). SettingZ− = F− − G, the second term on the right-hand side of (15)
gives

|h̄0(Ik) − ḡ(Ik)|l(Ik)

= |Z−(tk) − Z−(tk−1)|
(22)

≤ |Z−(tk) − Z(tk−1) + Z(tk−1) − Z(tk−2) + Z(tk−2) − Z−(tk−1)|
≤ sup

t∈Ik

|Z(t) − Z(tk−1)| + 2 sup
t∈Ik−1

|Z(t) − Z(tk−2)|.

To compute the first term on the right-hand side of (15), we apply Lemma 4 to the
right-hand continuous nonincreasing function−h0 on Ik ,

bh0(Ik) = 2 sup
t∈Ik

(
H0(tk−1) − H0(t) + (t − tk−1)h̄0(Ik)

)
.

By construction,H0(tk−1) = F−(tk−1), H0(tk) = F−(tk) andH0 ≤ F− on Ik . On
the other hand, the slope ofH0 on Ik can only change at the discontinuity points
of F− such thatF−(t) = H0(t). Thus, using the same scheme as for (19), we get

bh0(Ik) = 2 sup
t∈Ik

(
F−(tk−1) − F−(t) + t − tk−1

l(Ik)

(
F−(tk) − F−(tk−1)

))
.
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Let (yj , yj+1] be thej th interval inIk on whichF− is continuous. Then

bh0(Ik) = 2sup
j

sup
(yj ,yj+1]

(
F−(tk−1) − F−(t) + t − tk−1

l(Ik)

(
F−(tk) − F−(tk−1)

))
.

By continuity, the supremum on(yj , yj+1] equals the supremum on the open
interval(yj , yj+1), on whichF− = F . Therefore,

bh0(Ik) = 2sup
j

sup
(yj ,yj+1)

(
F−(tk−1) − F(t) + t − tk−1

l(Ik)

(
F−(tk) − F−(tk−1)

))

= 2 sup
t∈Ik

(
F−(tk−1) − F(t) + t − tk−1

l(Ik)

(
F−(tk) − F−(tk−1)

))
.

A straightforward decomposition using Lemma 4 yields

bh0(Ik) ≤ 2 sup
t∈Ik

|Z−(tk−1) − Z(t)| + 2|Z−(tk) − Z−(tk−1)| + bg(Ik).

Finally,

bh0(Ik) ≤ 4 sup
t∈Ik

|Z(t) − Z(tk−1)| + 8 sup
t∈Ik−1

|Z(t) − Z(tk−2)| + bg(Ik).(23)

Replacing (22) and (23) in (15) leads to

‖h0 − g‖(Ik) ≤ 5 sup
t∈Ik

|Z(t) − Z(tk−1)| + 10 sup
t∈Ik−1

|Z(t) − Z(tk−2)| + 2bg(Ik)

for all k > j . By (21) this inequality holds for allk ∈ K , and by summation

‖h0 − g‖ ≤ ∑
k∈K

[
15 sup

t∈Ik

|Z(t) − Z(tk−1)| + 2bg(Ik)

]
.(24)

Now letpπg denote theL2-orthogonal projection ofg onHπ , that is,

pπg(t) = ∑
k∈K

ḡ(Ik)1[tk−1,tk)(t) for all t ∈ I.(25)

We get ∑
k∈K

bg(Ik) = ‖pπg − g‖.

Settingh ∈ Hπ and withpπh its L2-orthogonal projection onHπ , we thus get
pπh = h and then

‖pπg − g‖ ≤ 2‖g − h‖.(26)

Therefore, ∑
k∈K

bg(Ik) ≤ 2d(g,Hπ).(27)

Substituting (27) in (24) completes the proof of Lemma 1, since we have (14), and
C′ = 45 works.
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5.2. Proof of Lemma2. The key arguments here are Marshall’s lemma (see,
e.g., [1]) and the following lemma (the proof of this lemma is omitted since it can
be presented in the same way as that of Lemma 1 of [4]):

LEMMA 5. LetF ∈ H(I ) and letF̃ r andF̃ s be the U-shaped regularizations
of F on I at r and s, respectively, with r < s. Let f r andf s be their right-hand
continuous slopes. Then

‖f r − f s‖ = 2max
{

sup
r≤t≤s

(
F(t) − F̃ r (t)

)
, sup
r≤t≤s

(
F̃ s(t) − F(t)

)}
.

Let m(F) be the point inI such thatf = U
m(F)
S (F ). By Lemma 5 we get

‖f m − f ‖ ≤ 2max
{

sup
t∈I

|F(t) − F̃ m(t)|,sup
t∈I

∣∣F(t) − F̃ m(F)(t)
∣∣}.

By definition ofm(F)

sup
t∈I

∣∣F(t) − F̃ m(F)(t)
∣∣ ≤ sup

t∈I

|F(t) − F̃ m(t)|,
and therefore

‖f m − f ‖ ≤ 2sup
t∈I

|F(t) − G(t)| + 2sup
t∈I

|G(t) − F̃ m(t)|.(28)

For the last term on the right-hand side of (28), we have

2sup
t∈I

|G(t) − F̃ m(t)| = 2max
{

sup
t≤m

|G(t) − F̃ m(t)|, sup
t>m

|G(t) − F̃ m(t)|
}
,(29)

so by Marshall’s lemma,

2sup
t∈I

|G(t) − F̃ m(t)| ≤ 2max
{

sup
t≤m

|G(t) − F(t)|, sup
t>m

|G(t) − F(t)|
}

(30)

≤ 2sup
t∈I

|F(t) − G(t)|.
Substituting (30) in (28) leads to Lemma 2.

5.3. Proof of Lemma4. Let u be the function defined onJ by u = h − h̄(J )

and letU be defined onJ by

U(t) =
∫ t

t0

u(x) dx = H(t) − H(t0) − (t − t0)h̄(J ).

Thenu(t0) ≥ 0 andu(t1) ≤ 0, so that there exists somec ∈ J whereU achieves
its maximum. Moreover,u is nonnegative beforec and nonpositive afterc. Since
U(t1) = 0, we thus get

bh(J ) =
∫
J

|u(t)|dt =
∫ c

t0

u(t) dt −
∫ t1

c
u(t) dt = 2sup

t∈J

U(t),

which proves the lemma.
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6. Proof of Theorem 3. In the sequel we adopt the convention and notation
used in Section 5.

Let π ∈ �(I) and letpπg be theL2-orthogonal projection ofg onHπ , defined
by (25). To perform the right-hand side inequality of (5), we can write

‖ĝ π − g‖ = ∑
k∈K

∫
Ik

|g(t) − pπg(t) + pπg(t) − ĝ π (t)|dt

≤ ∑
k∈K

∫
Ik

|g(t) − pπg(t)|dt + ∑
k∈K

∫
Ik

|pπg(t) − ĝ π (t)|dt

≤ ‖pπg − g‖ + ∑
k∈K

|Z(tk) − Z(tk−1)|

≤ 2d(g,Hπ) + ∑
k∈K

sup
t∈Ik

|Z(t) − Z(tk−1)|.

The last control of‖pπg − g‖ arises from (26). We get the result by a last obvious
majorization (C ≥ 1). Let us now prove the left-hand side inequality of (5). We get

‖ĝ π − g‖ ≥ ∑
k∈K

∣∣∣∣ ∫
Ik

(
g(t) − pπg(t) + pπg(t) − ĝ π (t)

)
dt

∣∣∣∣
= ∑

k∈K

∣∣∣∣ ∫
Ik

(
pπg(t) − ĝ π (t)

)
dt

∣∣∣∣(31)

= ∑
k∈K

|Z(tk) − Z(tk−1)|.

On the other hand, by the triangle inequality,

‖ĝ π − g‖ ≥ ‖g − pπg‖ − ‖ĝ π − pπg‖
(32)

= ‖g − pπg‖ − ∑
k∈K

|Z(tk) − Z(tk−1)|.

Multiplying (31) by (CA + 4) and (33) by 4, and summing the so-obtained
inequalities, we get, sincepπg ∈ Hπ ,

(CA + 8)‖ĝπ − g‖ ≥ 4‖g − pπg‖ + CA
∑
k∈K

|Z(tk) − Z(tk−1)|

≥ 4d(g,Hπ) + CA
∑
k∈K

|Z(tk) − Z(tk−1)|.

Therefore, taking the expectations, we get that when condition (4) holds,

RZ(π) ≤ 4d(g,Hπ) + CA
∑
k∈K

E|Z(tk) − Z(tk−1)|

≤ (CA + 8)E‖ĝπ − g‖.
Relation (6) is straightforwardly derived from the last inequality and Theorem 2.
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7. Short proofs for Propositions 1–4. Let us setZ = Ĝ − G. For each
proposition, the proof follows the same scheme: to show (8) [resp. (10)], one needs
to control the error termRZ(π) in Theorem 2, for allπ ∈ �(I). For this purpose
we fix a partitionπ in �D(I), D ≤ n (resp.D ≤ T ), and we use the same notation
as in the former section, setting moreoverG(Ik) = G(tk)−G(tk−1). We then show
that there exists someC′ such that

D∑
k=1

E

(
sup
t∈Ik

|Z(t) − Z(tk−1)|
)

≤ C′
√

D

n
,(33)

respectively

1

T

D∑
k=1

E

(
sup
t∈Ik

|Z(t) − Z(tk−1)|
)

≤ 2

√
D

T

√
G(T )

T
.

Therefore, we get the result applying Theorem 2 withE = CC′ (resp.B = 2C).
Next, to show (9), one needs to check condition (4) in Theorem 3, for allπ ∈ �(I).

PROOF OF PROPOSITION 1. To prove (33), let us callF the common
conditional distribution function of theXi ’s given that Xi ∈ Ik . Let N =∑n

i=1 1Xi∈Ik
be the number of observations falling inIk and letF̂N be the empirical

distribution ofN observations falling inIk . We get for allt ∈ Ik ,

F(t) = G(t) − G(tk−1)

G(Ik)
and F̂N(t) = n

N

(
Ĝ(t) − Ĝ(tk−1)

)
.

Therefore,

E

(
sup
t∈Ik

|Ẑ(t) − Ẑ(tk−1)|
)

(34)

≤ E

(
sup
t∈Ik

N

n
|F̂N(t) − F(t)|

)
+ E

∣∣∣∣Nn − G(Ik)

∣∣∣∣.
For the first term on the right-hand side of (34), an upper bound can be derived
applying Massart’s inequality [20] toF on Ik ,

P

(
sup
t∈Ik

|F̂N(t) − F(t)| > λ|N
)

≤ 2e−2Nλ2 ∀λ > 0.

Integrating the latter inequality leads to

E

(
sup
t∈Ik

N

n
|F̂N(t) − F(t)|

)
≤ √

π/2E

(√
N

n

)
.(35)

A last control of (35) can be performed by the Cauchy–Schwarz’s inequality,
leading to

E

(
sup
t∈Ik

N

n
|F̂N(t) − F(t)|

)
≤

√
π

2

√
G(Ik)

n
.
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On the other hand, the second term on the right-hand side of (34) can be bounded
by the Cauchy–Schwarz’s inequality applied toN ∼ B(n,G(Ik)). We thus obtain

E

(
sup
t∈Ik

|Z(t) − Z(tk−1)|
)

≤
(

1+
√

π

2

)√
G(Ik)

n
.(36)

We then obtain (33), since

D∑
k=1

√
G(Ik)

n
≤

√
D

n
.

To prove (9), one needs to sharpen the bound (36): actually, it gives the right
order of magnitude of the supremum on eachIk such thatG(Ik) ≥ 1/n, but it is
too crude whenG(Ik) ≤ 1/n. BothĜ andG are monotone, so that for allk,

E

(
sup
t∈Ik

|Ẑ(t) − Ẑ(tk−1)|
)

≤ 2G(Ik).

Combining this inequality with (36) yields

E

(
sup
t∈Ik

|Z(t) − Z(tk−1)|
)

≤ min

{
2G(Ik),

(
1+ √

π/2
)√G(Ik)

n

}
.

On the other hand, by a lemma of Devroye and Györfi (see [12], page 25),

E|Z(tk) − Z(tk−1)| ≥ min

{
0.13G(Ik),0.36

√
G(Ik)

n

}
,(37)

so there exists an absolute constantA such that (4) holds. �

PROOF OFPROPOSITION2. Let H andB be the processes defined on[0,1]
by H = E(Z) andB = Z − H .

Theεi ’s are independent, so that applying the Cauchy–Schwarz inequality, we
get

E

(
sup
t∈Ik

|B(t) − B(tk−1)|
)

≤ 1

n
E

( [ntk]∑
i=[ntk−1]+1

|εi |
)

(38)

≤ σ

n

(√
n(tk − tk−1) + 1

)
.

On the other hand,g is unimodal, so one can prove that

sup
t∈Ik

|H(t) − H(tk−1)| ≤ 6M

n
.(39)

Since
D∑

i=1

√
l(Ik)

n
≤

√
D

n
,
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relations (39) and (38) lead to (33), withC′ = 2(3M + σ).
To prove (9), let us only considerk such that[ntk] �= [ntk−1] [otherwise (4)

is trivial for all A > 0]. We use a Von Bahr–Esseen inequality (see, e.g., [27],
page 858), which leads to

E

(
sup
t∈Ik

|B(t) − B(tk−1)|
)

≤ 8E|B(tk) − B(tk−1)|.

Using (39) and the preceding display, the triangle inequality gives

8E
(|Z(tk) − Z(tk−1)|) ≥ E

(
sup
t∈Ik

|B(t) − B(tk−1)|
)

− 8
6M

n
.(40)

Using Markov’s inequality, we get

E|Z(tk) − Z(tk−1)| ≥ σ
√

2π

4n
P

(
|Z(tk) − Z(tk−1)| ≥ σ

√
2π

4n

)
≥

√
2π

8n
.(41)

The last inequality arises from the fact thatZ(tk)−Z(tk−1) is a centered Gaussian
variable whose variance is greater thanσ 2/n2.

Now, multiplying (41) by 432M/
√

2π and by summation with (40), there exists
anA′ such that

E

(
sup
t∈Ik

|B(t) − B(tk−1)|
)

≤ A′
E|Z(tk) − Z(tk−1)|.

The triangle inequality and relations (39) and (41) lead to the fact that there
exists anA such that condition (4) holds.�

PROOF OFPROPOSITION3. Let us set for allt ∈ I g∗(t) = 1X(n)≥t g(t) and
G∗(t) = ∫ t

0 g∗(s) ds, whereX(n) is thenth order statistic of the sample. Setting
Z∗ = Ĝ − G∗, we get

D∑
k=1

E

(
sup
t∈Ik

|Z(t) − (tk−1)|
)

(42)

≤
D∑

k=1

E

(
sup
t∈Ik

|Z∗(t) − Z∗(tk−1)|
)

+ E

(∫ c

0
1X(n)<sg(s) ds

)
.

The process(Z∗(t))t≥0 is a square integrable mean zero martingale. Its predictable
variation process is given by (see, e.g., [27], Theorem 2, page 312)

〈Z∗〉 =
∫ .

0

1s≤X(n)

n(1− L̂−(t))
g(s) ds,(43)



ESTIMATION UNDER SHAPE RESTRICTIONS 1353

whereL̂− is the left-hand continuous version of the empirical distribution function
of the Xi ’s. Using Doob’s inequality, relation (43) combined with the Cauchy–
Schwarz inequality yields for allk,

E

(
sup
t∈Ik

|Z∗(t) − Z∗(tk−1)|
)

≤ 2
√

E
(〈Z∗〉(tk) − 〈Z∗〉(tk−1)

)

≤ 2√
n

√√√√∫
Ik

E

(
sup

s≤X(n)

1− L(s)

1− L̂−(s)

)
g(s)

1− L(s)
ds.

Setting H as the common distribution function of theUi ’s [we get 1− L =
(1− F)(1− H)], we thus apply Gill’s inequality (see [27]), which leads to

E

(
sup
t∈Ik

|Z∗(t) − Z∗(tk−1)|
)

≤
√

12

n

1√
1− H(c)

√
1

1− F(tk)
− 1

1− F(tk−1)
.

Finally,

D∑
k=1

E

(
sup
t∈Ik

|Z∗(t) − Z∗(tk−1)|
)

≤
√

D

n

√
12√

1− L(c)
.(44)

For the last term on the right-hand side of (42), we use the relations

P
(
X(n) ≤ s

) = (
1− (

1− H(s)
)(

1− F(s)
))n and

(
1− s

n

)n

≤ e−s

for all s ≤ n.

Simple calculations yield

E

(∫ c

0
1X(n)<sg(s) ds

)
≤

√
π

n

1√
1− L(c)

.(45)

Combining (44) and (45) in (42) yields (33).�

PROOF OF PROPOSITION 4. The process(Z(t))t≥0 is a square integrable
mean zero martingale. SinceN(tk) − N(tk−1) ∼ P (G(Ik)), applying the Doob
and Cauchy–Schwarz inequalities thus leads to

E

(
sup
t∈Ik

|Z(t) − Z(tk−1)|
)

≤ 2
√

G(Ik),

so that

1

T

D∑
k=1

E

(
sup
t∈Ik

|Z(t) − Z(tk−1)|
)

≤ 2

√
D

T

√
G(T )

T
.

This proves (33).
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To prove (9), let us set for allx ≥ 0 M(x) = N1(x) − x, where(N1(x))x≥0
is the Poisson process with mean functionx. Recall thatXj = G(Tj ) is thej th
occurrence time of(N1(x))x≥0. Then let us setJ = [xk−1, xk], wherexk = G(tk)

andxk−1 = G(tk−1) and let(ai)0≤i≤m be the sequence of endpoints of a uniform
partition of J . SinceN1 has independent increments, them random variables
M(ai) − M(ai−1) are integrable i.i.d. mean zero variables and we can apply a
Von Bahr–Esseen inequality (see [27], page 858),

E

(
max

1≤i≤m
|M(ai) − M(xk−1)|

)
≤ 8E|M(xk) − M(xk−1)|.

Moreover,N1 is a cadlag process. Therefore, this inequality holds on the whole
intervalJ , when the partition’s step tends toward zero. We thus get

E

(
sup
x∈J

|M(x) − M(xk−1)|
)

≤ 8E
(|M(xk) − M(xk−1)|)

and then

E

(
sup
t∈Ik

|Z(t) − Z(tk−1)|
)

≤ 8E
(|Z(tk) − Z(tk−1)|). �
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