The Annals of Statistics

2005, Vol. 33, No. 3, 1330-1356

DOI 10.1214/009053605000000138

© Institute of Mathematical Statistics, 2005

ESTIMATION OF A FUNCTION UNDER SHAPE RESTRICTIONS.
APPLICATIONS TO RELIABILITY
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This paper deals with a nonparametric shape respecting estimation
method for U-shaped or unimodal functions. A general upper bound for the
nonasymptotidL1-risk of the estimator is given. The method is applied to
the shape respecting estimation of several classical functions, among them
typical intensity functions encountered in the reliability field. In each case, we
derive from our upper bound the spatially adaptive property of our estimator
with respect to thé.1-metric: it approximately behaves as the best variable
binwidth histogram of the function under estimation.

1. Introduction. In this paper we study a data-driven nonparametric estima-
tion method for shape restricted functions. As an application of this study, we first
have in mind classical frameworks such as estimation of unimodal densities or re-
gression functions. We also place stress on building and studying shape respecting
estimators of typical intensity functions, namely the hazard rate of an absolutely
continuous distribution and the failure rate of a nonhomogeneous Poisson process,
which are key concerns in systems reliability studies: for a nonreparable system,
which is replaced by a new one after it fails, the failure behavior is modeled by
the distribution of its single lifetime, frequently specified via its hazard rate. For
reparable systems, repaired but not replaced after each failure, the failure behavior
in time can be modeled by a counting process. When repair times can be disre-
garded and the system has a large humber of units, this counting process can be
approximated by a nonhomogeneous Poisson process. Such a process is totally
characterized by its cumulative intensity function or, when it exists, by its failure
rate.

Nonparametric estimation procedures have often been investigated first for
density estimation and regression and then generalized to other frameworks. The
more widely used are smoothing or projection methods with fixed parameters (see
[24] and [9] for densities and [25] for regression functions). Several estimators
of this type have been proposed and studied for the hazard rate, under censored
and uncensored schemes (see [28, 30, 33]). In other respects, Curioni [11] studies
histograms and kernel estimators of the failure rate of a nonhomogeneous Poisson
process, based on the observation of replications of the process. Even if the difficult

Received July 1998; revised July 2003.

AMS 2000 subject classificatiorrimary 62G05; secondary 62G07, 62G08, 62N01, 62N02.

Key words and phrase¥ariable binwidth histogram, adaptive estimation, hazard rate, nonhomo-
geneous Poisson process, data-driven estimator, unimodal function, U-shaped function.

1330



ESTIMATION UNDER SHAPE RESTRICTIONS 1331

problem of the choice of the smoothing parameter can be overcome by automatic
methods such as cross-validation (see [26] for density estimation, [19] and [10] in
reliability), the main handicap of those methods lies in their rigidity: they tend
to assume that the unknown function has homogeneous variation everywhere.
In other words, they are not sensitive enough to the local concentration of the
data. Such a drawback clearly appears in the problem of estimating the hazard
rate by fixed bandwidth kernel estimators: the local variance of those estimators
tends to increase towards infinity as the number of systems at risk decreases.
Obviously, these methods are totally misleading for estimating the failure rate of
a nonhomogeneous Poisson process in realistic situations, where one generally
observes a small number of replications of the failure time process on a finite
time period. Indeed, the system’s condition at timtepends on its whole history
beforer so that the situation is truly nonasymptotic. One therefore needs estimation
methods flexible enough to balance the lack of information collected by fitting the
data as well as possible, making a locally sensitive choice of the parameter. For that
purpose, variable bandwidth kernel estimators and variable binwidth histograms
have been studied, first for densities by Stone [29], and then for the hazard rate
by Muller and Wang [21, 22]. Bartosagki, Brown, McBride and Thompson [3]
propose a variable bandwidth kernel estimator of the failure rate, based on the
observation of replications of the process. The choice of the local bandwidth is
generally done by the minimization of an asymptotic mean square error estimator.
Another way of building adaptive tools is to look for the nonparametric
maximum likelihood estimate over a restricted class of functions, under which the
likelihood is to be maximized. Contrary to kernel estimators, the construction of
these estimators does not require either a smoothing parameter or any smoothness
assumption on the unknown function and only relies on very natural shape
restrictions. Brunk [8] proposes the isotonic estimator for monotone regression
functions and Durot [14] studies its good asymptotic properties related to the
LL1-metric. Such estimators for decreasing hazard rates have been put forward
by Barlow, Bartholomew, Bremner and Brunk [1] in complete life data models.
Similarly, Bartoszyski, Brown, McBride and Thompson [3] and Barlow, Proschan
and Sheuer [2] propose the nonparametric maximum likelihood estimator for
decreasing failure rates. The shape restriction in the last two cases is very natural
since it corresponds to the observation of a system during its debugging period. For
a decreasing density, the nonparametric maximum likelihood estimate is known as
the Grenander estimator [15]. It has a very simple graphical meaning since it is the
slope of the least concave majorant of the empirical distribution function based on
a sample generated by the density under estimation. It takes the form of a variable
binwidth histogram, generating a partition which is approximately the best one in
thelL1-metric sense. This property is checked by Birgé [5, 6] from a nonasymptotic
minimax risk point of view and Groeneboom [16] and Groeneboom, Hooghiemstra
and Lopuhaa [17] study its good asymptatig-properties. The construction of
the Grenander estimator and its properties can straightforwardly be extended to
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the case of a unimodal density with known mode. Nevertheless, a more realistic
assumption is that the mode is unknown. Actually, the nonparametric maximum

likelihood estimator does not exist any more on such a wide class. One can
solve the problem (see [31, 32]) by finding a prior estimate of the mode, but the

resulting properties rely on the choice of this estimate. In several studies, Birgé
[4, 7] proposes a totally data-driven estimation method for unimodal densities

with unknown mode: his estimator relies neither on the arbitrary choice of extra

parameters nor on any smoothness assumption on the unknown density. It still
approximately behaves as the best histogram in terms of the nonasymptotic
minimaxLLj-risk, over restricted sets of unimodal densities.

Our purpose in this paper is to extend Birgé’s method to a more general
functional estimation framework. More precisely, we have in mind to define and
study estimators for positive integrable functiofisassumed to be unimodal or
U-shaped (decreasing then increasing). The unimodal assumption is often realistic
for regression or density functions, while U-shaped hazard rate or failure rate
functions correspond to the failure behavior of a system which is observed during
its entire lifetime: after a debugging period where the number of failures tends to
decrease, the latter is stable during the exploitation period, and then turns out to
deteriorate from aging. Starting from a step function estimatof G = [, g()dt
on I = [a, b], we define the shape respecting estimatorf g as the image 06
through some deterministic mapping. The definition of this mapping relies on a
convenient adaptation of the “Pool Adjacent Violators Algorithm” (see [1]) which
is involved in the definition of Grenander estimator.

This paper is organized as follows: in Section 2, we define and study this
mapping in a deterministic framework. The former study is applied in Section 3
to a statistical framework: we build a general upper bound forliheisk of
the shape respecting estimator of U-shaped or unimodal functions and investigate
conditions under whiclg behaves as a “clever” histogram, generating on its own
a partition which is optimal from af;-risk point of view. Section 4 is devoted
to the application of our results to particular functions: we first study the shape
respecting estimator of unimodal regression and density functions. We next build
and study shape respecting estimators for a U-shaped hazard rate and a U-shaped
failure rate in realistic underinformed designs. The proofs of our results are given
in the three last sections.

2. Deterministic framework. Our general aim in this paper is to estimate a
shape restricted functiopdefined on a given compact real intervak [a, b]. In
Section 3 we will show that we can define a shape respecting estimagoa®f
the image of a step function estimator @f= [; g(¢) dt, through a deterministic
mapping. This section is thus devoted to the construction and the study of such a
mapping. More precisely, we are interested in mappings from the &6e of
nondecreasing, right-hand continuous with left-hand limits (cadlag) step functions
on [ into particular sets of shape restricted, integrable functions.aive focus
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here on the set of U-shaped functions and the set of unimodal functiods on
defined as follows:

DEeFINITION 1. A functiong defined on an interval = [a, b] is a U-shaped
(resp. unimodal) function if there exists some numbeerin I such that
g Is nonincreasing (resp. nondecreasing) [anm] and nondecreasing (resp.
nonincreasing) ofn, b].

For the sake of simplicity, we shall restrict ourselves to the U-shaped case. The
unimodal case is briefly described in Remark 3. Moreover, we apprGaoh a
nondecreasing function, which implies thais positive, but this assumption may
probably be dropped (see Remark 5).

2.1. Construction of the mapping.Let m € I be an arbitrary point. To be
clearer, we first define a mappingg' from # (/) into U'¢ (1), where U’ (1)
is the set of U-shaped functions dnwhose minimum is achieved at (when
m coincides with one of the endpoints df, we get the important subsets
of nonincreasing and nondecreasing functions). This mapping generalizes the
isotonic mapping classically used in various contexts of functional estimation
under monotonicity restrictions: whenis a decreasing function oh= [a, b],
it is defined as the slope of the least concave majorant of an approxinfatén
G and can be computed using the “Pool Adjacent Violators Algorithm” (PAVA),
described in [1]. Formally, the mappirigf’ is defined as follows:

DEFINITION 2. LetI = [a,b] be a compact real interval and let be an
arbitrary pointin/. Let ¥ € #¢(1). We defineU' (F) as the right-hand continuous
slope of F§', where F¢' is defined on[a, m] as the least concave majorant of
the restriction of F to [a,m] and is defined orjm, b] as the greatest convex
minorant of the restriction of’ to [m, b]. The functionf? is called the U-shaped
regularization atn of F on 1.

Let us notice thaﬁg” is a continuous, piecewise affine function brnwe now
turn to the definition of our main mappings from F#(I) into Us(I), where
Us(I) =Uper Wy (1) is the set of all U-shaped functions énFor this purpose,
we use an idea introduced by Birgé [4] in the context of the estimation of a
unimodal density. It consists in minimizing dnthe functionds defined by

ds(m) = Sup|F (1) — F§' ().
tel
It is easy to see thaty is a cadlag step function oh whose discontinuity points

belong to the set of discontinuity points &f This property gives a sense to the
following:
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DEFINITION 3. Let F € #(I) and letm(F) denote the midpoint of the
interval where the functio@s defined above achieves its minimum. We define
the mapping/s from # (1) into Us(I) by Us(F) = Ug”(F)(F).

It is worth noticing thatUs(F) is easily computable in practice. The determi-
nation ofm (F) does not cause any trouble since we need to compare only a finite
number of regularizations. Moreover, for amye 1, the regularizatiorﬁ? can be
computed via the PAVA: the algorithm is applied fin m] to compute the least
concave majorant of the restriction 6fto [a, m], then on[m, b] to compute the
greatest convex minorant of the restrictionfoto [m, b].

2.2. AnLL1-approximation upper bound.We now investigate thi1-properties
of our mapping. To fix ideas, let us take the point of view of approximation theory:
let I = [a, b] be a compact real interval and IBte J¢(I) be an approximation of
someG = [; g(t)dt, whereg is a positive U-shaped function dn ThenUs(F)
is a shape respecting approximationgofWe seek to link thd.,-approximation
quality of g by Ug(F) to the properties of the underlying errér— G. In order
to square with our stochastic framework, we will have a more general approach:
starting from somé’ of # (1), we want to control th&.1-distance betweetis(F)
and any U-shaped functign

From now on, we will adopt the following:

NoTATION 1. (i) Let I = [a, b] denote a compact real interval, Igtand g
belong tolL1(7) and let# be a subset df., (7). We set

||f—g||=/llf(f)—g(t)|dt and d(f, )= inf |If —hl.

(i) Let = be afinite partition of in intervals such that = ([t;_4, 7 Dkexr -
Here,a=tj <--- <tp. =b, K" ={1,..., D"} and D" is arbitrary. We denote
by IT(7) the set of all such partitions.

(i) Let & € T1(1). We denote by#, the set of cadlag step functions based
onrx (we mean cadlag step functions that are constant on éxery, 1;7)).

With the above notation, we can state our main theorem (the proof is postponed
to Section 5):

THEOREM 1. LetI =[a,b] be a compact real intervalLet g be a U-shaped
function on/ and letG = [; g(t)dt. Let F € #(I) and letUs(F) be defined
by Definition3. SettingZ = F — G and f = Ug(F), there exists some absolute
constantC > 1 such that

@) If—gll= inf 14d(g. Hr) +C 3 sup |Z() = Z(E -

. g
kexm telf_q.1; ]

(C =49 works)
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2.3. Comments.

REMARK 1. Letus denote byrRz(r) the term in brackets in (1). The quantity
Rz () is the sum of a perturbation tewitg, #¢, ), relying on the smoothness gf
and of a regularization term measuring the approximation errGrlodth by F and
by a U-shaped regularization &f. Theorem 1 thus stresses that the step function
Us(F) realizes ovell1(/) the best compromise between those two terms. Let us
notice that the perturbation term varies smoothly withwhile the regularization
term achieves its infimum over the subset of partitions whose endpoints belong to
the set of discontinuity points af. Thus, the best trade-off will be reached for
such a partition.

REMARK 2. From an approximation theory point of view, such a tool, which
is able to make a sensitive choice of the image Agt among all partitions
of I, is much more powerful than classical projection operators mapping onto
linear sets generated by a uniform partition. Indeedgleand r, respectively,
denote a uniform and a nonuniform partition bfof cardinality D. Let p, g
and p,g be the orthogonal projections of some functignon #, and F,,
respectively. It is proved (see, e.g., [13]) that to achieve an approximation error
lg — pogll = O(D™%), one needs to impose of smoothness conditions of
the typew(g) = O(D~%) (wherew is the continuity modulus of), while for
approximation byp, g, the conditions are less demanding: smoothness conditions
ong are needed only inthe larger spdce, y = (¢ + 1)~L. Typically, forg € By,
with p <1, =1/p — 1, the approximation error is of ord&—* for p, g, while
for p, g one has to impose the conditigre Bf ; to achieve this rate.

REMARK 3. Let us briefly describe the unimodal case. Eet 7, and let
m € I = [a, b]. Symmetrically, we can define the unimodal regularizaﬁ;@hatm
of F on[ as follows: ona, m] it is the greatest convex minorant of the restriction
of F to [a, m]; on [m, b] it is the least concave majorant of the restrictionFof
to [m, b].NWe then defind/}; (F) as its rith—hand continuous sIer. ﬁg’, the
function F is piecewise affine. But whil&" is always continuousty, happens
to be discontinuous at the poimtwheneverF is discontinuous at this point. Next,
in order to define the shape restricting mappifg we minimize on/ the function
dy defined by

dy(m) =Ssup|F (1) — Fy (t)|.
tel
As shown by Birgé [7],dy is a continuous function o and its minimum is
achieved at a unique poimt(F), which is a continuity point ofF. We thus
define the mappind/yy from #(I) into the set of unimodal functions oh by
Un(F) = U]’\’}(F)(F). The practical construction dfy (F) is done by applying
the symmetric procedure with the PAVA, after having foundF). It may be
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computed numerically by using, for instance, a dichotomous algorithm, after
having found the interval where the minimum @&f is achieved. Setting =

Uy (F), (1) holds for every unimodal functiopnon 7. The proof can be performed

by exchanging the roles of the intervgds m] and[m, b].

REMARK 4. The compactness assumptionlas made for sake of simplicity.
Actually it is sufficient to restrict oneself to intervalson whichG is bounded.

REMARK 5. In this paper the underlying functiof’ is assumed to be
nondecreasing. This means that our approximation method is applied in practice to
positive functiong. On the other hand (see, e.g., the application to the estimation
of a regression function), one may wish to estimate a funcgotihat is not
positive. In such cases we will make the following conjectwaethe expense
of subsidiary technical complicationthe monotonicity restriction o’ can be
dropped.Checking this conjecture leads namely to show that the minimum of the
functionds is still well defined.

3. Statistical framework. The previous results can be applied in a statistical
context to build shape respecting estimators for U-shaped or unimodal functions
g defined on a given interval = [a, b]. Let X be a random variable whose
law depends org, whereg is assumed to belong tols(7) [resp. Un(I)]. Let
G € J¢(I) be an estimator o = /. g(t)dt based on the observation (e.g., X
is a sample generated by an unknown unimodal degségdG is the empirical
distribution function of the sample). We can apply the mappings previously defined
on G to build a shape respecting estimagoof g.

The aim of this section is to study the nonasymptotic properties of this estimator.
We first state in Theorem 2 a stochastic version of Theorem 1 that gives control of
thelL;-risk of g. We next investigate some conditions of optimality of this control.

In order to be clearer, we still restrict ourselves to the U-shaped case, although
the results still hold in the unimodal case. Moreover, we use Notation 1. As a
straightforward consequence of Theorem 1, we get:

THEOREM 2. Let g be a U-shaped function oh = [a, b] and let X be a
random variable whose law depends gnLet G € J#(I) be an estimator of
G = [; g(t)dt based onX and let Us(G) be defined by Definitior3. Setting
Z=G-G andg = Us(G), there exists some absolute constant 1 such that

2 Elg —¢g|| < inf
(2 g — gl _nelgl(l)ﬁz(n),
where

Rz(mw)=4d(g, #y)+C Z E( sup |Z(t)—Z(t,f_1)|>.

kexm NEl_g.7]

(C =49 works)
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Theorem 2 emphasizes the adaptive behavior of our tool: without advanced
knowledge ofg, it makes a sensitive choice of the partitionfdf/ ) that minimizes
the quantityR 7 (7r); this quantity takes the form of a risk (it is the sum of a bias
term and of the expectation of a random error term).gAs by construction
a histogram based on a random partition, such a sensitive behavior leads us to
wonder about its quality, compared to classical histogram estimatgts of
Histogram estimators are common tools for estimating a density fungtion
defined on some intervdl: given an arbitrary partitiom € I1(7), the histogram
estimator ofg based onr is the empirical estimator of the orthogonal projection
of g on . Similarly, given a general functiog and a step function estimatar
of G, we consider as an estimator gthe histograng™ defined by

Gul)—Gf )
w1

3) = >

ke K™

Lpz o) (@) forallz e 1.

We now investigate conditions a& under whichg turns out to do at least as well
as any variable binwidth histograg?™ of g built from G. For that task we can
show the following result (see Section 6 for the proof).

THEOREM 3. Let g™ be defined by(3). Assume that the conditions of
Theoren? hold. Assume moreover that there exists some positive constanth
that forallz e I[1(/) and allk € X7,

(4) E( sup |Z(t) — Z(t;’f_l)l) < AE(IZ(t{) — Z(t;_p))-

SRR
Then we get for allr € T1(1),
(5) (CA+8) 'Rz (n) <E|g"™ — gl < Rz ().
Moreovery

(6) Elg—gll<(CA+8) inf Elg™ —gl.
well(l)

The gquality of estimation appears to rely on the expected variations of the process
Z =G — G on I: for sufficiently small onesg generates on its own a partition
which is optimal from anLi-risk point of view. In particular, it will do better

than any variable binwidth histogram. Moreover, it is totally data-driven, which is

a serious practical advantage since it allows one to solve the problem of how to
check for the best partition. Further applications will show that the condition (4)
often holds.

REMARK 6. Theorem 2 gives control of thej-risk of the estimator of a
U-shaped functiong with unknown minimum point. Now, suppose thatis
U-shaped and that the location of its minimuiris known. An obvious estimator
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g™ of g can be obtained via the basic mapplig of Definition 2 asg™ = Ug’(@)
(when g is a decreasing density, it is merely a Grenander estimate). An upper
bound for thel;-risk of this estimator is derived in Section 5.1 as a by-product of
the proof of Theorem 1. Indeed, it follows from Lemma 1 that there exists some
absolute constartt’ such that

Ellg™ — gl

(7)
< inf {4d(g, #H,)+C’ Z E( sup |Z(@) — Z(t}f_l)|)}.
el kexm™ MEMLLE]
Hence, even if the point is known, one does not lose much by assuming that it
is unknown and (2) is still a good control for thg-risk of g, from a qualitative
point of view.

4. Applications. We now present examples of application of our study. We
first consider the shape respecting estimation of two classical functions: that of
a unimodal density, which allows one to recover Birgé’s results, and that of a
unimodal regression function. For this task, we use the mapfinglefined in
Remark 3. Our main focus is on the estimation of classical intensity functions
used in reliability theory, in realistic designs: for nonreparable systems, we study
the shape respecting estimator of a U-shaped hazard rate in right-censoring life
data models. In the reparable system field, we study the shape respecting estimator
of the U-shaped failure rate of a nonhomogeneous Poisson process, based on the
observation of a single process on a finite time period. Such a process is widespread
in reparable systems studies, since it models the failure behavior of a system
having a large number of units and whose repair times can be disregarded. It is
totally characterized by its failure rate. In these two last applications, the U-shaped
assumption is very natural and corresponds to the situation where a system is
observed during its entire lifetime. Moreover, the adaptivity property is particularly
important here since realistic reliability designs are often underinformed.

For each application] = [a, b] is an interval andG € J¢(I) is an estimator
of G = [, g(r)dt, whereg is the function under estimation. Moreover, we adopt
Notation 1 and the further:

NOTATION 2. We denote b1 (1) the subset of1(I) of partitions inD
intervals. Next, for a givemr € I1(7), we callg”™ the histogram estimator gf,
defined by (3).

Short proofs of the results presented in the sequel are postponed to Section 7.
4.1. Estimation of a unimodal densitylLet (X1,..., X,) be a sample gen-

erated by an absolutely continuous distributiGnwith density g. Assume that
the restriction ofg to a given real interval is unimodal { can be the real line



ESTIMATION UNDER SHAPE RESTRICTIONS 1339

here, see Remark 4). The shape respecting estimagoonofl can be defined by
g=Un(G), where

N 12
Gy==) 1x,« forallzel
n:
i=1
As an application of Theorems 2 and 3, we get:

PrROPOSITION1. There exists an absolute positive constarguch that

. . D
(8) Elg—gll < inf Inf(1)4d(g,J€n)+E\/;}.

D<n|mellp
Moreoverthere exists an absolute positive const&nsuch that

9 Ellg —¢|l< K inf E|g"™ —¢].
9) g —gll < L g™ — gl

Inequality (8) is similar from a qualitative point of view to Birgé’s Theorem 1 [7]

and gives an idea of how the shape respecting estimator operates: it first chooses
among theD-dimensional linear subsets of step functions the one which is closest
to the unknown functiog; it then checks the dimensiad which realizes the best
trade-off between the bias and the error terms of the estimation. Moreover, (9)
shows that the selected partition is optimal from a nonasympiaqtidgsk point of

view. This point had been investigated by Birgé from a minimax point of view,
since he showed that his estimator nearly achieves the minimax risk over the
class of unimodal densities with bounded support. We get here a result for every
unimodal density function.

4.2. Estimation of a unimodal regression functiorAnother classical problem
is that of the estimation of a unimodal regression function. Let us consider here
the model

Y; = g(x;) +¢;, i=1...,n,

whereY; is the observation at time = i/n, theg;’s are i.i.d. Gaussian centered
errors with variancer? > 0 andg is a unimodal funEtion od =0, 1]. We can
define the shape respecting estimatog tly § = Uy (G), where

~ 12
G(t)=— E Yi 1y, < forall r € [0, 1].
n-:
i=1

Let us notice thaiG is not nondecreasing in general evergiis positive. We
thus need to assume that the conjecture of Remark 5 holds in order to define and
studyg.
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PROPOSITION2. Assume that the conjecture of Remé&rkolds Then there
exists some positive constafitthat depends only oa and M = sup¢q 1) &(?)
such that(8) holds Moreover (9) holds for some absolute positive const&nt

REMARK 7. The assumption; =i/n,i =1,...,n, can be dropped as soon
as thex;’s are approximately uniformly spread [0, 1]. Moreover, no particular
assumption is required on the distribution family of the errors to get (8), and the
common distribution has only to be bounded (not necessarily Gaussian) to get (9).

4.3. Estimation of a U-shaped hazard rate in right-censoring life data models.
Suppose one observegopies of a nonreparable system in a usual right-censoring
scheme: le(T4, ..., T,) be the potential lifetimes of the copies, generated by
an absolutely continuous distributidn with density /. Let (Uy, ..., U,) be the
sample of times of censure (this means thiatis the time beyond which thg¢th
copy can no longer be observed). Assume moreover thdtf tiseare independent
of the T;’s. The random variabl@; will be observed whenevel; < U;. The set
of observable data is thus given by

{(Xj=Tj AU}, 8j=1x;=1;, j=1.....n}.

We want to estimate the hazard rgte- //(1 — F) of the system’s lifetime” on
some compact real intervdl= [0, c], under the assumption thatis U-shaped
on I. A shape respecting estimatpe= Us(G) of g on I can be derived from the
Nelson—Aalen estimator [23] of the log-survival functién It is defined on/ by

_/ dF(s)
1-F- (s)

Here F is the Kaplan—Meier product-limit estimator 6f[18] and F ~ is its left-
hand continuous version. We get:

ProPOSITION3. Assume thaL(c) < 1, whereL is the common distribution
function of theX ;’s. Then there exists an absolute constansuch that(8) holds
with E = C(1— F(c))~Y2.

The sensitive behavior of our tool is a serious advantage here. Indeed, one of
the typical drawbacks of hazard rate estimation methods is that the error term of
the estimation depends on a penalization factor relying on the valiiemefr the
right-hand side point of the estimation interval, in such a way that for classical
methods such as fixed bandwidth kernels or fixed binwidth histograms, the local
error term near this point tends toward infinity. Usi@igninimizes the problem.
Here the penalization factor id — L(c))~Y/2, but the partition chosen by the
estimate will probably lead to a larger local binwidth when estimating adaan
when estimating in the interior. Moreover, the automatic choice of the histogram
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binwidths is a serious practical advantage and its good behavior holds even for
moderate sample sizes. For all these reasons, our estimate should be preferred—at
least when the hazard rate is not known to be smooth—to data-adaptive bandwidth
kernel estimators, for which the choice of the optimal local bandwidths relies on
heavy procedures of asymptotic minimization of a mean square error estimate.

REMARK 8. The definition and properties of the shape respecting estimator
of g in complete life data models can be straightforwardly derived from the former
results, settind. = F.

4.4. Estimation of the U-shaped failure rate of a nonhomogeneous Poisson
process. Let (N(7));>0 be a nonhomogeneous Poisson process with mean
functionE(N (1)) = G(t). Suppose thatV (1)), describes the number of failures
in time of a reparable system. The failure rate of the process is, when it exists, the
derivativeg of G.

In the sequel, we propose to estimaten a given finite time period = [0, T'],
where it is known to be U-shaped. For this task, we observe the failure times
(T1, ..., Tn(ry) falling in I of a single copy of the system. Let us define bn
g=Us(G) and

N(T)

Gt)=) lp<=N(@).
k=1

In order to describe th&.1-behavior ofg on I, we need to use a normalized
LL1-distance (which allows one to recover the-distance between two constant
rates on/). We thus define for alf, g € L1 (1)

1 (T
If —gll= 7/0 £t — g(0)] dt.

We can show that:

PrROPOSITION4. There exists an absolute positive const&rguch that

N . . G(T) [D
10 E|g — f f B |—~ =\,
(10) 1 gllill)r;TLelr?D(”M(g,J(’n)—i- g6 /T}

Moreoveythere exists an absolute positive const&nsuch that(9) holds

The main difference between failure rate estimation and the former studied
estimation functions is that the underlying observations ..., Tyr)) are not
i.i.d., except in the case whegeis constant. Therefore, in the realistic context of
the observation of a single system (or a small number of copies of the system),
nonadaptive methods are totally misleading. Now let us investigate in some
particular cases the quality @f with regard to classical estimators: in the case
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whereg = A, (10) allows one to recover the parametric rate. Indeed, the parametric
maximum likelihood estimate of is given in this case by = N(T)/T and
satisfiedE|| g — 1|l < +/A/T, while our bound gives the same, up to a multiplicative
constant. (More generally, we find rates of order/2 wheneverg is a step
function.) Moreover, when the penalization factgG (T)/ T involved in (10) is
bounded, which includes nonincreasing and low nondecreasing fung¢tjdhs

order of magnitude of the asymptotic risk will be at le@st}/3 as for densities.
More generally, from a nonasymptotic point of view, we hope to obtain a good
estimator as soon as the penalization factor is not too large. In some cases, this
factor can be very important, in such a way that the quality of the estimate can be
quite bad, for instance for high increasing rates. (Fortunately, we are not interested
in such situations since they practically correspond to a substantial deterioration of
the system, which is retrieved as soon as possible from exploitation.) Nevertheless,
even in unfavorable situations, the locally sensitive properfywfll allow one to

check break points in the slope gf This fact is interesting for its own sake for
trend studies.

REMARK 9. An adaptive estimator of has been proposed by Barlow,
Proschan and Scheuer [2] for decreasing failure rates. It is defined as the
nonparametric maximum likelihood estimator over this shape restricted class.
Although it has been used successfully in practice (it behaves reasonably well
compared with classical parametric models used in industrial reliability studies),
its properties have not been investigated so far. The shape respecting estimator we
present and study in the sequel generalizes Barlow et al.’s estimator to U-shaped
failure rates. Since a decreasiggan be seen as a degenerate U-shaped function,
with minimum point at the end of the estimation interval, it is worth noticing that
our study also applies to their estimate (see Remark 6).

5. Proof of Theorem 1. Letm be a point off whereg achieves its minimum.
Let F denote the U-shaped regularization/ofat m (see Definition 2) and set
f™=Ug'(F). We shall prove the following two lemmas in Sections 5.1 and 5.2,
respectively (we use Notation 1).

LEMMA 1. There exists an absolute constait> 1 such that for allr €
(1),

(11)  f" —gll <4d(g. H)+C Y sup  |Z(1) — Z(tx-1)|.

kexm telti_q.17]
LEMMA 2. We have

If™ = fll =4suplZ@)|.

tel



ESTIMATION UNDER SHAPE RESTRICTIONS 1343

For allz € T1(1) and allk, we thus get

k
sup 1Z0)| <) sup |Z(1)— Z(y)l,

teliy_g. 17 ] i=1 1€l 4,17
so that
SUPIZ()| < Y sup |Z(t)— Z(t[ 9l
tel keJm teltf_ .17
Moreover,

If =gl <If™—=gll+If—=sf"l
and Theorem 1 follows from Lemma 1 and Lemma 2 with= C’ + 4.

5.1. Proof of Lemmadl. For the sake of simplicity, we omit the subscripin
Notation 1 and we adopt the following extra:

NoOTATION 3. (i) For every subinterval of I and all functionsf and g
in L1(1), we denote by(J) the length of/ and we set

_ 1
g(n:mfjg(r)dr,
bg<1>=/1|g<r)—§<1>|dt and IIf—gII(J)=/JIf(t)—g(t)ldt-

(i) Yk e X, we setly = [tx—1, t]-

Note first that we may assume without loss of generality that there exists some
Jj € X such thatn = ¢;. Indeed, assume that Lemma 1 holds over the restricted
class of partitions of includingm, for some absolute consta@t’. Then letz™
be a partition of/ with D + 1 endpoints;” such thatt}“ =m, and letr be the
partition of / with D endpoints; such that, = #" for all k < j andz =", ; for
all k > j. For the term inj in (11), we get

SUP|Z(1) — Z(t!" )| + sup |Z(r) — Z(t™)]

m m
tte tte+l

<2suplZ(t) — Z(tj-D)| +1Z(}") — Z(tj-1)|

l€1j

<3suplZ(t) — Z(tj—1)|.

Z‘GIj
Moreover,

d(g, Ham) =d(g, Hr).
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Thus, we obtain (11) over the set of all partitions bfoy adding constants
(C"=3C").

The main argument to show (11) is Proposition 1 of [5], which is the formal
translation of the PAVA. Let us recall this result:

LEMMA 3 (Birgé). Suppose that we are given a nondecreasing integrable
function# and a nonincreasing integrable functignon some finite intervay.
Then using Notatior,

IA(T) = gll(J) < Ilh = gll())

(1) Let us first see what is happening [anm] in the case where < m. Recall
thatt; =m. Fork < j, definefk as the least concave majorant of the restriction of
F on Ix. Next, let us defingdp on [a, m] by Ho(m) = Fi(m) and

Ho() =Y Fr()Lg_y.q0(0),
k<j

and lethg be the right-hand continuous slope Hp. Then Hp is a piecewise
affine, continuous function such that ¢m m], F < Ho < F™. Moreover,hg is
well defined onfa, m) and right-hand continuous. Its discontinuity points belong
to X, whereX = {xg, x1, ..., x,} is the ordered set obtained as the union of the
set{ro, t1, ..., tj} and that of the discontinuity points @&f. Now, for/ > 1, let us
define H; andh; by iterating the following rule (we apply the PAVA t8;_1):

(a) If hj_1is nonincreasing ofu, m), then we definé; = h;_; andH; = H;_1.
(b) If h;_1 is not nonincreasing ofu, m), then there exists some<0i < n
such thati;_1(x;11) > h;_1(x;). Let us define
i—= min {k:h—1(xx1) > hi—1(xx)}

O<k<n

and

iy= min {k:h_10xq41) <h-10x0)},
i_<k<n
where by convention, inb = m. Then defineH; such thatd; = H;_; on[a, x;_1 U
[x;.,m] and H; is affine on[x;_, x;, ]. SinceH, is a piecewise affine, continuous
function on[a, m], we can define its right-hand continuous slépeWe thus get

hyj=hj—1 onJ =[a,x; ) U [xi ,m),
hy =hi—1(J) onJ = [xi_, xi,).

For alll > 1, the functionH; is piecewise affine, continuous atd< H;_1 <
H; < F™ on [a, m]. The functionh; is a cadlag step function ofa, m) with
discontinuity points inX. Moreover, using Lemma 3, we ggk; — g||([a, m)) <
lhi-1— gll(la, m)). Therefore||h; — g||([a, m)) < |lho — gll([a, m)).
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Within a finite number of iterations, we g& = H; 1 andh; = h;_1. Letip+1
be the first step where it happens. Thgnis a nonincreasing function, g, is
concave. By definition of”, we thus ge#;, > F™ and thusH;, = F" on[a, m].
Therefore i, = f™ on[a, m). Finally,

(12) 1™ = gli(la, m)) < llho — gll(la, m)).

(2) Let us now see what is happening [am, b] in the case where: < b. The
same holds if we replac& by its left-hand continuous versioA— on (m, b],
setting moreovelF~ (m) = F(m). Let us defineHy on [m, b] as the piecewise
affine, continuous function such that on edghk > j, Hp is the greatest convex
minorant of the restriction of ~ to I;. Let kg be its right-hand continuous slope.
We iterate the symmetric rule: Hp is not nondecreasing, I¢k;_, x;1) be the
first interval on which it happens. On this interval, we replageby its mean
and Hy by an affine function. We iterate this rule until we obtain a nondecreasing
function i;,. We can check thai;, = f™ on[m, b) and that||h;, — gl|([m, b)) <
o — gll([m, b)). Thus,

(13) If™ — gli(Im, b)) < |lho — gll(lm, b)).
By summation of (12) and (13), we get
(14) If™ —gll < llho — gll.
Now, by a straightforward decomposition, we get on ehch
(15) llho — Il (T) < bho(k) + 1ho(k) — (TN (Ix) + bg (y).
(3) Let k < j; by definition of Hy, we get Ho(tx) = F(f;) and Ho(f;—1) =
F(tx_1). Therefore,
(16)  lhoUx) — gUNUIk) =1Z(tx) — Z(tr—1)| < SUPIZ(1) — Z(tr—1)|.

tely

To compute the first term at the right-hand side of (15), we will use the following
result (see Section 5.3 for the proof):

LEMMA 4. Let h be a nonincreasing function ot = [rg, 71]. Let H =
f,‘oh(t)dt. Then using Notatior,

bh(J) = 2sup(H(t) — H (to) — (t — to)h(J)).

teJ

We apply Lemma 4 to the nonincreasing functianon I;. Since Ho(tx—1) =
F(tx_1), Ho(ty) = F (1) and Hp > F on I, we get
I —1r—1

[(Ix)

(A7) bho() = 2sup<F(t> — Fly1) —

tely

(P~ (1) ).
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But the restriction ofHj to I; is a function whose slope can only change at the
discontinuity points ofF where Hy hits F, so that the supremum in Lemma 4 is
achieved at such points. Let us call this BetVe get

I —1Ir—1

[(1)

(18)  bho(l) = 28up(F<t) Pl - (F(t) — F(rk_1>)>.

teY
Equations (17) and (18) yield
I —1Ir-1
[(Ix)
A last decomposition of the right-hand side of (19), using the concaviy, gives

bho(Ix) <4sup|Z(t) — Z(tk—1)| + 2sup(G (1) — G(txk—1) — (t — tr—1)g(Ix)).

tely tely

(19)  bho() = 2sup(F<r) ~ Fliey) - (F1) F(rk_m).

tely

Finally, applying Lemma 4 tg, we get

(20) bho(Ix) <4 Sl;plz(t) — Z(te—1)| + bg (Ix).
tely
Replacing (16) and (20) in (15) leads to
(21) llho — gl (k) < SSL;DIZ(I) — Z(tk—1)| + 2bg (Ix).
tely

(4) Letk > j; by definition of Hy, we getHp(t,—1) = F~ (tx—1) and Ho(#;) =
F~ (). SettingZ— = F~ — G, the second term on the right-hand side of (15)
gives
lho(Ik) — 8T |11k
=1Z" () — Z~ (tk-1)|
<|Z7 (&) — Z(tg—1) + Z(tx—1) — Z(tx—2) + Z(tx—2) — Z" (tx—1)|
<SUp|Z(t) — Z(tk—1)| +2 sup | Z(t) — Z(tx—2)|.

tely telp_1

(22)

To compute the first term on the right-hand side of (15), we apply Lemma 4 to the
right-hand continuous nonincreasing functiehg on I,

bho(l) = ZSL;F(HO(kal) — Ho(t) + (t — ir—1)ho(Iy)).
tely
By construction Ho(t;—1) = F~ (tx—1), Ho(tx) = F~ () andHo < F~ on I;.. On
the other hand, the slope éfy on I; can only change at the discontinuity points
of F~ such thatF~(¢) = Hp(t). Thus, using the same scheme as for (19), we get

I —1tr1

[(Ti)

bho(Iy) = ZSUp(F_(tk_l) —F () +

tely

(F~(0) - F~(:-0) ).
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Let (y;, yj+1] be thejth interval in/; on which F~ is continuous. Then

t— 11—
bho(Ix) =2sup sup (F_(lk—l) —F @)+ el
J j.yjyal [(Ix)

By continuity, the supremum oqy;, y;+1] equals the supremum on the open
interval (y;, yj+1), on whichF~ = F. Therefore,

(F~ (1) — F_(Tk—l)))-

I —1Ir-1

I(I)

bho(ly) = 25Up SUp (F(rk_o _F() +
J (jsyj+1)

(F~(0) — F(tk_1>))

|
[(Ix)
A straightforward decomposition using Lemma 4 yields
bho(Ix) <2SUpZ™ (tk—1) — Z(D)| + 2|Z7 (k) — Z" (tk—1)| + bg (k).

=2 SUP<F(tk—1) —F()+

tely

(F~(0 = F~ () ).

tely
Finally,
(23)  bho(lx) <4suplZ(t) — Z(tx—1)| +8 sup |Z(t) — Z(tx—2)| + bg(Ix).
tely tely—1

Replacing (22) and (23) in (15) leads to
lho — gll(Zk) < 5sUplZ(t) — Z(tx—1)| + 10 sup |Z(1) — Z(tk—2)| + 2bg(Ix)

tely tely—1

for all k > j. By (21) this inequality holds for alt € X, and by summation

(24) lho = gl = Y [155unZ(t) - Z(ai-v) + 2010 |
ke X tely
Now let p, g denote thd.,-orthogonal projection o on #,, that is,
(25) P8 =Y g1y ()  forallzel.
ke X
We get

> bglk) =l p=g — gl
ke K

Settingh € #, and with p; A its Lp-orthogonal projection o¥#,, we thus get
pr=h =h and then

(26) lp=g —gll <2llg —hl.

Therefore,

(27) > bg(Iy) <2d(g, #z).
ke XK

Substituting (27) in (24) completes the proof of Lemma 1, since we have (14), and
C’ =45 works.
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5.2. Proof of Lemm&. The key arguments here are Marshall's lemma (see,
e.g., [1]) and the following lemma (the proof of this lemma is omitted since it can
be presented in the same way as that of Lemma 1 of [4]):

LEMMA 5. LetF e #(I) and letF” and F* be the U-shaped regularizations
of F onI atr ands, respectivelywith r < s. Let /" and f* be their right-hand
continuous slope§hen

If" = o= 2max{ sup (F(t) — F (1)), sup (F*(t) — F(t))}.

r<t<s r<t<s
Let m(F) be the point in/ such thatf = Ug”(F)(F). By Lemma 5 we get

1= fll <2 max{sup|F(t) — F"(0)), sup| F (1) fm(”(rn}.
tel

tel

By definition ofm (F)
sup|F (1) — F™F) (1) < sup|F(t) — F" (1)],
tel tel

and therefore

(28) 1" = fIl < 2SUBF () = G()| + 2SUAG (1) — F"@)].
te te

For the last term on the right-hand side of (28), we have

(29) 2suplG(r) — F™(t)| = 2max{sup|G(t) — F™(1)|, sup|G (1) — ﬁm(z)|},
tel t>m

t<m

so by Marshall's lemma,

2suplG(t) — fm(t)| < 2max{sup|G(t) — F ()], sup|G(t) — F(t)|}
(30)  rer 1<m t>m

<2supF(@)— Gl
tel

Substituting (30) in (28) leads to Lemma 2.

5.3. Proof of Lemmat. Let u be the function defined o by u = h — h(J)
and letU be defined oy by

t -
U@) :/ u(x)dx =H(t) — H(to) — (t —to)h(J).

10
Thenu(zg) > 0 andu(z1) < 0, so that there exists some J whereU achieves
its maximum. Moreovely is honnegative before and nonpositive after. Since
U (t1) = 0, we thus get

bh(J):/J|u(t)|dt:/tcu(t)dt—/Ilu(t)dt:2supU(t),
0 c

teJ
which proves the lemma.
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6. Proof of Theorem 3. In the sequel we adopt the convention and notation
used in Section 5.

Letw € IT(J) and letp, g be thelLo-orthogonal projection of on #,, defined
by (25). To perform the right-hand side inequality of (5), we can write

157 — gl = Z/ 18() — prg(t) + prg(t) — T (D] dt
ke X I

=3 [ s = prgldr+ T [ Iprg -3 0l dr

kex 'k kex vk
<lpxg—gll+ Y 1Z(t) — Z(tx-1)|
ke X
<2d(g, Hy)+ Y SUPIZ(t) — Z(tx-1).
ke telk

The last control of| p, g — g|| arises from (26). We get the result by a last obvious
majorization C > 1). Let us now prove the left-hand side inequality of (5). We get

g™ —gll = > UI (8(1) — pxg(®) + prg() —g" (1)) dt
k

ke X

(31) = ‘fl (Prg) — 8" (1)) dt
k

ke X
=Y 1Z(w) — Z(t-1)|.
ke X
On the other hand, by the triangle inequality,
187" —gll = llg — prgll — 18" — gl
=llg = prgll— D 1Z(t) — Z(tx-1)|.
keX
Multiplying (31) by (CA + 4) and (33) by 4, and summing the so-obtained
inequalities, we get, since, g € ¥y,

(CA+8)(18x — gl = 4llg — prgll + CA D | Z(tx) — Z(tr—1)|
ke X

>4d(g, He)+ CA D | Z(ty) — Z(tx—1)|.
ke X
Therefore, taking the expectations, we get that when condition (4) holds,
Rz(m) <4d(g, Hx) + CA Y EIZ(tx) — Z(tx-1)|
ke X
<(CA+9BE|gr —zl.
Relation (6) is straightforwardly derived from the last inequality and Theorem 2.

(32)
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7. Short proofs for Propositions 1-4. Let us setZ = G — G. For each
proposition, the proof follows the same scheme: to show (8) [resp. (10)], one needs
to control the error ternR z () in Theorem 2, for allr € T1(7). For this purpose
we fix a partitionz in I1p (1), D <n (resp.D < T), and we use the same notation
as in the former section, setting moreol;) = G (t;) — G(t,—1). We then show
that there exists som&’ such that

D
D
(33) ZE<SUDIZO) - Z(tk_1)|> < C/\/;,

k=1 tely

12 D |G(T)
=) E Z(t) — Z(ty— <2 )= ——=.
e <i“;f' 0 - 2-0l) =27\ 75

Therefore, we get the result applying Theorem 2 wite- CC’ (resp.B = 2C).
Next, to show (9), one needs to check condition (4) in Theorem 3, farall1(7).

respectively

PrROOF OF PROPOSITION 1. To prove (33), let us calF the common
conditional distribution function of theX;'s given that X; € ;. Let N =
Y"1 1x,er, be the number of observations fallingfinand letFy be the empirical
distribution of N observations falling irf;. We get for allr € I,

PNCObl c{USY
G (Ir)

Therefore,

and Fy(1) = %(G(z) — G(te-1).

E(sup|2(t) — 2(fk—l)|)
tely

(34) N N
< E(Sup—IFN(t) — F(t)l) —HE‘; — G(Ik)‘.

telpy N

For the first term on the right-hand side of (34), an upper bound can be derived
applying Massart’s inequality [20] t&' on I,

P(sulpu?N(z) —F()| > A|N> <2722 vy
tely
Integrating the Iat'ier inequality leads to
(35) B supr 1~ F(0]) < ¢n/2E(‘/,1—N).
te
A last control of (35)kcan be performed by the Cauchy—-Schwarz’s inequality,

leading to
E(supﬁlﬁm - F(r)|) < ﬁ,/ Gk
el I 2 n
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On the other hand, the second term on the right-hand side of (34) can be bounded
by the Cauchy—Schwarz’s inequality appliedNo~ B (n, G (I})). We thus obtain

(36) IE3(Su|0|z(t) - Z(tk_1)|> < <1+\/§) G
tely 2 n

We then obtain (33), since
D
$ [GU \E
=1 n n

To prove (9), one needs to sharpen the bound (36): actually, it gives the right
order of magnitude of the supremum on edglsuch thatG (1) > 1/n, but it is
too crude wherG (Iy) < 1/n. BothG andG are monotone, so that for dl|

E(suplZ(r) — Z(zk_1>|) <2G(Iy).

tely

Combining this inequality with (36) yields

E(sup|Z(t) — Z(tk_1)|> < min{ZG(Ik), (1++n/2)

tely

G (k)

" .
On the other hand, by a lemma of Devroye and Gyorfi (see [12], page 25),
G (i)

n 9

(37) E|Z(ty) — Z(ty—1)| = min{0.13G(Ik), 0.3
so there exists an absolute constarguch that (4) holds. I

PROOF OFPROPOSITION2. Let H andB be the processes defined @ 1]
by H=E(Z)andB=Z — H.

Theg;’s are independent, so that applying the Cauchy—Schwarz inequality, we
get

1 [nt]
E(SUplB(t) — B(tk_l)l) < ;E( > Ie,-|>
i=[

(38) 1<k nt_1l+1

< %wm +1).
On the other hang; is unimodal, so one can prove that
(39) SUp|H (1) — H (tx-1)| < 67M.

tely
D
$ i _ o
=1 n n

Since
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relations (39) and (38) lead to (33), witlf = 2(3M + o).

To prove (9), let us only considér such that{nz] # [n#;—1] [otherwise (4)
is trivial for all A > 0]. We use a Von Bahr—Esseen inequality (see, e.g., [27],
page 858), which leads to

(suplB() - B(-ol) < BEIB () — Bty
tely
Using (39) and the preceding display, the triangle inequality gives
6M
@0)  8B(Z() ~ Z0x-]) = B( SUpIB() ~ B ) ~ 82
tely

Using Markov’s inequality, we get

41) E|Z(t) — Z(t—1)| >~

U\/E>>\/E
4n -

2
P(|Z<zk> — Z)| = o

The last inequality arises from the fact tHat,) — Z(#x—1) is a centered Gaussian
variable whose variance is greater thefy n?.

Now, multiplying (41) by 4321 /+/2x and by summation with (40), there exists
an A’ such that

E<SU|O|B(I) - B(tk_1)|> < A'E|Z (%) — Z(tx-1)|.
tely

The triangle inequality and relations (39) and (41) lead to the fact that there
exists and such that condition (4) holds.OO

PROOF OFPROPOSITION3. Letus setforalt € I g*(¢) = 1x,,> g(¢) and
G*(t) = fé g*(s)ds, where X, is thenth order statistic of the sample. Setting
Z*=G — G*, we get

D
ZE(SUDIZ(I) - (tk1)|>

— tely
(42) k=1

D Cc

<> B(suplz*(0) - 27l + B [, wg0)ds ).
k=1 tel; 0

The process$Z*());>o IS a square integrable mean zero martingale. Its predictable

variation process is given by (see, e.g., [27], Theorem 2, page 312)

e

(43) (Z*) = f ' g(s)ds,

0 n(l—L—(1))
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whereL ™ is the left-hand continuous version of the empirical distribution function
of the X;’s. Using Doob’s inequality, relation (43) combined with the Cauchy—
Schwarz inequality yields for aM,

I[‘-‘3<SUIDIZ*(t) - Z*(tk—1)|) < 2VE((Z*)(t) — (Z*)(tk-1))

tely
2 1-L(s) g(s)
i E — d
fﬁlflk (éﬁﬁ)l_us))l—us) ’

Setting H as the common distribution function of tHé’s [we get 1— L =
(1- F)(1— H)], we thus apply Gill's inequality (see [27]), which leads to

* * 1_2 1 1 _ 1
E<t55,f’ 20~ 2" -0 < \/:ﬁ ——H<c)\/ 1 F)  1-Fap
Finally,

D D V12
44 YE Z¥(1) — Z* (1 ——.
(44) L (tseulfl () — Z% (1 1)|) S )

For the last term on the right-hand side of (42), we use the relations

P(Xp <s)=(1—(1—-H())(1-F(s))" and (1 — i)n <e™*

n
forall s <n.

Simple calculations yield
¢ T 1
45 E / Ix,, <s d ) S\/j—-
(45) ([ 2x=ssras) < /7 —
Combining (44) and (45) in (42) yields (33)0
PROOF OF PROPOSITION4. The processZ(r));>o0 IS a square integrable

mean zero martingale. Sin@é(t;) — N(fx—1) ~ P (G(Iy)), applying the Doob
and Cauchy—Schwarz inequalities thus leads to

E(sumzm - Z(rk_1>|) <2/G),

tely

12 D |G(T)
—~Y'E Z() — Zt—)| ) <2, = | —L.
e (f’e“,,'f" 0 - zt-vl) =27\ 75

This proves (33).

so that
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To prove (9), let us set for alt > 0 M(x) = N1(x) — x, where(N1(x))x>0
is the Poisson process with mean functiarRecall thatX ; = G(7;) is the jth
occurrence time ofN1(x)).>o0. Then let us sef = [x;_1, xx], wherex; = G ()
andxx_1 = G(t—1) and let(a;)o<i<m be the sequence of endpoints of a uniform
partition of J. Since N1 has independent increments, terandom variables
M(a;) — M(a;—1) are integrable i.i.d. mean zero variables and we can apply a
Von Bahr—Esseen inequality (see [27], page 858),

E( max |M(a;) — M(Xkl)l) < 8E|M (xx) — M (x-1)|.

1<i<m

Moreover,N1 is a cadlag process. Therefore, this inequality holds on the whole
interval J, when the partition’s step tends toward zero. We thus get

IE<SUDIM()C) - M(Xk_l)l) < 8E(IM (xx) — M (xx-1))

xeJ

and then

E(sumZ(r) - Z<tk_1>|) < 8E(1Z(0) — Z(t-1)]). 0

tely
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