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BANDWIDTH SELECTION FOR SMOOTH BACKFITTING
IN ADDITIVE MODELS

By ENNO MAMMEN® AND BYEONG U. PaRK?
University of Mannheim and Seoul National University

The smooth backfitting introduced by Mammen, Linton and Nielsen
[Ann. Satist. 27 (1999) 1443-1490] is a promising technique to fit additive
regression models and is known to achieve the oracle efficiency bound. In
this paper, we propose and discuss three fully automated bandwidth selection
methods for smooth backfitting in additive models. The first one is a penalized
least squares approach which is based on higher-order stochastic expansions
for the residual sums of squares of the smooth backfitting estimates. The
other two are plug-in bandwidth selectors which rely on approximations
of the average squared errors and whose utility is restricted to local linear
fitting. The large sample properties of these bandwidth selection methods are
given. Their finite sample properties are also compared through simulation
experiments.

1. Introduction. Nonparametric additive models are a powerful technique
for high-dimensional data. They avoid the curse of dimensionality and allow for
accurate nonparametric estimates also in high-dimensional settings; see Stone [20]
among others. On the other hand, the models are very flexible and allow for
informative insights on the influences of different covariates on a response
variable. This is the reason for the popularity of this approach. Estimation in this
model is much more complex than in classical nonparametric regression. Proposed
estimates require application of iterative algorithms and the estimates are not given
as local weighted sums of independent observations as in classical nonparametric
regression. This complicates the asymptotic analysis of the estimate. In this
paper we discuss practical implementations for the smooth backfitting algorithm.
Smooth backfitting was introduced in [9]. In particular, we will discuss data-
adaptive bandwidth selectors for this estimate. We will present asymptotic results
for the bandwidth selectors. Our main technical tools are uniform expansions of
the smooth backfitting estimate of ordep (n~1/2) that allow us to carry over
results from classical nonparametric regression.
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There have been three main proposals for fitting additive models: the ordinary
backfitting procedure of Buja, Hastie and Tibshirani [1], the marginal integration
technique of Linton and Nielsen [8] and the smooth backfitting of Mammen,
Linton and Nielson [9]. Some asymptotic statistical properties of the ordinary
backfitting have been provided by Opsomer and Ruppert [13] and Opsomer [12].
Ordinary backfitting is not oracle efficient, that is, the estimates of the additive
components do not have the same asymptotic properties as if the other components
were known. The marginal integration estimate is based on marginal integration
of a full dimensional regression estimate. The statistical analysis of marginal
integration is much simpler. In [8] it is shown for an additive model with two
additive components that marginal integration achieves the one-dimensichal
rate of convergence under the smoothness condition that the component functions
have two continuous derivatives. However, marginal integration does not produce
rate-optimal estimates unless smoothness of the regression function increases with
the number of additive components. The smooth backfitting method does not have
these drawbacks. It is rate-optimal and its implementation based on local linear
estimation achieves the same bias and variance as the oracle estimator, that is,
the theoretical estimate that is based on knowing other components. It employs
a projection interpretation of popular kernel estimators provided by Mammen,
Marron, Turlach and Wand [10], and it is based on iterative calculations of fits to
the additive components. A short description of smooth backfitting will be given
in the next two sections. This will be done for Nadaraya—Watson kernel smoothing
and for local linear fits.

For one-dimensional response variabiésandd-dimensional covariatek¥’ =

(X4,..., X" (i =1,...,n) the additive regression model is defined as
. d . .
(1.1) Yi=mo+ ) mj(X})+¢,
i=1
where X' = (Xi,..., X’) are random design points R?, ¢ are unobserved

error variables1, ..., my are functions fromR to R and mg is a constant.
Throughout the paper we will make the assumption the tupkese’) are
i.i.d. and that the error variables have conditional mean zero (given the
covariatesX’). Furthermore, it is assumed thE‘mj(Xj.) =0forj=1,...,d

and thatZ‘}=1 fj(Xj) =0 a.s. impliesf; = 0 for all j. Then the functionsn;

are uniquely identifiable. The latter assumption is a sufficient condition to avoid
concurvity as termed by Hastie and Tibshirani [5].

Our main results are higher-order stochastic expansions for the residual sums of
squares of the smooth backfitting estimates. These results motivate the definition of
a penalized sum of squared residuals. The bandwidth that minimizes the penalized
sum will be calledpenalized least squares bandwidth. We will compare the
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penalized sum of squares with the average weighted squared A86)r (

n d d 2
(12) ASE=n""Y wX){mo+ Y m;j(X)) —mo— Yy mi(X)t .
i=1 j=1 j=1
Herew is a weight function. We will show that up to an additive term which is
independent of the bandwidth the average weighted squared error is asymptotically
equivalent to the penalized sum of squared residuals. This implies that the
penalized least squares bandwidth is asymptotically optimal. The results for
Nadaraya—Watson smoothing are given in the next section. Local linear smoothing
will be discussed in Section 3.

In addition to the penalized least squares bandwidth choice, we discuss two
plug-in selectors. The first of these is based on a first-order expansiéStof
given in (1.2). This error criterion measures accuracy of the sum of the additive
components. An alternative error criterion measures the accuracy of each single
additive component,

n
ASE; =n"1Y w (X (X5 — m (X)),

i=1
Herew; is a weight function. Use 0ASE; instead ofASE may be motivated by a
more data-analytic focus of the statistical analysis. Additionally, a more technical
advantage holds for local linear smoothing. The first-order expansiokSgf
only depends on the corresponding single bandwidth and does not involve the
bandwidths of the other components. In particular, the plug-in bandwidth selector
based on the approximationAEE ; can be written down explicitly. For Nadaraya—
Watson backfitting estimates the bias of a single additive component depends
on the whole vector of bandwidths. Therefore an asymptotic expansia&of
involves the bandwidths of all components. Also for the global error criterion
ASE implementation of plug-in rules for Nadaraya—Watson smoothing is much
more complex. The bias part in the expansiorASE for the Nadaraya—Watson
smoothing has terms related to the multivariate design density, a well-known fact
also in the single smoother case, and the bias expression may not even be expressed
in a closed form. For these reasons, our discussion on plug-in bandwidths will be
restricted to local linear fits.

In classical nonparametric regression, the penalized sum of squared resid-
uals which we introduce in this paper is asymptotically equivalent to cross-
validation [4]. We conjecture that the same holds for additive models. The
approach based on penalized sum of squared residuals is computationally more
feasible than cross-validation. It only requires aie of the computing time that
is needed for the latter. In the numerical study presented in Section 5, we found
that the penalized least squares bandwidth is a good approximation of the stochas-
tic ASE-minimizer. It turned out that it outperforms the two plug-in bandwidths by
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producing the leasASE, while for accuracy of each one-dimensional component
estimator, that is, in terms &SE;, none of the bandwidth selectors dominates the
others in all cases. In general, plug-in bandwidth selection requires estimation of
additional functionals of the regression function (and of the design density). For
this estimation one needs to select other tuning constants or bandwidths. Quantifi-
cation of the optimal secondary tuning constant needs further asymptotic analysis
and it would require more smoothness assumptions on the regression and density
functions. See [15], [16] and [19]. In this paper, we do not pursue this issue for the
plug-in selectors. We only consider a simple choice of the auxiliary bandwidth.

In this paper we do not address bandwidth choice under model misspecification.
For additive models this is an important issue because in many applications the
additive model will only be assumed to be a good approximation for the true
model. We conjecture that the penalized least squares bandwidth will work reliably
also under misspecification of the additive model. This conjecture is supported
by the definition of this bandwidth. Performance of the plug-in rules has to be
carefully checked because in their definitions they make use of the validity of the
additive model.

There have been many proposals for bandwidth selection in density and
regression estimation with single smoothers. See [17] and [7] for kernel density
estimation, and [6] for kernel regression estimation. For additive models there
have been only a few attempts for bandwidth selection. These include [14] where
a plug-in bandwidth selector is proposed for the ordinary backfitting procedure,
[21] where generalized cross-validation is applied to penalized regression splines
and [11] where cross-validation is discussed for smooth backfitting.

In this paper we discuss smooth backfitting for Nadaraya—Watson smoothing
and for local linear smoothing. For practical implementations we definitely
recommend application of local linear smoothing. Local linear smooth backfitting
achieves oracle bounds. The asymptotic bias and variance of the estimate of
an additive component do not depend on the number and shape of the other
components. They are the same as in a classical regression model with one
component. This does not hold for Nadaraya—Watson smoothing. Nevertheless
in this paper we have included the discussion of Nadaraya—Watson smoothing.
This has been done mainly for clarity of exposition of ideas and proofs. Smooth
backfitting with local linear smoothing requires a much more involved notation.
This complicates the mathematical discussions. For this reason we will give
detailed proofs only for Nadaraya—Watson smoothing. Ideas of the proofs carry
over to local linear smoothing. In Section 2 we start with Nadaraya—\Watson
smoothing. Smooth backfitting for local linear smoothing is treated in Section 3.
Practical implementations of our bandwidth selectors are discussed in Section 4.
In Section 5 simulation results are presented for the performance of the discussed
bandwidth selectors. Section 6 states the assumptions and contains the proofs of
the theoretical results.
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2. Smooth backfitting with Nadaraya—Watson smoothing. We now define
the smooth Nadaraya—Watson backfitting estimates. The estimate of the compo-
nent functiorvz; in (1.1) is denoted by Y. We suppose that the covariat¥s
take values in a bounded intervgl. The backfitting estimates are defined as the
minimizers of the following smoothed sum of squares:

n d 2
(2.1) 2/ :Yf — g " — Zm;vw(uj)} Kp(u, X")du.
i=1"1 =1
The minimization is done under the constraints
(2.2) flmyw(uj)ﬁj(uj)duFo, j=1....d.
j
Here, I = I1 x --- x I; and Ky (u, x') = Kp,(u1,x%) - -+ - Ky, (ug, x5 is a

d-dimensional product kernel with factoks, ; (u, v;) that satisfy for alv; € I;
(23) /] Khj(uj,v_,-)dujzl.
i

The kernelk,; may depend also oj. This is suppressed in the notation. In (2.2)
p; denotes the kernel density estimate of the densjtpf X’j

n
(2.4) Piup)=n"Y Ky (uj, X5).
i=1

The usual choice foK ), (u, v;) with (2.3) is given by
K[lh7t(v; —u;j)]

(2.5) Kn,(uj,vj) = - .
U K  — wpldu;

Note that foru ;, v; in the interior of/; we have
Kn,(uj,vp)=h; Kb vy —uj)]

whenKk integrates to 1 on its support.
By differentiation one can show that a minimizer of (2.1) satisfies jffot
1,...,danduj EIJ'

n d
Z/I :Yi—n?{)VW—Znﬁﬁw(uk)}Kh(u,Xf)du_j:0,
i=1""-J k=1

and thus

n d
Z/I {Yl' —my" - Zrﬁ,ﬂVW(uk)}Kh(u,X")du =0,
i=1

k=1



BANDWIDTH SELECTION FOR BACKFITTING 1265

wherel_j =le~--XIj_1X]j+1X---X'Id andu_j :(u'l,...,uj_l,uj+1,...,
ug). Now, because of (2.3) we can rewrite these equations as

(2.6) " (uj) =i NW(u,)—Z/ " (u )Mduk_mg‘”,
k#j 1( 1)

@7  ayV=n1Yr,

where Dk (uj, ux) = n*lzl’.’lehj(uj,X?)th(uk,X,’;) is a two-dimensional
kernel density estimate of the marginal densgty, of (X", X;'(). Furthermore,
n?jv ¥ (u;) denotes the Nadaraya—Watson estimate

n
af W ) =Py Ky (g, XY
i=1
In case one does not use kernels that satisfy (2.3), equations (2.6) and (2.7) have
to be replaced by slightly more complicated equations; see [9] for details.
Suppose now that; = [0, 1], and define for a weight functiom and a constant
Cy >0

n
RSS(h) =n~1) 1(Cyn Y < Xh<1- Cyn~Yoforl<j<d

i=1
2.8 . )
(.8) x wXH YT =@V —myW(xi) — - —myV (X)),

n
ASE(h) =n"1Y UCyn P < Xi <1-Cyn Y for1<j <d)
i=1

(2.9) x wXHmd" +mf"V (x4 +m) "V (xh)

—mo—nu(Xl) — —md(Xd)} )

wherel(A) denotes the indicator which equals Jifoccurs and 0 otherwise. The
indicator function has been included in (2.8) and (2.9) to exclude boundary regions
of the design where the Nadaraya—Watson smoother has bias terms of ofcer

In the following Theorems 2.1 and 2.2 we will consider bandwidthshat are
smaller tharC’Hn_1/5. Because we assume that the kerkighas supporf—1, 1]

[see assumption (Al) in Section 6.1], boundary regions with higher-order bias
terms are then excluded. We now state our first main result. The assumptions can
be found in Section 6.

THEOREM 2.1. Suppose that assumptions (A1l)—(A4) apply for model (1.1)
and that m'" are defined according to (2.1) and (2.2). Assume that ; are
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bounded intervals(/; = [0, 1] wl.0.g.) andthat K, (u, v;) arekernelsthat satisfy
Kn;(uj,vj) =h7 K[h7Hvj — uj)] for hj < v; < 1—h; for afunction K and
Ky, (uj,vj)=0for [v; —u;| > h;. Thenwith C}; asin (2.8)and (2.9)and for all
constants Cy < C},;, we have uniformly for Cyn=Y° < h; < Cjn=%°
n
RSS(h) —n 1Y UCyn P < X, <1—Cyn™'°
i=1
(2.10) for 1< j <dyw(X')(e")?

n d
+ 2n_1{ 3 w(Xi)(si)z, {K(O) > %} — ASE(h) = 0,(n"%3).
i=1 j=1 J

Furthermore, for fixed sequences i with Cyn=Y° < h; < C,n=Y5, this differ-
enceisof order 0, (n=%19).

To state the second main result, igtth, u;), j =1,...,d, denote minimizers

of [{B(h,u) — Pr(h,u1) — - — Ba(h,us)}?p(u) du, where
d 3l 1
Blh,u) = Zl {m;(uj)aoT%p(u) + Em’;(uj)}h?fzzmr) dt.
iz

The functionsg;(h,u;), j =1,...,d, are uniquely defined only up to an additive
constant. However, their sum is uniquely defined. Define

d
PLS(h) = RSS(h):lJrZZ iK(O)}.
j:lnhf

THEOREM2.2. Under the assumptions of Theorem2.1,we have uniformly for
Cyn~ 15 < hj< C}{n_lﬁ,

ASE(D) = =Y w(X')(e')? [x2war 3L
= — w -

n i=1 =1 nhj
(2.11a) ) )

+ /, { 2 Bjh, uj)} w(u) p(u) du + o0, (n~ ),
j=1
PLS(h) — ASE(h)
= n_lz l(C}{n_l/S < Xj. <1-— C/Hn—l/s

(2.11b) =t

for 1< j <dyw(X")(e")?
+ Op(n_4/5).
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Now we define
hpLs = argminPLS(h),
hase = arg mMinASE (7).

Here and throughout the paper, the “argmin” runs okewith Cyn=1° <
hj < Cyn=Y5. 1t would be a more useful result to have some theory for a
bandwidth selector that estimates the optimal bandwidth over a range of rates, for
examplej; € [An™¢, Bn~"] for some prespecified positive constant$, A, B.
This would involve uniform expansions &SS(k) andASE(h) over the extended
range of the bandwidth, which undoubtedly makes the derivations much more
complicated. Thus, it is avoided in this paper.

The following corollary is an immediate consequence of Theorem 2.2.

COROLLARY 2.3. Under the conditions of Theorem 2.1

hpLs—has =0 (nfl/s)-

We conjecture thatips — hase) /hiase = 0, (n~Y/19). This is suggested by the
fact that for fixeds in Theorem 2.2 the error term,(n—“/5) can be replaced by
0 (n—9/10)

3. Smooth backfitting using local linear fits. The smooth backfitting local
linear estimates are defined as minimizers of

> :Yi ~ Z At ))
i=1
(3.1) ) )
— Do) (X - w/)} KpGu, X)) du.
j=1

Herem!l is an estimate of andm']"‘ Lis an estimate of its derivative.

By using slightly more compllcated arguments than those in Section 6 one can
show thatmj", ..., m5-* satisfy the equations

(5200 ) (%) ()
m;- (uj) " (u J)
LL
Py (ur)
—M;(u;)” Sy (ug, u])<ALLl )d“l’
l#/ (ur)
T S S [ 5w du
i=1 j=1

(3.3)
_ ZfALL L)) prus) du,.
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Here and below,

W) =n 3 K, <u,,X)( ! X )

= —uj (X’A—uj)2

1 X;—ul )

Sy up) =LY KiyGur, XK, (u,,X>( X —u
Xj—u jH

i=1

Piuj) = n—lthj (uj, X')(X5 —uj),
i=1

andp; is defined as in the last section. For egclhe estlmatem'-'- andm"" Lare

the local linear fits obtained by regressionidfonto X J; that is, these quantities
minimize

n
— ~LL1 i ‘
Z{Y’ — 5t (u) —m; () (X _”J)}thj(”f’XlJ')'

A detailed discussion on why (3.1) is equivalent to (3.2) and (3.3) can be
found in [9], where a slightly different notation was used. The definition
of mg",...,m;~' can be made unique by imposing the additional norming

conditions
(3.4) /ﬁLL(u,)p,(u,)duj+fALL Yup Huj)duj =0.

The smooth backfitting estimates can be calculated by iterative application
of (3.2). In each application the current versmnsmk'— A""l (I # j) are

plugged into the right-hand side of (3.2) and are used to upﬂ?&e”‘" ! The
iteration converges with geometric rate (see [9]). The number of iterations may be
determined by a standard error criterion. After the last iteration, a norming constant
can be subtracted from the last fitfﬁfj’fL so that (3.4) holds. Because of (3.4) this
yieldsmbt =n=1y0  Yi.

We now define the residual sum of squaR&S(k) and the average squared
error. This is done similarly as in (2.8) and (2.9). But now the sums run over the full
intervals/;. This differs from Nadaraya—Watson smoothing where the summation
excludes boundary values. For Nadaraya—Watson smoothing the boundary values
are removed because of bias problems. Let

(3.5) RSS(h)—n*Zw(X){Y’ gt — mst (X5 — - —m5h (XY,
i=1

ASE(h) =n~1 > w(XH{img +m1- (X)) + -+ ig-(X})

i=1

3.6 . .
(39 —mo—my(X}) — - —ma(X)}2
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As in Section 6 we define the penalized sum of squared residuals
4 1
PLS(h):RSS(h){l-i-ZE TK(O)}'
. nn;
j=1""J

The penalized least squares bandwikiths is again given by
hipLs = argminPLS(h).

Define
Bjuj) = lm”(u])/tzl((t)dt,

Analogous to Theorems 2.1, 2.2 and Corollary 2.3, we now get the following
results for local linear smoothing.

THEOREM 3.1. Suppose that assumptions (A1)—(A4) apply, that /; = [0, 1]
and that /" is defined according to (3.1) and (3.4) with kernels K (u, v;). The

kernels are supposed to satisfy the conditions of Theorem 2.1. Then, unlfor mly for
C}L[I”l_l/5 < hj < C}{I’l_l/S,

n n d
RSS(h) —n™ ) w(X)(e)? + 2n_1{ Zw(xf)(sf)Z] [K(O) 3 %]
=17

i=1 i=1

3.7
3.7) — ASE(h) =0,(n~%%),
. ) 41
ASE(h):{/Iw(u)p(u)E[(s) X :u]du}/[( (z)dz;%
(3.8)
d 2
+/I!Xih§ﬂj(uj)} w(u)p(u)du +o0,(n~4>),
iz
(3.9) PLS(h) — ASE(h) = Zw(X )2 4 0,(n~5),
i=1
(3.10) hpLs — hage = 0, (n~Y3).

For fixed sequences h with Cyn=Y° < h; < Cjyn=1/%, the expansions in
(3.7)—(3.9)hold up to order 0, (n=%19).

If the errors of the expansions in (3.7)—(3.9) would be of or@gn=/19),
uniformly in &, this would imply(fipLs — hase) /hase = O, (n~%19).
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Next we consider plug-in bandwidth selectors. As for penalized least squares,
plug-in bandwidth selectors may be constructed that approximately minimize
ASE(h). Let AASE(h) denote the nonstochastic first-order expansioASE (),
given in (3.8). Define

n d
AASE(h) :n—lzw(xi)(ﬁi)z{/Kz(t)dz} y L
i—1 ionh

2

+—Zw(X ){thA’/(X’ }2{/t21<(t)dt} :

Herenﬁ/} is an estimate ofn/j’ andz’ = Y! — m(X') are residuals based on an
estimateni (x) of mg 4+ m1(x1) + --- + my(x4). Choices ofA” andm will be
discussed below. A plug-in bandW|th'pL = (hPL’]_, ce hpL,d) |s defined by

(3.11) hipL = arg minAASE(h).

The plug-in bandwidthzp, will be compared with the theoretically optimal
bandwidth/gpt,

(3.12) hopt= arg minAASE(h).

There is an alternative way of plug-in bandwidth selection for another error
criterion. It is based on an error criterion that measures accuracy of each one-
dimensional additive component separately. Let

(3.13) ASE; (h) —n—lzwj XA (X5 —m (X)),

i=1
where w; is a smooth weight function. It may be argued t&E; is more
appropriate if the focus is more data-analytic interpretation of the data whereas
use of ASE may be more appropriate for finding good prediction rules. Our next
result shows that in first-ordekSE; (h) only depends ork;. This motivates a
simple plug-in bandwidth selection rule. An analogous result does not hold for
Nadaraya—Watson smoothing.

THEOREM 3.2. Under the assumptions of Theorem 3.1, it holds that,
uniformly for & with Cyn=Y% < < Cln= Y5 (1 <1 < d),

o 1
ASE;(h) = {/I.wj(uj)pj(uj)E[(Sl)le;-zuj]duj}{/Kz(t)dt}T

nh;
2
(3.14) + h4/ m’] (u) wj(u])pj(uj)duj{/IZK(t)dt}

+0P(n_4/5).
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The first-order expansion &SE; (k) in (3.14) is minimized by

) ) 1/5
g :n—1/5H /] wj () pj(u)E[(e)?|X} :uj]dujH /Kz(t)dt”

2--1/5
x [/Ijm;f(uj)zwj(uj)pj(uj)duj{/tzK(t)dt} ] |

We note thathopt defined in (3.12) is different fromhg, = (hgyi 1. - - - hgpra)-
Now this bandwidth can be estimated by

n 1/5
Iy, ; =n‘l/5[n‘12wj(x§)(€")2{/Kz(z)dt}]
i=1
(3.15) n e
X [”_lZwJ'(Xﬂ-)rﬁ}f(Xj-)z{/tZK(t)dt} ]
i=1

with an estimaten’; of m'] and residualg’ = Y — m(X') based on an estimate
m(x) of mg + m1(x1) + --- + mg(xg). Contrary tohpL, approximation of the
bandwidth selecton, does not require a grid search on a high-dimensional
bandwidth space or an iterative procedure with a one-dimensional grid search. See
the discussion at the end of Section 4.

Now we present a procedure for estimatmgg, which is required to implement
TipL andﬁ;;l_. A simple estimate ofn/j/ may be given by smoothed differentiation
of ﬁ?L. However, a numerical study for this estimate revealed that it suffers from
serious boundary effects. We propose to use an alternative estimate which is based
on a local quadratic fit. It is defined by

(3.16) ' (uj) = 2B.2(u;),

whereB; »(u ;) along withB; o(u ;) andB; 1(u ;) minimizes
/I.WJL-L(U]') — Biou;) — Bjap)w; —u;) — B2 —uj®?
x LIgi (wj —uj)ldvj.

The definitions ofip,. andﬁ;‘,l_ make use of fitted residuals. But these residuals
along with the local quadratic estimatem}’ defined in (3.16) involve application
of the backfitting regression algorithm. For these pilot estimates one needs to select
another set of bandwidths. Iterative schemes to select fully data-dependent plug-in
bandwidths are discussed in Section 4.

The next theorem states the conditions under WFﬁftf‘hns uniformly consistent.

This immediately implies thatp, — hopt andi — hio are of lower order.
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THEOREM3.3. Supposethat assumption (A5), in addition to the assumptions
of Theorem 3.1, holds. Then, for ¢; with ¢; — Oand ¢ 2n=2/5(logn)¥2 — 0, we
have uniformly for 0 <u; <1,

A'j((uj) — m/j{(uj) =0,(1).

Suppose additionally that

= Zw<x Wi (X') —mo —m1(X}) — - — ma(XDY2 = 0p (D).
i=1
Then
EPL - hopt =0p (”_1/5)-
If additionally
10 . . . .
=2 wiXUAXT) = mo —m1(X) — -+ = ma (X} = 0p(D),
i=1
then

I — hopt=0p (n~Y%).

We now give a heuristic discussion of the rates of convergenc(ézqu —
hopt j)/ hoptj and (hPL ; — hopt )/ hopt ;- For simplicity we consider only the
latter. Similar arguments may be applled to the former. Note that the rate of the
latter coincides with that of

n—lZwJ(Xl A//(Xl )Z_m//(Xl )2]

We now suppose thaﬁ”(u,) can be decomposed imm”(u,) + biagu;) +
stoch(u ), where biagu ; ) is a bias term and sto¢h;) is a mean zero part
consisting of local and global averages &f Under higher-order smoothness
conditions one may expect an orderg?ffor biagu ;) and an order o(ng5) 1/2
for stoch(u ;). Now

nY O X — X))
i=1
=n"1Y w;(X")biagX})? + 2171y " w;(X") biag X}) stochx’)
i=1 i=1

+n7 Y wi(xh) stochXh)? + 2071y w;(Xh)m'j(X) biag X7)
i=1 i=1

+2n7 1y w; (Xm'(X5) stoch X?).
i=1
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By standard reasoning, one may find the following rates of convergence for the five
terms on the right-hand side of the above equatgénn‘l/zgj n- gJ 3 gJ, n—1/2,
The maximum of these orders is minimized py~ n —1/7 'leading to(hpL,J —
WP/ WP = 0,(n=27).

The relative rated, (n=2/") for the plug-in bandwidth selectors is also achieved
by the fully automated bandwidth selector of Opsomer and Ruppert [14], and
is identical to the rate of the plug-in rule for the one-dimensional local linear
regression estimator of Ruppert, Sheather and Wand [18]. We note here that more
sophisticated choices of the constant factornot/? for the bandwidthg; would
yield faster rates such as#/13 or evenn—%/14, See [15, 16] or [19].

4. Practical implementation of the bandwidth selectors. We suggest use
of iterative procedures for approximation bhLs, hpL andh . We note that
use of hp. and h pL is restricted to local linear smooth backfrttlng FosL s
we propose use of the iterative smooth backfitting algorithm based on (2.6) for
Nadaraya—Watson smoothing and (3.2) for the local linear fit, and updating of
the bandwidthz ; when thejth additive component is calculated in the iteration
step. This can be done by computiRyS(z) for a finite number ofz;’s with
hi,....,hj—1,hjy1,...,hy being held fixed, and then by replacitg by the
minimizing value of# ;. Specifically, we suggest the following procedure:

Sep 0. Initializeh[o] forj=1,....,d.

Sepr. Find h[ r— = argmin, PLS(h[r b hgr 11],h,,hJJrl ,...,hgfl]) on a
grid ofhj,for]_l

The computing time for the above iterative procedure to fincs is R x d x
N x C whereR denotes the number of iterations, is the number of points on
the grid of each:; and C is the time for the evaluation d?LS (or equivalently
RSS) with a given set of bandwidths. This is much less than the computing time
required for the/-dimensional grid search, which %8¢ x C.

In the implementation of the iterative smooth backfitting algorithm, the estimate
m ; could be calculated on a grid &f. The integrals used in the updating steps of
the smooth backfitting can be replaced by the weighted averages over this grid. For
the calculation oPLS(%) we need ; (X’) These values can be approximated by
linear interpolation between the nerghborlng points on the grid. In the simulation
study presented in the next section we used a grid of 25 equally spaced points in
the intervall; =[O, 1].

Next we dISCUSS how to approximatg, for the local linear smooth backfitting.
We calculate the residuals by use of a backfitting estimate. This means that we
replacen=1 37_ w(X')(3)2 in AASE by RSSas defined in (3.5). Recall thRSS
involves the bandwidth = (41, ..., hg), and that the local quadratic estimat
defined in (3.16) depends on the bandwigthas well ash. The residual sum
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of squaresRSS and the estimat@’]f depend on the bandwidtlis of the smooth
backfitting regression estimates. To stress this dependenteandg;, we write
RSS(h) and A”( h, gJ) for RSS andﬁ respectively. We propose the following

iterative procedure folipy :

Sep 0. Initialize 1% = (h1Y, ..., 10,
Sepr. Compute on a grid of = (hl, e hg)

——[r] d 1
AASE (h) = RSS(h[’_l]){ / Kz(t)dt} > —

j=1

2
+ o Z w(X ): > ndwl(Xh: A, gg."”)

11 j=1

x {/zzK(z)dz}z

with gE-r_l] = chg.r_l] (c=1.5or 2, say), and then find

hV1 = arg MINAASE. ().

A more sophisticated choice @f; suggested by the discussion at the end of
Section 3 would bg; = ch5/7 for some properly chosen constant 0.

We also give an alternatlve algorithm to approximage, which requires only
a one-dimensional grid search. This would be useful for very high-dimensional
covariates:

Sep 0. Initialize 10 = (h[lol, e, hE,O]).
Sepr'. Forj=1,...,d, compute onagrid of

—=lrJ]

-1 [r—1] [r—1]
AA$ (1 ,...,hj l,hj,h]r+l,...,hdr )

_ RsS(h"Y) {/K (t)dt}{—-i-z e 1]}

hj e#j 1

1 i 2~ i -1 -1
wzlw(x‘){%mﬂx;;h“ L
1=

2
+ Z 2A// Xg,h[r l] [ ])}
£

2
x UzzK(t)dr} ,
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and then find

[r] e -1 [r—1] [r—1] [r—1]
h; = argminAASE (] N RN N s by 7).

n J+10
In the grid search fohg.’] we useh"=1 rather than(h[lr_l],...,h[/.’__ll],hj,
hg.’;ll], e ,hg_l]) for RSSandm; . The reason is that the latter requires repetition

of the whole backfitting procedure (3.2) for every point on the grid of the
bandwidth. Thus, it is computationally much more expensive than our second
proposal for approximatingpy . R

Finally, we give an algorithm to approximafé,l_d.. We suppose calculation
of the residuals by use of a backfitting estimate. This means that we replace
n~ Y w;i (X)) (E)?2in (3.15) byRSS. Thus iy is given by

R 1/5
Pt = n—1/5[Rss x { /KZ(z) dtH

n >1—1/5
X |:n—12wj(X§)fﬁ’j/(X;)2{[tzK(t)dt} } '
i=1

We propose the following iterative procedure fE;_f),_. Start with some initial
bandwidthshy, ..., hs and calculatent, ..., mL- with these bandwidths, and
compute RSS. Chooseg; = ch; (with ¢ = 1.5 or 2, say). Then calculate
my,...,m) by (3.16). PlugRSS and the computed values ﬁi;f(xg.)’s into (4.1),
which defines new bandwidtlig, ..., h;. Then the procedure can be iterated.

It was observed in the simulation study presented in Section 5 that the iterative
algorithms for approximatingpis, 7p. andﬁ’,;,_ converge very quickly. With the
convergence criterion 1@ on the relative changes of the bandwidth selectors, the
average (out of 500 cases) numbers of iterations for the three bandwidth selectors
were 427, 630 and 523, respectively. The worst cases had eight iterations.

(4.1)

5. Simulations. In this section we present simulations for the small sample
performance of the plug-in selectoksy, A’EL and the penalized least squares
bandwidthizp, s. We will do this only for local linear smooth backfitting.

Our first goal was to compare how much these bandwidths differ from their
theoretical targets. For this, we drew 500 datagat§ Y'), i = 1,...,n, with
n =200 and 500 from the model

(M1) Y  =mai(X)) 4+ ma(X5) + ma(Xh) + &',

where m1(x1) = x2, ma(x) = x3, ma(xz) = x3 and ¢ are distributed as
N(0,0.01). The covariate vectors were generated from joint normal distribu-
tions with marginalsv (0.5, 0.5) and correlationgp12, p13, p23) = (0,0, 0) and
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(0.5,0.5,0.5). Here p;; denotes the correlation betweéi and X ;. If the gen-
erated covariate vector was within the culte1], then it was retalned in the
sample. Otherwise, it was removed. This was done until arriving at the predeter-
mined sample size 200 or 500. Thus, the covariate vectors follow truncated normal
distributions and have compact suppi@t1]? satisfying assumption (A2). Both of

the kernelsk that we used for the backfitting algorithm andor estimatingn’;

by (3.16) were the biweight kernéf () = L(u) = (15/16)(1 — u?)?I;_1.1;(u).

The weight functiorw in (3.5) and (3.6) was the indicataru < [0, 1]), andw;

in (3.13) and (4.1) wa&(u; < [0, 1]).

Kernel den3|ty estimates of the densities of (ms,) — Iog(hASE i)
|Og(hp|_ i) = Iog(hASEJ) and Iogh PL.j ) — Iog(hAgE ;) are overlaid in Figures 1-3
for j =1, 2,3. The results are based on 500 replicates for the two choices of the
correlation values and of the sample sizes. The kernel density estimates were con-
structed by using the standard normal kernel and the common bandwi@thibe
iterative procedures described in Section 4ffprs, hpL andh L were used here.

In all cases, the initial bandwid#® = (0.1, 0.1, 0.1) was used Fohpy , the first
proposal with three-dimensional grid search was implemented. Wegred.5h

andg = 2h to estimaten”/ in the iterative procedures. We found there is little dif-
ference between these two choices, and thus present here only the results for the
caseg = 1.54. In each of Figures 1-3, the upper two panels show the densities of
the log differences for the sample size- 200, while the lower two correspond to

the cases where= 500.

Comparing the three bandwidth selectbrss, hpL andhpl_, one sees that the
penalized least squares bandwidth has the correct center while the two plug-in
bandwidths are positively biased towa?@l;E Furthermorehpy s are less variable
than/p, andh pL as an estimator of ae. This shows the penalized least squares
approach is superior to the other two methods in terms of estimatigg We
found, howeverhp, andh L are more stable and less biased as estimatdrggpf
andh0 » respectively.

Itis also interesting to compare the performance of the bandwidth selectors in
terms of the average squared error of the resulting regression estimator. Table 1
shows the means (out of 500 cases) of S andASE; for the three bandwidth
selectors First, it is observed thiag, s produces the IeasASE This means that
hpLs is most effective for estimating the whole regression function. Now, for
accuracy of each one-dimensional component estimator, none of the bandwidth
selectors dominates the others in all cases.AShi;, the penalized least squares
bandwidth does the best, while f&SE, and ASE3 the plug-inZjs, shows the
best performance. The backfitting estimates the centered true component functions
because of the normalization (3.4). ThuéL(xj) estimatesn ; (x;) — Emj(Xi),
notm ;(x;). We used these centered true functions to COMAGES; .

Table 1 also shows that the means of the average squared errors are reduced
approximately by half when the sample size is increased from 200 to 500.
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FiG. 1. Densities of log(h1) — log(hase 1) constructed by the kernel method based on 500
pseudosamples. The long-dashed, dotted and dot-dashed curves correspond to 11 = hp 51, hpL 1
and iy 4, respectively.

Although not reported in the table, we computédh; 200)/E (h j500) for the
three bandwidth selectors, Whe?rgn denotes the bandwidth selector for tfi
component from a sample of size We found that these values vary within the
range(1.20, 1.26) which is roughly(200/500~%/°. This means the assumed rate
O (n~/%) for the bandwidth selectors actually holds in practice. Now, we note that
the increase of correlation from 0 to50does not deteriorate much the means of
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Fic. 2. Densities of log(hy) — log(hase,2) constructed by the kernel method based on 500
pseudosamples. The long-dashed, dotted and dot-dashed curves correspond to /pis 2, ipL 2 and
h o, respectively.

the ASE and ASE ;. However, we found in a separate experiment that in a more
extremal case op;; = 0.9 the means of thSE and ASE; are increased by a
factor of 3 or 4. In another separate experiment where the noise levdl,ithat

is, the errors are generated fraw(0, 0.1), we observed that the means of #eE
andASE; are increased by a factor of 3 or 4, too. The main lessons on comparison
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Iy g, respectively.

of the three bandwidth selectors from these two separate experiments are the same

as in the previous paragraph.

Figure 4 visualizes the overall performance of the backfitting for the three
bandwidth selectors. For eadh= hase, hpLs, hpL, hpl_, we computedASE(h)
and ASE; (h) for 500 datasets and arranged the 500 valueg ef ASE(h) or
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TABLE 1
Averages of ASE(h) and ASE (h) (j = 1,2, 3) for i = hpis, hpL and i, based on
500 pseudosamples

hpLs hpL hy,

g=15n g=2h g=15h g=2h

Average n=200 p=0 0.00251 0.00347 0.00350 0.00471 0.00478
ASE p=05 0.00247 0.00362 0.00367 0.00513 0.00521
n=500 p=0 0.00130 0.00195 0.00199 0.00269 0.00277

p=05 0.00133 0.00209 0.00213 0.00294 0.00303

Average n=200 p=0 0.00107 0.00131 0.00133 0.00169 0.00172
ASE; p=05 0.00112 0.00150 0.00153 0.00207 0.00211
n=500 p=0 0.00045 0.00063 0.00065 0.00084 0.00088

p=05 0.00052 0.00076 0.00078 0.00103 0.00108

Average n=200 p=0 0.00104 0.00085 0.00085 0.00078 0.00078
ASE; p=05 0.00100 0.00079 0.00079 0.00072 0.00072
n=500 p=0 0.00044 0.00037 0.00037 0.00033 0.00033

p=05 0.00047 0.00038 0.00038 0.00034 0.00034

Average n=200 p=0 0.00112 0.00079 0.00079 0.00073 0.00073
ASE3 p=05 0.00121 0.00090 0.00090 0.00086 0.00086
n=500 p=0 0.00051 0.00038 0.00037 0.00034 0.00033

p=05 0.00061 0.00050 0.00050 0.00047 0.00047

ASE; (h) in increasing order. Call them1) < d(2) < --- < d(s00- Figure 4 shows

the quantile plotgi /500, d(;)}>°9 for the case where = 500 andp;; = 0.5. The
bandwidthg = 1.52 was used in the pilot estimation step for the two plug-in
bandwidths. The figure reveals that the quantile functioASE (%) for 7 = hpLs

is consistently below those for the two plug-in rules and is very close to that for
h = hase. FOrASE (1), none of the three bandwidth selectors dominates the other
two for all j, the result also seen in Table 1, but in any case the quantile function of
ASE; (hpLs) is closest to that oASE j (hase). We note that the guantile functions of
ASE; (hase) are not always the lowest sind@se = (hase.1, hase 2, hiase,3) does

not minimize each componentssE ;.

Asymptotic theory says that in first order the accuracy of the backfitting estimate
does not decrease with increasing number of additive components. And this also
holds for the backfitting estimates with the data-adaptively chosen bandwidths. We
wanted to check if this also holds for finite samples. For this purpose we compared
our model (/1) with three additive components with a model that has only one
component,

(M?2) Y =my(X)) +¢'.

We drew 500 datasets of sizes 200 and 500 from the modély @nd (/2).
The errors and the covariates at the correlation levelviere generated in the
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FIG. 4. Quantile functions of ASE(h) and ASE; (h) for hASE and the three bandwidth selectors.
Solid, long-dashed, dotted and dot-dashed curv% correspond to iase, hpLs, hpL and hpL,
respectively. The sample size was n = 500and the correlations between the covariates were all 0.5.

same way as described in the second paragraph of this Eection. The penalized least
squares bandwidth for the single covariate case, denotég ), was obtained
by minimizing

2K (0
Ple<h1>=Rssl<h1>{1+ ( )},

nhq
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TABLE 2
Averages of ASE1 (1) asan error criterion for estimating the first
component m 4, based on 500 pseudosampl es from the models (M 1) and (M 2)

i’PLS ﬁPLS(l) ﬁPL i’;L ﬁPL(l)
n=200 p=0 0.00107 0.00034 0.00131 0.00169 0.00029
(3.147) (4.517) (5.828)
p=05 0.00112 0.00033 0.00150 0.00207 0.00028
(3.394) (5.357)  (7.393)
n=500 p=0 0.00045 0.00015 0.00063 0.00084 0.00014
(3.000) (4.500)  (6.000)
p=05 0.00052 0.00014 0.00076 0.00103 0.00013
(3.714) (5.846)  (7.923)

Also given in the parentheses are the relative increasés{@ﬂi(ﬁ)} due to
the increased dimension of the covariates. The chgieel.5h was used for
the plug-in rules.

whereRSS; (h1) = n= 130 (YT — it (X; h1))? andn%'i'-( hy) is the ordinary
local linear fit for model §42) with bandwidthz1. The plug-in bandwidth selector,
hpL(1), for the single covariate case was obtained by a formula similar to the
one in (4.1), wheréRSSiis replaced byRSS; andif-, instead of the backfitting
estimatei’, is used to calculate the local quadratic estimate:f For hp (1),
an iterative procedure similar to those described in Section 4 was used here, again
with the ch0|ceg 1.5h. Table 2 showsE{ASEl(h)} for h = hpLs, hPLS(]_), hpL,
hPL and /’lp|_(1) Also, it gives the relatlve increases BfASE1(h)} due to the
increased dimension of the covariates. kprs 1, andipy (1) the one-dimensional
local linear estimateé: NLL and the noncentered regression functionwere used to
compute the values aﬁSEl

From Table 2, it appears that the increased dimension of the covariates has
some considerable effect on the regression estimates. The relative incré8gg of
for the penalized least squares bandwidth is smaller than those for the plug-in
rules, however. Also, one observes higher rates of increase for the correlated
covariates. An interesting fact is thEisL(l) is slightly better tharﬁpLs(l) in the
single covariate case. The results for the other component functions, which are not
presented here, showed the same qualitative pictures.

6. Assumptions, auxiliary resultsand proofs.

6.1. Assumptions. We use the following assumptions.

(A1) The kernelK is bounded, has compact supp@rt1.1], say), is symmetric
about zero and is Lipschitz continuous, that is, there exists a positive finite
constaniC such tha{K (t1) — K(t2)| < Clr1 — 12].
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(A2) Thed-dimensional vectoX’ has compact suppofi x - - - x I; for bounded
intervals/;, and its densityp is bounded away from zero and infinity on
Iy x --- x I;. The tupleg X', ¢') are i.i.d.

(A3) GivenX' the error variable’ has conditional zero mean, and for some 4
andC’ < oo

E[|€')7 X1 < C’ a.s.

(A4) The functionSm/Jf, p;. and(8/9x;)pjr(xj, xx) (1< j, k <d) exist and are
continuous.
(A5) The kernelL is twice continuously differentiable and has bounded support

([—1, 1], say).

6.2. Auxiliary results. In this section we will give higher-order expansions of
mYW andm'". These expansions will be used in the proofs of Theorems 2.1, 2.2

and 3.3. The expansions given in [9] are only of ordg(n—2/5). Furthermore,
they are not uniform ink. For the proof of our results we need expansions
of ordero,(n~/?). First, we consider the Nadaraya—Watson smooth backfitting
estimaten ) "
As in [9] we decomposéi )" into
ANW(MJ) _ Az_vw A(uj) JrnAisz B(uj)

where™"*> (= A, B) is defined by

_NW,S ~NW.S
(uj)=m; """ (uj)

m;
(6.1) P K, ug)
iz pjiu;)
wheremy VA =n 1Y el iy P =nm YL fmo + X9y m (X)) and

n
~NW,A _ 1 N
m; () =pjuj) n 12 Kp;(uj, X)e',
i=1

n d
Ay P ) =Py Y Ky, Xj.)[mo + ij(xj.)}.

i=1 j=1

~NW,B

Heresi} "*# and A;"W’B are related to the sum of the true function and the bias,

whereagii’ " andm’"** represent the “stochastic” part. In particula " *
andm " b do not depend on the error variables.

We now state our stochastic expansiongigf"-* andim?""”.
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THEOREM 6.1. Suppose that the assumptions of Theorem 2.1 apply, and
that m” "4 and m”Y"*# are defined according to (6.1). Then there exist random
variabI]&s Ry j(uj, h,X), dependingon 0<u; <1,h = (hy,...,hg) and X =
(X1, ..., X™) (but not on ¢), such that

n
(6.2a) WA ) =ah A )+t Y R g b, X)E
i=1

(6.2b) sup sup |Rn,i,j(uj, h, X)| = 0p(1),

O<u;<lCyn=15<hy,...hy<Cln=1/5
/
sup sup IRy, j(uj,h', X) — Ry j(uj, h, X)|

O<u;j<1Cyn=Y5<hy,hy,...hq,h/;<Cjn=1/5

(6.2¢c) J
=Y | —hjl0,(n*)  for somea > 0.
j=1

Furthermore, uniformly for Cyn=1° <h1, ..., hg < Clyn~Y>and0<u; <1,

63)  wy " =m ") £ Y et +opn ),
i=1

©.4) @Y Py =miwp)+ 0,3,
where r;; are absolutely uniformly bounded functions with
(6.5) Irij ') —rij(uj)| < Clu'; —uj]

for a constant C > 0. In particular, uniformly for Cyn=° <h; < Cjn=1/° and
hj < Uj <1- hj,

(6.6) Y™ ) = m )+ By ) + 0, (n729),
where 8 is chosen so that
/ﬁj(h’”j)pj(”j)duj
=—Vn,j
= 302 [ )y o)+ s el [ K o
This choice is possible because of [ (1, x) p(x) dx = — 2?21 Vaj-

We now come to the local linear smooth backfitting estimate. For a theoretical
discussion, we now decompose this estimate into a stochastic and a deterministic
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term. ForS = A, B, deflnemL"Sby

(Al ) =-(8) (e )
nAilTL,l,S(uj) 0 n~1|_|_15( uj)

(6.7) ! _LL, S(Ml)
—M (uj)~ Sij(up, uj )<ALL1 )duz,
ML S0 (35
(6.8) gt =n"ty v,

i=1
S ) piug) du; +f ALELS ) phu ) duj =0,

(6.9) j=1....d,
where Y5S = ¢ for § = A andmg + Z?Zlmj(Xj.) for S = B. Furthermore,

n?b"’s andais-Y5 are the local linear estimates of the function itself and its first
derivative, respectively, for the regressionsdf(for S = A) or mg + ml(Xﬂ) +
-+ mg(Xy)' (for S = B) ontoXi..
For the local linear smooth backfitting estimate, we get the following stochastic
expansions.

THEOREM6.2. Suppose that the assumptions of Theorem 3.1 apply, and that
wstS and w5 = A B) are defined according to (6.7)—(6.9).Then there

eX|st randomvanabl% RL- (uj,h, X) such that

n,i,j

(6.10a) @Ay =t ) +no 12Rn,,<u,~,h,x>sl‘,
i=1

(6.10b) sup sup |RL

O<u;<1Cyn=15<hy,...hy<Cjn=1/5

(uj, h, X)I = 0p(1),

n,i,j

(uj, b X) = RS, b, X))

n,i,j

sup sup |R-E

n,i,j
O<uj<lCyn=15<hy,h},....ha,h;<Cln=1/5

(6.10c) 4
=Y |W;—hj|0,(n*)  for somea > 0.

Furthermore, uniformly for Cyn=° <hy,...,hg < Cyn Y®and0<u; <1,

6.11) Ayt = w) +nmt Y e +op (),
i=1

6.12)  m Py =mju)) + 0,723,
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where rj- are absolutely uniformly bounded functions that satisfy the Lipschitz

condition (6.5). Furthermore, uniformly for Cyn=Y° <h; < Clun=Y>and h; <
uj <1—h;, wehave

6.13) 5P ) =mju)) + 3m (uj)hffzzl((t)dt+op(n—2/5).
6.3. Proofs.

PROOF OFTHEOREM 6.1. For an additive functiorf (x) = f1(x1) + --- +
fa(xq) we define

U f(x) = filx) + -+ fi—a(xj—1) + G + fira(xjr) + - + falxa),
where

fm»-sz(fﬂ””uk+zfmmmmm%
k

ke j Pixj)
Accordlng to Lemma 3 in [9], we have faVW-4(x) =iy "4 + @) VA (xp) +
iy A ()

o
VWA (x) = ZT T(x

Here, 7 = U, --- ¥ and

?(x):@d---qu[ml ) - Al +‘I’d[md 1 Ay - ~6V;V/14]

~NW,A ~NWA
+my (x) —

where, in a slight abuse of notation’ij(x) =m;(x;) andig ;j = [m;(x;) X
pj(xj)dx;.
We now decompose

o0 o
6.14) A" A ="V A + Y T E-a" ) + Y TRV A ),
s:O S=1

where VWA (x) = @l A xq) + -+ + i) "4 (xs). We will show that there

exist absolutely bounded functloms(x) with |a’(x) — a'(y)| < Cllx — y|| for
a constant such that

o n
(6.15) ZfsfﬁNW’A(x) =nflzai(x)8’. +0p(n71/2)
= i=1

uniformly for Cyn=°% < h; < Clyn=Y° and 0< x; < 1. A similar claim
holds for the second term on the right-hand side of (6.14). This immediately
implies (6.3).
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For the proof of (6.15) we show that there exist absolutely bounded fundtions
with |b' (x) — b’ (y)| < C||lx — y|| for a constantC such that

n
(6.16) TV Ax) =n"1Y b ()" +o0,(n7Y?),
i=1
o0 . o0 .
(6.17) ST " A) =3 T TRV A (x) + 0,3,
s=1 s=0

HereT =¥, --- VY41 and
U f(x) = fa(x0) + -+ fi—1(xj—1) + £77 () + fira(xjp) + - + fa(xa)
for an additive functionf (x) = fi(x1) + -+ - + fa(xg) with

EHES fo( >”Jk((”f")dk+2/fk<xk>pk<xk)dxk.
ki#j Piti k

Note that (6.15) follows immediately from (6.16) and (6.17), since

e ¢ e ¢)
Z ?Sn";‘lNW,A(x) — Z TSTn’jiNW,A(x) + Op(n—l/Z)
s=1 s=0

=n 1y [Z st’} (x)e' 4+ 0,(nY?).
i=1Ls=0

We prove (6.16) first. For this purpose, one has to consider terms of the form

(X, XK)
Skj(xj)z/pl—f NW, A(Xk)dxk
Pj(x;j)
n o~
-1 i pjk(xj?xk) i
=n e | —————Kp (xx, X}) dxi.
; i) PrCxr) k

We make use of the following well-known facts:

(6.18) Pir(xj, x0) = E{pjx(xj, x)} + 0,(n~3%/logn),
(6.19) Pi(xj) =E{p;(x;)} + 0,(n=?/°JIogn),

(6.20) (3/9x)Pjx(x;, xx) = E{(3/3x ;) Pjx(x;, x0)} + O, (n~ Y% logn),
(6.21) (3/9x))p;(x;) = E{(3/3x,)p;(x))} + O, (n">Vlogn),

uniformly for Cyn=Y° <hj, hy < Cyyn Y% and 0<x;,x, <1, 1<j,k<d.
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We now argue that
n . .yl )
Sej(xj)—nt Mgz
i=1 pj(x;)pre(X})
(6.22)

=n"1Y Aki(xj b h)E = o0, P,
i=1
uniformly in x;,h;, hy. From (6.18)—(6.21) and from the expansions of the
expectations on the right-hand sides of these equations we get

Akj(xj, hj, hi) = 0, (n=Y3),

uniformly in x;, h;, hg. Furthermore, we have, becauseEife'|®/2+3|x] < C
for somes > 0, C < 400, that for a sequencs, — 0

E[le'|1(Ie'| > n™®)|X'] < ean™>/®,
P(le|<n?Pforl<i<n)— 1

This shows that

n n
(6.23) n™ > Agi(xj hj e —nTEY D Ay (g by, el = 0, ()

i=1 i=1
uniformly inx;, i, hy, where

el =¢&'1(l'| <n®®) — E[¢'1(le'| < n?/%)| X",

Note now that, withX = (X*,..., X") and A = n'>sup, ; . . 5, |8k (x), hj,
hi)l,

n
P{nlz Arj(xj, hj, h)el > n3/5|X}
i=1

n
5 E[exp{n_s/loz Ao hj, hk)si}

i=1

X:| exp(—n/19)
< [T E{expin¥ 0N (x;, hj, hp)el} X} exp(—n'/10)

n
<[T[a+n"%°AF (xj. hj ) ELEL?|X Texpln =30 An~1/5202/%)]

< exp{AZ sup E[(ei)lei]exp(an/loA)} exp(—n*/10)

1<i<n

< M, exp(—n*/19)
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with a random variablé/,, = O,(1). Together with (6.23) this inequality shows
that (6.22) uniformly holds on any grid of valuesxof, #; andh; with cardinality
being of a polynomial order of. For a1, a2 > 0 large enough and for a random
variableR, = 0,(1), one can show

|Akj (X, 1 hy) — Agj(xj, by, )
< Rn(n“1|x} —Xj| +I’la2|h/j —hj| +I’la3|h;< — hg)).

This implies that (6.22) holds uniformly for@x; <1l and Cyn=Y° <hj, hy <
C},n~/®. By consideration of other terms similar 8; (x;), one may complete
the proof of (6.16).

We now come to the proof of (6.17). With the help of (6.18)—(6.21) one can
show by using the Cauchy—Schwarz inequality that

(6.24) sup  sup  |Tf(x)—Tfx)|=0,n YO logn).

I f1<10<x1,....x4<1
Here the first supremum runs over all additive functignaith | £2(x) p(x) dx <
1. (The slow rate is caused by the fact thats inconsistent at; in neighborhoods
of 0 and 1.) Furthermore, in [9] it has been shown that

(6.25) sup  sup [T f()|= 0,0,
IfII<10<xq,....x4<1
(6.26) sup ITf]l <1,
Ifll<1

where |Tf||? = [{Tf(x)}?p(x)dx. Claim (6.17) now follows from (6.16),
(6.24)—(6.26) and the fact

© 00 s—lA N
T -1H=YYT'T-T)1° "
s=1 s=1r=0

PROOF OF(6.2a)—(6.2c). Formula (6.2a) is given by the definitiomx w.4,

Claim (6.2b) follows as in the proof of (6.3). For the proof of (6.2c) one uses
bounds on the operator norm 6, — Ty, whereT}, is defined ag” with bandwidth
tuplehr. O

PROOF OF(6.4) AND (6.6). These claims follow by a slight modification
of the arguments used in the proof of Theorem 4 in [9]. There it has been
shown that (6.6) holds for fixed bandwidths, ..., h; and uniformly foru; in a
closed subinterval of0, 1). The arguments can be easily modified to get uniform
convergence foh; <u; <1—hj andCyn=Y> < hy,...,hg < Cyn=Y>. In
Theorem 4 in [9] a wrong value was given fgy, ;; see the wrong proof of (114)
in [9]. A correct calculation giveg, ; as stated here.[]
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The proof of Theorem 6.1 is completel]

PROOF OFTHEOREM 6.2. Theorem 6.2 follows with similar arguments as
in the proof of Theorem 6.1. Now one can use Theorémf49]. For the proof
of (6.13) note that we use another norming fof (cf. (6.9) with (52) in [9]).

Formula (6.13) follows from Theorent 4f [9] by noting that """ (u;) x
Piuj)duj=—y, j +o0p(n?°) with y, ; defined as in Theorent of @] O

PROOF OFTHEOREM2.1. Withw; = w(X")1(Cpyn~ > < X} <1-Cyn~1/°
forl1<j <d), we get

12 n . .
RSS<h)—ASE<h>=;Z w;(e')? ——Z w{m"W (X") —m(X"))e',

i=1 11

wherem™W (x) = 'V +m ) W (x1) +- - +m) W (xq) andm (x) = mo+m1(x1) +
4 mg(xg). We will show that uniformly folCyn=Y° < hq,..., hy < Cln=Y5,

(6.27) %izzlw,-{@NW’B(Xi) —m(X")}e' =0,(n"*°)

and

- Z ANWA (Xl

(6.28) L | .

== wi()?K(0) Y —— +0,(n"),
ni = nh;

where forS = A, B we write

ANWS (x) = ANW Sy n,izlvw S(xp) 4+ + ﬁgw S(xq).
The statement of Theorem 2.1 immediately follows from (6.27) and (6.28).
For the proof of (6.27) one can proceed similarly as in the proof of (6.22). Note
that

sup sup n?Plwi (m" W B (X" — m(XH} = 0,(2),

l<i<n Cyn=15<hy,...hq<Cyn=15

and that differences between valuesudf{m™ V-8 (X’) — m(X")} evaluated for
different bandwidth tuplesh’, ..., h)) and (h1,...,hy) can be bounded by
> |hf/. — hj|0,(n*) with « large enough.
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For the proof of (6.28) we note first that by application of Theorem 6.1,

_ZwlANW A(X )8
i=1

i=1 k=1

g Z Z wih; K (0)(e')

i=1j=1

p: Z Z wih 7 K R HXG = X5))e'et

ik j=1

zzzwl nlj(leh X)(S)

i=1j=1

ZZZwZ Rus j (X%, h, X)e'e

i#k j=1
=Ti(h) + -+ Ta(h).

Now, it is easy to check that uniformly f@tyn=° <hy,...,hy < Cyn

1 n d
_2 Z Wi nk](Xj’hX)g

-1/5

Ti(h) = Zw,(e)K(O)Z 1+0 n~Y2Jlogn )},

|T3(h)] < Op(1) ZZ( £)?=0,(mn™".
i=1

So, it remains to show
(6.29) To(h) = 0,(n~ %),
(6.30) Ta(h) = 0,(n~°).
We will show (6.29). Claim (6.30) follows by slightly simpler arguments. For
(6.29) it suffices to show that ford j <d
1 - 1 i i -
(6.31) T5;(h)= > Y owih KA = XDIn'nt = 0,(n™Y®),
i#k

where n’ = &'1(|¢'| < n®) — E[¢'1(l¢'| < n®)|X'] with 1/y <« < 1/4. The
constanty was introduced in assumption (A3). It holds tigt’ | < C’ for some
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C’ < o0; see assumption (A3). Note that
P(|¢'| > n® for somei with 1 <i <n) <nE|el['n"% = 0,
E[lg'|1(e'| > n*)|X'T < E[|')Y |X I~ D% < C'n= 07D = 0 (=%,
We apply an exponential inequality féf-statistics. Let
ey = E{27Hw; + winYOK [ HXG — X5 In'n* Yz,
My = sup2” (w; +won ORI XG — XDIn'n'y,

where the supremum in the definition &f, is over the whole probability space.
We note thak? = 0 (1) and M,, is bounded by a constant which @(n2*n/19).
According to Theorem 4.1.12 in [2], for constarisc, > 0 and 0< § < % — 2,

P(IT5 ()| = n~%>7%)

<r(

<c1 exp[—

n=tY win PR X — X1t
ik

> CHn1/10—5)

con1/10-8
Kn + {Mnn(1/10—8)/2n—1/2}2/3}'

This gives withp = (1 — 26 — 4«)/3 > 0 and a constantz > 0,
P(IT5; ()| = n_4/5_5) < c1exp(—c3n®).

Together with| Tzfj(h’) - Tzfj(h)| < cn“|h/j — hj| for ¢, > 0 large enough, this
implies (6.31). O

PROOF OF THEOREM 2.2. Claim (2.11a) follows from the expansions of
Theorem 6.1. For the proof of (2.11b) note that

RSS(h) =n"1 Y w(X) (62 +0,(2)

i=1
because of (2.11a) and Theorem 2.1]

PrROOF OFTHEOREMS 3.1-3.3. Theorems 3.1 and 3.2 follow with similar
arguments as in the proofs of Theorems 2.1 and 2.2. For the proof of Theorem 3.3,
one uses
(6.32) sup [m5-(vj) —m;(vj)| = 0,(n~%°vlogn).

O<v;<1
This can be shown by use of the expansions of Theorem 6.2. By standard
arguments in local polynomial regression (see [3], e.g.), it follows tha‘ﬁfjcﬁuj)
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defined in (3.16),
i (uj) —m'(uj)
=26 [ L1y 0y — )
s {5 () —mj(ug) —m' () (v; —uj)

= 3mj ) —uj)?}dv;,
whereL* is the so-calleg@quivalent kernel having the property thatZ*(v;) dv; =
JviL*(v;)dv;=0andf vJZ.L*(vj)dvj = 1. Application of (6.32) gives

& [ L71g7 ) = up s w)) — ;) dv; = 0, (D).

Now, the fact that the function itself and its first two derivatives: abof v(-) =
mij(-)y—mj(u;)— m’j(uj)(- —uj)— m’]f(uj)(- — u_,-)2/2 are all zero yields

& [ L1 s —upl

sc{m(v) —mjQuj) —m';uj)(j —uj) — 3m'}(u) vy — up)?}dv;

=o0(1). U
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