
The Annals of Statistics
2005, Vol. 33, No. 2, 806–839
DOI 10.1214/009053604000001165
© Institute of Mathematical Statistics, 2005

EXTREMAL QUANTILE REGRESSION1

BY VICTOR CHERNOZHUKOV

Massachusetts Institute of Technology

Quantile regression is an important tool for estimation of conditional
quantiles of a responseY given a vector of covariatesX. It can be used to
measure the effect of covariates not only in the center of a distribution, but
also in the upper and lower tails. This paper develops a theory of quantile
regression in the tails. Specifically, it obtains the large sample properties
of extremal (extreme order and intermediate order) quantile regression
estimators for the linear quantile regression model with the tails restricted to
the domain of minimum attraction and closed under tail equivalence across
regressor values. This modeling setup combines restrictions of extreme value
theory with leading homoscedastic and heteroscedastic linear specifications
of regression analysis. In large samples, extreme order regression quantiles
converge weakly to argmin functionals of stochastic integrals of Poisson
processes that depend on regressors, while intermediate regression quantiles
and their functionals converge to normal vectors with variance matrices
dependent on the tail parameters and the regressor design.

1. Introduction. Regression quantiles [Koenker and Bassett (1978)] estimate
conditional quantiles of a response variableY given regressorsX. They extend
Laplace’s (1818) median regression (least absolute deviation estimator) and
generalize the ordinary sample quantiles to the regression setting. Regression
quantiles are used widely in empirical work and studied extensively in theoretical
statistics. See, for example, Buchinsky (1994), Chamberlain (1994), Chaudhuri,
Doksum and Samarov (1997), Gutenbrunner and Jurečková (1992), Hendricks
and Koenker (1992), Knight (1998), Koenker and Portnoy (1987), Portnoy and
Koenker (1997), Portnoy (1991a) and Powell (1986), among others.

Many potentially important applications of regression quantiles involve the
study of various extremal phenomena. In econometrics, motivating examples
include the analysis of factors that contribute to extremely low infant birthweights
[cf. Abrevaya (2001)]; the analysis of the highest bids in auctions [cf. Donald
and Paarsch (1993)]; and estimation of factors of high risk in finance [cf. Tsay
(2002) and Chernozhukov and Umantsev (2001), among others]. In biostatistics
and other areas, motivating examples include the analysis of survival at extreme
durations [cf. Koenker and Geling (2001)]; the analysis of factors that impact
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the approximate boundaries of biological processes [cf. Cade (2003)]; image
reconstruction and other problems where conditional quantiles near maximum or
minimum are of interest [cf. Korostelëv, Simar and Tsybakov (1995)].

An important peril to inference in the listed examples is that conventional large
sample theory for quantile regression does not apply sufficiently far in the tails. In
the nonregression case, this problem is familiar, well documented and successfully
dealt with by modern extreme value theory; see, for example, Leadbetter, Lindgren
and Rootzén (1983), Resnick (1987) and Embrechts, Klüppelberg and Mikosch
(1997). The purpose of this paper is to develop an asymptotic theory for quantile
regression in the tails based on this theory. Specifically, this paper obtains the large
sample properties of extremal (extreme order and intermediate order) quantile
regression for the class of linear quantile regression models with conditional tails
of the response variable restricted to the domain of minimum attraction and closed
under the tail equivalence across conditioning values.

The paper is organized as follows. After an introductory Section 2, Section 3
joins together the linear quantile regression model with the tail restrictions
of modern extreme value theory. These restrictions are imposed in a manner
that allows regressors to impact the conditional tail quantiles of responseY

differently than the central quantiles. The resulting modeling setup thus covers
conventional location shift regression models, as well as more general quantile
regression models. Section 4 provides the asymptotic theory for the sample
regression quantiles under the extreme order condition,τT T → k > 0, whereτT is
the quantile index andT is the sample size. By analogy with the extreme order
quantiles in nonregression cases, the extreme order regression quantiles converge
to extreme type variates (functionals of multivariate Poisson processes that depend
on regressors). Our analysis of the caseτT T → k > 0 builds on and complements
the analysis ofτT T → 0 given by Feigin and Resnick (1994), Smith (1994),
Portnoy and Jurĕcková (1999) and Knight (2001) for various types of location shift
models. [Chernozhukov (1998) also studied some nonparametric cases.] Section 5
derives the asymptotic distributions of regression quantiles under the intermediate
order condition:τT T → ∞, τT → 0, thus providing a quantile regression analog
of the results on the intermediate univariate quantiles by Dekkers and de Haan
(1989). As with the intermediate quantiles in nonregression cases, the intermediate
order regression quantiles, and their functionals such as Pickands type estimators
of the extreme value index, analyzed in Section 6, are asymptotically normal with
variance determined by both the tail parameters and the regressor design. Section 7
provides an illustration, Section 8 concludes, and Section 9 collects the proofs.

2. The setting. SupposeY is the response variable inR, andX = (1,X′−1)
′

is a d × 1 vector of regressors (typically transformations of original regressors).
(Throughout the paper, given a vectorx, x−1 denotesx without its first
componentx1.) Denote the conditional distribution ofY givenX = x by FY (·|x).
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The present focus is onF−1
Y (τ |x) = inf{y :FY (y|x) > τ }, whereτ is close to 0.

Let there be a sample

{Yt ,Xt , t = 1, . . . , T } whereXt ∈ X,

generated by a probability model with a conditional quantile function of the
classical linear-in-parameter form

F−1
Y (τ |x) = x′β(τ) for all τ ∈ I, x ∈ X,(2.1)

where β(·) is a nonparametric function ofτ , which when I = (0,1) also
corresponds to the stochastic model with random coefficients:

Y = X′β(ε), ε
d= U(0,1),X ∈ X.(2.2)

Here it is necessary that (2.1) holds for

I = [0, η] for some 0< η ≤ 1 andx ∈ X, a compact subset ofRd .(2.3)

Different linear models (2.1) can be applied to different covariate regionsX [which
can be local neighborhoods of a givenx0, in which case the linear model (2.1)
is motivated as a Taylor expansion]. The model (2.1) plays a fundamental role
in the theoretical and practical literature on quantile regression mentioned in
the Introduction. Its appealing feature is the ability to capture quantile-specific
covariate effects in a convenient linear framework.

In the sequel, we combine the linear model (2.1) with the tail restrictions
from extreme value theory to develop applicable asymptotic results. It is of
vital consequence to impose these restrictions in a manner that preserves the
quantile-specific covariate effects, as motivated by the empirical examples listed
in the Introduction. For instance, in the analysis of U.S. birthweights, Abrevaya
(2001) finds that smoking and the absence of pre-natal care impact the low
conditional quantiles of birthweights much more negatively than the central
birthweight quantiles. The linear framework (2.1) is able to accommodate this
type of impact through the quantile-specific coefficientsβ(τ), whereβ−1(τ ), for τ

near 0, describes the effect of covariate factors on extremely low birthweights and,
say,β−1(1/2) describes the effect on central birthweights. Thus, when imposing
extreme value restrictions, it is important to preserve this ability.

The inference aboutβ(τ) is based on the regression quantile statisticsβ̂(τ )

[Koenker and Bassett (1978)] defined by the least asymmetric absolute deviation
problem:

β̂(τ ) ∈ arg min
β∈Rd

T∑
t=1

ρτ (Yt − X′
tβ) whereρτ (u) = (

τ − 1(u ≤ 0)
)
u,(2.4)

of which Laplace’s (1818) median regression is an important case withρ1/2(u) =
|u|/2. The statisticsβ̂(τ ) naturally generalize the ordinary sample quantiles to
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the conditional setting. In fact, the usual univariateτ -quantiles can be recovered
as the solution to this problem without covariates, that is, whenXt = 1. [E.g., if
τT ∈ (0,1), β̂(τ ) = Y(1), and ifτT ∈ (1,2), β̂(τ ) = Y(2), etc.]

In order to provide large sample properties ofβ̂(τ ) in the tails, we distinguish
three types of sample regression quantiles, following the classical theory of order
statistics: (i) an extreme order sequence, whenτT ↘ 0, τT T → k > 0, (ii) an
intermediate order sequence, whenτT ↘ 0, τT T → ∞, (iii) a central order
sequence, whenτ ∈ (0,1) is fixed, andT → ∞ (under which the conventional
theory applies). We consider̂β(τT ) under the extreme and intermediate order
sequences, and refer tôβ(τT ) under both sequences as theextremal regression
quantiles. In what follows, we omit theT in τT whenever it does not cause
confusion.

3. The extreme value restrictions on the linear quantile regression model.
This section joins the linear model (2.1) together with the tail restrictions from
extreme value theory, examines the consequences and presents examples.

Consider a random variableu with distribution functionFu and lower end-point
su = 0 or su = −∞. Recall [cf. Resnick (1987)] thatFu is said to have tail of
type 1, 2 or 3 if for

type 1: asz ↘ su = 0 or −∞,

Fu(z + va(z)) ∼ Fu(z)e
v ∀v ∈ R, ξ ≡ 0,

type 2: asz ↘ su = −∞,

Fu(vz) ∼ v−1/ξFu(z) ∀v > 0, ξ > 0,

type 3: asz ↘ su = 0,

Fu(vz) ∼ v−1/ξFu(z) ∀v > 0, ξ < 0,

(3.1)

wherea(z) ≡ ∫ z
su

Fu(v) dv/Fu(z), for z > su. The numberξ is commonly called
the extreme value index, andFu with tails of types 1–3 is said to belong to the
domain of minimum attraction. [a(z) ∼ b(z) denotes thata(z)/b(z) → 1 as a
specified limit overz is taken.]

CONDITION R1. In addition to (2.1), there exists an auxiliary linex 
→ x′βr

such that for

U ≡ Y − X′βr with sU = 0 or sU = −∞,(3.2)

and someFu with type 1, 2 or 3 tails,

FU(z|x) ∼ K(x) · Fu(z) uniformly in x ∈ X , asz ↘ sU ,(3.3)

whereK(·) > 0 is a continuous bounded function onX. Without loss of generality,
let K(x) = 1 atx = µX andFu(z) ≡ FU(z|µX).
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CONDITION R2. The distribution function ofX = (1,X′−1)
′, FX, has com-

pact supportX with EXX′ positive definite. Without loss of generality, letµX =
EX = (1,0, . . . ,0)′.

When Y has a finite lower endpoint, that is,X′β(0) > −∞, it is implicit in
Condition R1 thatβr ≡ β(0) so thatU ≡ Y − X′β(0) ≥ 0 has endpoint 0 by
construction. In the unbounded support case,X′β(0) = −∞ and is not suitable
as an auxiliary line, but existence of any other line such that Condition R1 holds
suffices.

Condition R1 is the main assumption. First, Condition R1 requires the tails of
U = Y − X′βr for someβr to be in the domain of minimum attraction, which
is a nonparametric class of distributions [cf. Resnick (1987) and Embrechts,
Klüppelberg and Mikosch (1997)]. In this sense, the specification Condition R1
is semiparametric. Examples 3.1 and 3.2 present some of the regression models
covered by Condition R1. Second, Condition R1 also requires that, for any
x′, x′′ ∈ X, z 
→ FU(z|x′) andz 
→ FU(z|x′′) are tail equivalent up to a constant.
This condition is motivated by the closure of the domain of minimum attraction
under tail equivalence [cf. Proposition 1.19 in Resnick (1987)].

Compactness ofX in Condition R1 is necessary, as the limit theory for
regression quantiles may generally change otherwise. In applications, compactness
may be imposed by the explicit trimming of observations depending on whether
Xt ∈ X. In this case the linear model (2.1) is assumed to apply only to values
of X in X. Clearly, the smallerX, the less restrictive is the linear model by
virtue of Taylor approximation [e.g., Chaudhuri (1991)]. Also, trimmingX to X
eliminates the impact of outlying values on the limit distribution and inference, as
it does in the case of the central regression quantiles. In some cases it should be
possible to makeX unbounded by imposing higher level nonprimitive conditions,
for example, similar to those on page 98 in Knight (2001). However, since we
view X as a “small” neighborhood over which the linear approximation (2.1) is
adequate, we do not pursue this extension.

Theorem 3.1 shows that the functionK(x) in Condition R1 can be represented
by the following types. Other properties of the linear quantile regression model
under Conditions R1 and R2 are obtained in Lemma 9.1 given in Section 9.1.

THEOREM 3.1 [Three types ofK(·)]. Under Conditions R1and R2, for some
c ∈ R

d ,

K(x) =


e−x′c, when Fu has type 1 tails, ξ = 0,

(x′c)1/ξ , when Fu has type 2 tails, ξ > 0,

(x′c)1/ξ , when Fu has type 3 tails, ξ < 0,

(3.4)

where µ′
Xc = 1 for type 2 and 3 tails, µ′

Xc = 0 for type 1 tails, and x′c > 0 for all
x ∈ X for types 2 and 3.
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REMARK 3.1. The conditionX′c > 0 a.s. for tails of types 2 and 3 arises from
the linearity assumption (2.1). Indeed, (2.1) imposes that the quantiles should not
cross: ifl > 1, thenX′(β(lτ )−β(τ)) > 0 a.s. Since by Lemma 9.1(v)X′(β(lτ )−
β(τ))/µ′

X(β(lτ ) − β(τ)) → X′c as τ ↘ 0, the noncrossing condition requires
X′c > 0 a.s. In location-scale shift models (cf. Example 3.2), the conditionX′c > 0
a.s. is equivalent to a logical restriction on the scale function (X′σ > 0 a.s.). In
location shift models (cf. Example 3.1), this condition is ordinarily satisfied since
X′c = 1 a.s. for tails of types 2 and 3.

REMARK 3.2. The general case whenP {K(X) �= 1} > 0 will be referred to
as the heterogeneous case, andc will be referred to as theheterogeneity index. The
special case with

K(X) = 1 a.s.(3.5)

will be referred to as thehomogeneous case. The latter amounts toc = 0 for type 1
tails, andc = e′

1 ≡ (1,0, . . . )′ for type 2 and 3 tails. Notice that in this caseX′c = 1
a.s. for types 2 and 3 andX′c = 0 a.s. for type 1 tails.

In developing regularity conditions which target regression applications, it is
natural to try to cover the most conventional regression settings and, hopefully,
more general stochastic specifications. The following examples clarify this
possibility.

EXAMPLE 3.1 (Location shift regression). Consider the location-shift model

Y = X′β + U,(3.6)

where U is independent ofX, and supposeU is in the domain of minimum
attraction. When the lower endpoint of the support ofU is finite, it is normalized
to 0. Clearly, this is a special case of Condition R1 whereX′βr ≡ X′β,U ≡
Y − X′β,K(X) = 1 a.s. The data generating process (3.6) has been widely
adopted in regression work at least since Huber (1973) and Rao (1965).
A variety of standard survival and duration models also imply (3.6) after a
transformation, for example, the Cox models with Weibull hazards and accelerated
failure time models [cf. Doksum and Gasko (1990)]. Also, (3.6) underlies many
theoretical studies of quantile regression. Hence, it is useful that Condition R1
covers (3.6).

EXAMPLE 3.2 (Location-scale shift regression). As a generalization of (3.6),
consider the stochastic equation

Y = X′β + X′σ · V, V is independent ofX,(3.7)



812 V. CHERNOZHUKOV

whereX′σ > 0 (a.s.) is the scale function, andV is in the domain of minimum
attraction with ξ �= 0. (3.7) implies the following linear conditional quantile
function

F−1
Y (τ |X) = X′β + X′σ · F−1

V (τ ).(3.8)

Then forX′βr ≡ X′β,U ≡ Y − X′βr = X′σ · V , we haveP(X′σ · V ≤ z|X) ∼
(X′σ)1/ξ · FV (z) as z ↘ 0 or −∞, so Condition R1 is satisfied withFu ≡
FV andK(X) = (X′σ)1/ξ . The data generating process (3.7) has been adopted
in, for example, Koenker and Bassett (1982), Gutenbrunner and Jurečková (1992)
and He (1997).

EXAMPLE 3.3 (Quantile-shift regression). To see that Condition R1 covers
more general stochastic models than (3.6) and (3.7), note that Condition R1
requires thatFU(u|X) or FV (u|X) be independent ofX only in the tails. In both
cases, these weaker independence requirements allowX, for example, to have a
negative impact on the high and low quantiles but to have a positive impact on the
median quantiles. In contrast, notice from (3.8) that (3.6) and (3.7) preclude such
quantile-specific impacts. Thus, Condition R1 preserves the heterogeneous impact
property of (2.1), allowing the impact of covariate factors on extreme quantiles to
be very different from their impact on the central quantiles.

4. Asymptotics of extreme order regression quantiles. Consider sequences
τi, i = 1, . . . , l, such thatτiT → ki > 0 as T → ∞, and the corresponding
normalized regression quantile statisticsẐT (ki), where

ẐT (k) ≡ aT

(
β̂(τ ) − βr − bT e1

)
,(4.1)

β̂(τ ) is the regression quantile,βr is the coefficient of the auxiliary line defined
in (3.2), e1 ≡ (1,0, . . . )′ ∈ R

d , and (aT , bT ) are the canonical normalization
constants, given by

for type 1 tails: aT = 1/a

[
F−1

u

(
1

T

)]
, bT = F−1

u

(
1

T

)
,

for type 2 tails: aT = −1/F−1
u

(
1

T

)
, bT = 0,

for type 3 tails: aT = 1/F−1
u

(
1

T

)
, bT = 0,

(4.2)

whereFu is defined in Condition R1. Moreover, consider the centered statistic

Ẑc
T (k) ≡ aT

(
β̂(τ ) − β(τ)

)
(4.3)

and the point process, forUt = Yt − X′
tβr ,

N̂(·) =
T∑

t=1

1
({aT (Ut − bT ),Xt } ∈ ·).(4.4)
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We will show that̂N(·) converges weakly to the Poisson process

N(·) =
∞∑
i=1

1({Ji,Xi} ∈ ·),(4.5)

with points{Ji,Xi} satisfying

(Ji,Xi , i ≥ 1) =


(
ln(�i) + X′

ic,Xi

)
, for type 1 tails,

(−�
−ξ
i X′

ic,Xi), for type 2 tails,

(�
−ξ
i X′

ic,Xi ), for type 3 tails,

i ≥ 1,(4.6)

where{Xi} is an i.i.d. sequence with lawFX,

�i ≡
i∑

j=1

Ej , i ≥ 1,(4.7)

and{Ej } is an i.i.d. sequence of unit-exponential variables, independent of{Xi}.
In the homogeneous case (3.5),Ji andXi are independent since

X′
ic =

{0, for type 1 tails,

1, for type 2 and 3 tails,
for all i ≥ 1.(4.8)

The following theorem establishes the weak limit ofẐT (k)’s as a function ofN.

THEOREM 4.1 (Extreme order regression quantiles).Assume Conditions
R1 and R2 and that {Yt ,Xt } is an i.i.d. or a stationary sequence satisfying the
Meyer type conditions of Lemma 9.4.Then as τT → k > 0 and T → ∞,

ẐT (k)
d→ Z∞(k) ≡ argmin

z∈Z

[
−kµ′

Xz +
∫

(x′z − u)+ dN(u, x)

]
,(4.9)

provided Z∞(k) is a uniquely defined random vector in Z, where (x′z −
u)+ = 1(u ≤ x′z)(x′z − u), Z = R

d for type 1 and 3 tails, and Z = {z ∈
R

d : maxx∈X z′x ≤ 0} for type 2 tails. Moreover,

Ẑc
T (k)

d→ Zc∞(k) ≡ Z∞(k) − η(k),(4.10)

where

η(k) =


c + lnke1, for type 1 tails,

−k−ξ c, for type 2 tails,

k−ξ c, for type 3 tails.

(4.11)

If Z∞(k) is a uniquely defined random vector for k = k1, . . . , kl ,(
ẐT (k1)

′, . . . , ẐT (kl)
′)′ d→ (

Z∞(k1)
′, . . . ,Z∞(kl)

′)′,(
Ẑc

T (k1)
′, . . . , Ẑc

T (kl)
′)′ d→ (

Zc∞(k1)
′, . . . ,Zc∞(kl)

′)′.
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REMARK 4.1 (The limit criterion function). The limit objective function
−kµ′

Xz + ∫
(x′z − u)+ dN(u, x) can also be written as

−kµ′
Xz +

∞∑
i=1

(X′
iz − Ji)

+.(4.12)

REMARK 4.2 (Homogeneous case). The limit result is simpler for the
homogeneous case (3.5), sinceN does not depend on the heterogeneity parameterc
due to (4.8).

REMARK 4.3 (Case with τT → 0). The linear programming estimator, which
corresponds toT τ → 0 in (2.4) (in comparison, hereτT → k > 0), was studied in
Feigin and Resnick (1994), Smith (1994), Portnoy and Jurec̆ková (1999), Knight
(1999, 2001) and Chernozhukov (1998) under various types of location-shift
specification (3.6). This estimator is the solution to the problem

max
β∈Rd

X′β such thatYt ≥ X′
tβ for all t ≤ T , X = T −1

T∑
t=1

Xt.(4.13)

The asymptotics of (4.13) and proofs differ substantively from the ones given here
for τT → k > 0. The analysis ofτT → k > 0 is specifically motivated by the
applications listed in the Introduction.

REMARK 4.4 (Uniqueness). The limit objective function is convex, and it is
assumed in Theorem 4.1 thatZ∞(k) is unique and tight. Lemma 9.7 shows that a
sufficient condition for tightness is the design condition of Portnoy and Jurec̆ková
(1999). Taking tightness as given, conditions for uniqueness can be established.
DefineH as the set of alld-element subsets ofN. Forh ∈ H , let X(h) andJ (h)

be the matrix with rowsXt , t ∈ h, and vector with elementsJt , t ∈ h, respectively.
Let H∗ = {h ∈ H : |X(h)| �= 0}. H∗ is nonempty a.s. by Condition R2 and is
countable. Application of the argument of Theorem 3.1 of Koenker and Bassett
(1978) gives that an argmin of (4.12) takes the formzh = X(h)−1J (h) for some
h ∈ H∗, and must satisfy the gradient condition

ζk(zh) ≡
(
kµX −

∞∑
t=1

1(Jt < X′
t zh)Xt

)′
X(h)−1 ∈ [0,1]d,(4.14)

where the arg min is unique iffζk(zh) ∈ D = (0,1)d . Thus, uniqueness holds for a
fixed k > 0 if

P
(
ζk(zh) ∈ ∂D for someh ∈ H∗) = 0.(4.15)

This condition is a direct analog of Koenker and Bassett’s (1978) condition for
uniqueness in finite samples; for instance, it is satisfied for a givenk when
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covariatesX−1t are absolutely continuous [cf. Portnoy (1991b)]. Thus, uniqueness
holds generically in the sense that for a fixedk adding arbitrarily small absolutely
continuous perturbations to{X−1t } ensures (4.15).

REMARK 4.5 (Asymptotic density). The density ofZ∞(k) can be stated fol-
lowing Koenker and Bassett (1978). Given{Xt }, h ∈ H∗, andJ (h), the probability
that Z∞(k) = X(h)−1J (h) equalsP {ζk(X(h)−1J (h)) ∈ D|{Xt }, J (h)}. Condi-
tional on{Z∞(k) = X(h)−1J (h)}, h ∈ H∗, andX(h), the density ofZ∞(k) at z
is fJ(h)|X(h)(X(h)z) · |X(h)|, wherefJ(h)|X(h)(u), u ∈ R

d , is the joint density of
J (h) conditional onX(h). Thus, the joint density ofZ∞(k) at z is

fZ∞(k)(z) = E

[ ∑
h∈H∗

fJ(h)|X(h)(X(h)z) · |X(h)|

× P
{
ζk

(
X(h)−1J (h)

) ∈ D|{Xt }, J (h)
}]

.

Finally, for fZ∞(k)(z) to be nondefective,Z∞(k) = Op(1) should be established
(cf. Lemma 9.7).

REMARK 4.6 (Univariate case). The density simplifies in the classical
nonregression case, that is, whenX = 1, in which case we also have the
simplification (4.8). In this case, an argmin is necessarily an order statistic, that
is, zh = J (h) = Jh; the gradient condition (4.14) becomes

ζk(zh) ≡
(
k −

∞∑
t=1

1(Jt < zh)

)
∈ [0,1];(4.16)

and the condition for uniqueness is thatζk(zh) ∈ D = (0,1). Then, fork �= �k�,
P {ζk(zh) ∈ D} = 1 if h = �k� andP {ζk(zh) ∈ D} = 0 if h �= �k�. Herek �= �k� is
needed for uniqueness. Hence,fZ∞(k)(z) = fJ�k�(z), which is the limit density of
the�k�th order statistics in the univariate case. Thus, uniqueness holds for almost
everyk ∈ (0,∞).

5. Asymptotics of intermediate order regression quantiles. In order to
develop asymptotic results for the intermediate regression quantiles, the following
additional Condition R3 will be added. First, existence of the quantile density
function ∂F−1

U (τ |x)/∂τ ≡ x′ ∂β(τ)/∂τ and its regular variation will be required.
Second, the tail equivalence of the conditional distribution functions, previously
assumed in Condition R1, will now be strengthened to the tail equivalence of
conditional quantile density functions.
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CONDITION R3. In addition to Conditions R1 and R2, forξ defined in (3.1),

(i)
∂F−1

U (τ |x)

∂τ
∼ ∂F−1

u (τ/K(x))

∂τ
uniformly in x ∈ X,

(ii)
∂F−1

u (τ )

∂τ
is regularly varying at 0 with exponent−ξ − 1.

(5.1)

In the homoscedastic case (3.5), Condition R3(i) amounts to
∂F−1

U (τ |x)

∂τ
∼

∂F−1
u (τ )

∂τ
uniformly in x ∈ X as τ ↘ 0. Condition R3(ii) is a von Mises type

condition; see Dekkers and de Haan (1989) for a detailed analysis of the
plausibility of Condition R3(ii).

For an intermediate sequence such thatτ ↘ 0 andτT → ∞, define, form > 1,

ẐT ≡ aT

(
β̂(τ ) − β(τ)

)
, aT ≡

√
τT

µ′
X(β(mτ) − β(τ))

.(5.2)

Consider alsok sequences{τ l1, . . . , τ lk}, wherel1, . . . , lk are positive constants,
and corresponding statistics(ẐT (l1)

′, . . . , ẐT (lk)
′)′, where, forl > 0 andm > 1,

ẐT (l) ≡ aT (l)
(
β̂(lτ ) − β(lτ )

)
, aT (l) ≡

√
τ lT

µ′
X(β(mlτ) − β(lτ ))

.(5.3)

The following theorem establishes the weak limits forẐT and ẐT (l)’s. Because
τ ↘ 0, the limits depend only on the tail parametersξ andc, as in Theorem 4.1,
but sinceτT → ∞, the limits are normal, unlike in Theorem 4.1.

THEOREM 5.1 (Intermediate order regression quantiles).Suppose Condi-
tions R1–R3hold, and that {Yt ,Xt } is an i.i.d. sequence or a stationary series
satisfying the conditions of Lemma 9.6.Then, as τT → ∞ and τ ↘ 0,

ẐT
d→ Z∞ = N(0,�0), �0 ≡ Q−1

H QXQ−1
H

ξ2

(m−ξ − 1)2 ,(5.4)

where, for ξ = 0, interpret ξ2/(m−ξ − 1)2 as (lnm)−2 and

QH ≡ E[H(X)]−1XX′, QX ≡ EXX′,(5.5)

H(x) ≡ x′c for type 2 and 3 tails, H(x) ≡ 1 for type 1 tails.(5.6)

In addition,(
ẐT (l1)

′, . . . , ẐT (lk)
′)′ d→ (

Z∞(l1)
′, . . . ,Z∞(lk)

′)′ = N(0,�),(5.7)

EZ∞(li)Z∞(lj )
′ = �0 × min(li, lj )/

√
li lj .(5.8)
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Finally, aT (l) can be replaced by
√

τ lT /X′(β̂(mlτ ) − β̂(lτ )) without affecting
(5.4)and (5.7),that is,

aT (l)
/( √

τ lT

X′(β̂(mlτ ) − β̂(lτ ))

)
p→ 1 where X = T −1

T∑
t=1

Xt.(5.9)

REMARK 5.1 (Scaling constants). It may be useful to have the same
normalizationaT in place ofaT (l) for the joint convergence. This is possible by
noting thataT /aT (l) → l−ξ /

√
l.

REMARK 5.2 (Homogeneous case). In the homogeneous case (3.5),
H(X) = 1, so the variance simplifies to

�0 = Q−1
X

ξ2

(m−ξ − 1)2 .(5.10)

REMARK 5.3 (Nonregression case). Theorem 5.1 extends Theorem 3.1 of
Dekkers and de Haan (1989), which applies to univariate quantiles, to the case
of regression quantiles. In fact, Theorem 3.1 of Dekkers and de Haan (1989) can
be specialized from Theorem 5.1 withX = 1 andm = 2. In this case the variance
becomes

ξ2

(2−ξ − 1)2 = 22ξ ξ2

(2ξ − 1)2 ,(5.11)

as Dekkers and de Haan (1989) found in their Theorem 3.1.

6. Quantile regression spacings and tail inference. The tail parameters
enter the limit distributions in Theorems 4.1 and 5.1, and estimation of the
tail index is an important problem of its own. The following results show how
to estimate them by applying Pickands (1975) type procedures to the quantile
regression spacings.

Consider the following parameters and statistics:

ϕ = x′(β̂(mτ) − β̂(τ ))

x′(β(mτ) − β(τ))
,

ρx,ẋ,l = x′(β(mlτ) − β(lτ ))

ẋ′(β(mτ) − β(τ))
,(6.1)

ρ̂x,ẋ,l = x′(β̂(mlτ ) − β̂(lτ ))

ẋ′(β̂(mτ) − β̂(τ ))
.

Theorem 6.1 shows that the quantile regression spacings of intermediate order
consistently approximate the corresponding spacings in the population [results (i)
and (ii)], which then reveal the tail parameters [results (iii) and (iv)].
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THEOREM 6.1 (Quantile regression spacings and tail inference).Suppose the
conditions of Theorem 5.1 hold. Then as τ ↘ 0, τT → ∞, for all l > 0, m > 1,
x, ẋ ∈ X,

(i) ϕ
p→ 1,

(ii) ρ̂x,ẋ,l − ρx,ẋ,l
p→ 0, ρx,ẋ,l → l−ξ · [H(x)/H(ẋ)], for H(x) defined in

Theorem 5.1,
(iii) ξ̂rp ≡ −1

ln l
ln ρ̂X,X,l

p→ ξ ,

(iv) ρ̂x,X,1
p→ x′c uniformly in x ∈ X (ξ �= 0),

(v) for π = µ′
XQ−1

H QXQ−1
H µX, l = m = 2, if

√
τT (ρX,X,l −

limT ρX,X,l) → 0,

√
τT (ξ̂rp − ξ)

d→ N

(
0, π · ξ2(22ξ+1 + 1)

(2(2ξ − 1) ln2)2

)
.(6.2)

REMARK 6.1 (Homogeneous case). The proposed estimatorξ̂rp consistently
estimates the tail indexξ in the heteroscedastic and homoscedastic quantile
regression models, and it is a regression extension of the Pickands (1975)
estimator. In fact, in the homoscedastic model (3.5) or whenX = 1, π =
µ′

X(EXX′)−1µX = e′
1(EXX′)−1e1 = 1, so the variance in (6.2) reduces to that

of the canonical Pickands estimator.

7. An illustrative example. The set of results established here may provide
reliable and practical inference for extremal regression quantiles. To illustrate this
possibility, the following simple example compares graphically the conventional
central asymptotic approximation, where, for fixedτ ∈ (0,1) asT → ∞,

√
T

(
β̂(τ ) − β(τ)

) d→ N

(
0,

1

f 2
U(F−1

U (τ))
(EXX′)−1τ(1− τ)

)
,(7.1)

to the extreme approximation (cf. Theorem 4.1). The comparison is based
on the following design:τ = 0.025, Yt = X′

tβ + Ut,Ut ∼ Cauchy , t =
1, . . . ,500, whereXt = (1,X′−1t )

′ ∈ R
5, X−1t are i.i.d. Beta(3,3) variables, and

β = (1,1,1,1,1). [A more detailed simulation study is given in Chernozhukov
(1999).] In this comparison, the parameters of the limit distribution are fixed at the
true values.

Figure 1 plots (a) quantiles of the simulated finite-sample distribution of
β̂1(0.025) and β̂2(0.025), (b) quantiles of the simulated extreme approximation
(cf. Theorem 4.1), (c) quantiles of the central approximation [cf. (7.1)]. Hereτ ×
T = 0.025× 500= 12.5. It can be seen that the extreme approximation accurately
captures the actual sampling distribution of both the intercept estimatorβ̂1(0.025)
and the slope estimator̂β2(0.025). In contrast, the central approximation (7.1) does
not capture asymmetry and thick tails of the true finite sample distribution. The
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FIG. 1. Panel A plots quantiles of the finite-sample distribution of β̂1(τ ) (horizontal axis) against
the quantiles of the extreme approximation (cf. Theorem 4.1) and the quantiles of the central
approximation (7.1) (vertical axis). Panel B plots quantiles of the finite-sample distribution of β̂2(τ )

(horizontal axis) against the quantiles of the extreme approximation (cf. Theorem 4.1) and the
quantiles of the central approximation (7.1) (vertical axis). The plot is based on 10,000simulations
of the regression model described in Section 7. The dashed line “ - - - -” denotes quantiles of the
central approximation, and the dotted line “ · · · · · ·” denotes quantiles of the extreme approximation
(this approximation almost coincides with “——”). The simulated quantiles of the finite-sample
distribution are given by the 45-degree line depicted as the solid line “——.”

intermediate approximation (cf. Theorem 5.1), performs similarly to the central
approximation and is not plotted. The central and intermediate approximations are
expected to perform better for less extreme quantiles.

8. Conclusion. The paper obtains the large sample properties of extreme
order and intermediate order quantile regression for the class of linear quantile
regression models with tails of the response variable restricted to the domain of
minimum attraction and closed under tail equivalence across conditioning values.
There are several interesting directions for future work. It would be important
to determine the most practical and reliable inference procedures that can be
based on the obtained limit distributions. Also, it would be interesting to examine
estimation of the extreme conditional quantiles defined through an extrapolation of
the intermediate regression quantiles. The nonregression case has been considered
in Dekkers and de Haan (1989) and de Haan and Rootzén (1993), and the approach
may prove useful in the quantile regression case. Another interesting direction
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would be an investigation of the Hill and other tail index estimators based on
regression quantiles.

9. Proofs.

9.1. Properties of the linear quantile regression model under Conditions
R1 and R2. Let

M ≡ any fixed compact sub-interval of(0,1) ∪ (1,∞),(9.1)

M ′ ≡ any other fixed compact sub-interval of(0,1) ∪ (1,∞),(9.2)

T (τ ′) ≡ {τ : τ = sτ ′, s ∈ L} whereτ ′ ↘ 0,(9.3)

L ≡ any fixed compact sub-interval of(0,∞).(9.4)

LEMMA 9.1 (Properties of the linear model under Conditions R1 and R2).
Conditions R1 and R2 imply that ( for a constant vector c specified in Theo-
rem 3.1):

(i) K(x) can be represented by the forms specified in Theorem 3.1.
(ii) aT (β(τ) − βr − bT e1) → η(k) for η(k) defined in Theorem 4.1.
(iii) Uniformly in (m, τ, x) ∈ M × T (τ ′) × X, as τ ′ ↘ 0,

β−1(τ ) − β−1r

F−1
u (mτ) − F−1

u (τ )
→ µ(m) =



c−1

m−ξ − 1
, for ξ < 0,

−c−1

m−ξ − 1
, for ξ > 0,

c−1

lnm
, for ξ = 0;

(9.5)

also β1(τ ) − β1r = F−1
u (τ ), and (β−1(τ ) − β−1r )/F

−1
u (τ ) → c−1 for ξ �= 0.

(iv) Uniformly in (m, τ, x) ∈ M × T (τ ′) × X, as τ ′ ↘ 0,

(x − µX)′(β(τ ) − βr)

µ′
X(β(mτ) − β(τ))

→



(x − µX)′ c
m−ξ − 1

, if ξ < 0,

(x − µX)′ −c
m−ξ − 1

, if ξ > 0,

(x − µX)′ c
lnm

, if ξ = 0.

(9.6)

(v) Uniformly in (m, τ, x) ∈ M × T (τ ′) × X, as τ ′ ↘ 0,

x′(β(mτ) − β(τ))

µ′
X(β(mτ) − β(τ))

→


x′c, if ξ < 0,

x′c, if ξ > 0,

1, if ξ = 0.

(9.7)
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(vi) Uniformly in (l,m, τ, x) ∈ M × M ′ × T (τ ′) × X, as τ ′ ↘ 0,

x′(β(lτ ) − β(τ))

x′(β(mτ) − β(τ))
→



l−ξ − 1

m−ξ − 1
, if ξ < 0,

1− l−ξ

1− m−ξ
, if ξ > 0,

ln l

lnm
, if ξ = 0.

(9.8)

Write Fu ∈ D(Hξ) if Fu is a c.d.f. in the domain of minimum attraction with
tail index ξ . Write Fu ∈ Rγ (0) if Fu is a regularly varying function at 0 with
exponentγ .

LEMMA 9.2 (Useful relations). Under Conditions R1 and R2, uniformly in
(m, l, τ ) ∈ M × M ′ × T (τ ′), as τ ′ ↘ 0:

(i) Suppose F1(z) ∼ F2(z) as z ↘ 0 or −∞ and F1 ∈ D(Hξ). Then F2 ∈
D(Hξ); F−1

1 and F−1
2 ∈ R−ξ (0); F1(F

−1
1 (τ )) ∼ τ and F2(F

−1
2 (τ )) ∼ τ ; and(

F−1
1 (mτ) − F−1

1 (τ )
) ∼ (

F−1
2 (mτ) − F−1

2 (τ )
)
.(9.9)

(ii) If FU(z|x) ∼ K(x)Fu(z) as z ↘ 0 or −∞ for each x ∈ X (compact), where
K(x) ∈ (0,∞) for all x ∈ X, then for each x ∈ X,

F−1
U (mτ |x) − F−1

U (τ |x) ∼ F−1
u (mτ/K(x)) − F−1

u (τ/K(x)).(9.10)

(iii) F−1
u (mτ)−F−1

u (τ )

F−1
u (lτ )−F−1

u (τ )
→ m−ξ−1

l−ξ−1
if ξ < 0, 1−m−ξ

1−l−ξ if ξ > 0, lnm
ln l

if ξ = 0; for

Fu ∈ D(Hξ).

(iv) F−1
u (lmτ)−F−1

u (lτ )

a(F−1
u (τ ))

→ lnm if Fu ∈ D(H0), where a(·) is the auxiliary

function defined in (3.1).

PROOF. Results (i), (iii) and (iv) are well known [cf. de Haan (1984) and
Resnick (1987), Chapters 1 and 2]. Result (ii) holds from (i) pointwise inx. �

PROOF OFLEMMA 9.1. Claim (i): The proof consists of two steps, where we
use notation(L,M,T (τ ′), τ ′) as defined in (9.1)–(9.4).

STEP 1. In this step all of the results hold uniformly in(m, τ, x) ∈ M ×
T (τ ′) × X as τ ′ ↘ 0, but we shall suppress this qualification for notational
simplicity. By construction in Condition R1,x′(β(τ ) − βr) ≡ F−1

U (τ |x) and
µ′

X(β(τ) − βr) ≡ F−1
U (τ |µX) ≡ F−1

u (τ ). Hence,

Bτ (x,m) ≡ (x − µX)′(β(τ ) − βr)

µ′
X(β(mτ) − β(τ))

≡ F−1
U (τ |x) − F−1

u (τ )

F−1
u (mτ) − F−1

u (τ )
.(9.11)
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We would like to show that, for eachx ∈ X,

Bτ (x,m) → B(x,m) ≡



(1/K(x))−ξ − 1

m−ξ − 1
, if ξ < 0,

1− (1/K(x))−ξ

1− m−ξ
, if ξ > 0,

ln(1/K(x))

lnm
, if ξ = 0.

(9.12)

We will show (9.12) for the caseξ < 0 only; others follow similarly. Fix
any x ∈ X. By Condition R1 and Lemma 9.2(i),FU(F−1

U (τ |x)|x) ∼ τ . Hence,
by Condition R1,K(x) · Fu(F

−1
U (τ |x)) ∼ τ as τ ′ ↘ 0. Therefore, there exist

sequences of constantsKτ(x) andK ′
τ (x) such that

F−1
u

(
τ/Kτ (x)

) ≤ F−1
U (τ |x) ≤ F−1

u

(
τ/K ′

τ (x)
)

(9.13)
whereKτ(x) → K(x) andK ′

τ (x) → K(x).

Therefore,

F−1
u (τ/Kτ (x)) − F−1

u (τ )

F−1
u (mτ) − F−1

u (τ )
≤ Bτ (x,m)

(9.14)

≤ F−1
u (τ/K ′

τ (x)) − F−1
u (τ )

F−1
u (mτ) − F−1

u (τ )
.

Suppose thatK(x) �= 1. By Lemma 9.2(iii),

F−1
u (τ/Kτ (x)) − F−1

u (τ )

F−1
u (mτ) − F−1

u (τ )
→ (1/K(x))−ξ − 1

m−ξ − 1
= B(x,m),(9.15)

and, likewise, conclude forK ′
τ (x) in place of Kτ(x). Therefore,Bτ (x,m) →

B(x,m) when K(x) �= 1. To show thatBτ (x,m) → B(x,m) also holds for
K(x) = 1 with B(x,m) = 0, let κ ′ and κ ′′ be any positive constants such that
κ ′ < 1< κ ′′. By monotonicity of the quantile function, for all sufficiently smallτ ′,

F−1
u (τ/κ ′′) − F−1

u (τ )

F−1
u (mτ) − F−1

u (τ )
≤ F−1

u (τ/Kτ (x)) − F−1
u (τ )

F−1
u (mτ) − F−1

u (τ )
(9.16)

≤ F−1
u (τ/κ ′) − F−1

u (τ )

F−1
u (mτ) − F−1

u (τ )
.

By Lemma 2(iii), asτ ′ ↘ 0, the upper and lower bounds in (9.16) converge to

(1/κ ′′)−ξ − 1

m−ξ − 1
and

(1/κ ′)−ξ − 1

m−ξ − 1
.(9.17)
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If in (9.17) we letκ ′, κ ′′ → 1, then expressions in (9.17)→ 0. Therefore, since
κ ′ andκ ′′ can be chosen arbitrarily close to 1, it follows from (9.16) and (9.17)

that F−1
u (τ/Kτ (x))−F−1

u (τ )

F−1
u (mτ)−F−1

u (τ )
→ 0 asτ ′ ↘ 0. Likewise, conclude forK ′

τ (x) in place

of Kτ(x). Therefore,Bτ (x,m) → B(x,m) = 0 whenK(x) = 1.

STEP 2. By Step 1, for eachx ∈ X, uniformly in (m, τ) ∈ M × T (τ ′)
asτ ′ ↘ 0,

Bτ (x,m) = (x − µX)′(β(τ ) − βr)

µ′
X(β(mτ) − β(τ))

→ B(x,m).(9.18)

Since (a)B(x,m) is finite and continuous inx over X by conditions imposed on
K(x) in Condition R1, and (b)Bτ (x,m) is linear in x, the relation (9.18) also
holds uniformly inx ∈ X. Recall that(x − µX)1 = 0. Since(x − µX)−1 ranges
over a nondegenerate subset ofR

d−1, (9.18) implies

β−1(τ ) − β−1r

µ′
X(β(mτ) − β(τ))

→ µ(m),(9.19)

uniformly in (m, τ) ∈ M × T (τ ′) asτ ′ ↘ 0, whereµ(m) is some vector of finite
constants. Hence,B(x,m) is affine in (x − µX). Note also that(x − µX) =
(0, x′−1)

′. Therefore, ifξ = 0,B(x,m) affine andB(x,m) = − lnK(x)/ lnm imply

K(x) = e(x−µX)′c = ex′−1c−1 = ex′c for all x iff c1 = 0. Whenξ < 0,B(x,m) affine
andB(x,m) = (K(x)ξ −1)/(m−ξ −1) imply K(x) = (1+ (x −µX)′c)1/ξ , which
equals(x′c)1/ξ for all x iff c1 = 1. Likewise, conclude forξ > 0. This completes
the proof of claim (i).

Claim (iii) follows directly from (9.19) and the preceding paragraph.
Claim (iv) is verified by substituting the forms ofK(x) found above into (9.18).
Claim (v) holds pointwise inx by Lemma 9.2(ii) and (iii). Since the left-hand

side in (9.7) is linear inx andX is compact, it also holds uniformly inx ∈ X.
A combination of Lemma 9.2(iii) with claim (v) implies claim (vi).
Claim (ii). If ξ < 0, by claim (iii) uniformly in k in any compact subset of

(0,∞) asT → ∞,

aT

(
β

(
k

T

)
− βr

)
(9.20)

∼ aT cF−1
u

(
k

T

)
= cF−1

u

(
k

T

)/
F−1

u

(
1

T

)
→ k−ξ c,

since by Lemma 9.2(i)F−1
u ∈ R−ξ (0); similarly, if ξ > 0,

aT

(
β

(
k

T

)
− βr

)
(9.21)

∼ −aT cF−1
u

(
k

T

)
= −cF−1

u

(
k

T

)/
F−1

u

(
1

T

)
→ −k−ξ c.
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If ξ = 0, by c1 = 0, Lemma 9.2(i), (iv) and claim (iii) [usingm = e in µ(m)], we
have that uniformly ink in any compact subset of(0,∞),

aT

(
β

(
k

T

)
− βr − bT e1

)
∼ 1

a(F−1(1/T ))
(9.22)

×
[
c
(
F−1

u

(
e

k

T

)
− F−1

u

(
k

T

))
+ e1

(
F−1

u

(
k

T

)
− F−1

u

(
1

T

))]
→ c ln e + e1 lnk = c + e1 lnk. �

9.2. Proof of Theorem 3.1. Follows from Lemma 9.1(i). �

9.3. Proof of Theorem 4.1.

Part 1. Referring to (2.4), notice thatZT (k) defined in (4.1) solves

ẐT (k) ∈ argmin
z∈Rd

[
1

aT

T∑
t=1

ρτ

(
aT (Ut − bT ) − X′

t z
)]

(9.23)

[where z ≡ aT (β − βr − bT e1)]. Rearranging terms, the objective function
becomes

1

aT

[
−τT X′z −

T∑
t=1

1
(
aT (Ut − bT ) ≤ X′

t z
)(

aT (Ut − bT ) − X′
t z

)
(9.24)

+ τ ·
n∑

t=1

aT (Ut − bT )

]
.

Mutiply (9.24) byaT and subtract

T∑
t=1

1
(
aT (Ut − bT ) ≤ −δ

)(−δ − aT (Ut − bT )
) +

T∑
t=1

τaT (Ut − bT )

(9.25)
for someδ > 0,

which does not affect optimization, and denote the new objective function
QT (z, k):

QT (z, k) ≡ −τT X′z +
T∑

t=1

lδ
(
aT (Ut − bT ),X′

t z
)
,(9.26)

where

lδ(u, v) ≡ 1(u ≤ v)(v − u) − 1(u ≤ −δ)(−δ − u) for δ > 0.(9.27)
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Since it is a sum of convex functions inz, QT (z, k) is convex in z. The
transformations make (as shown later)QT a continuous functional of the point
procesŝN:

QT (z, k) = −τT X′z +
∫
E

lδ(j, x
′z) dN̂(j, x),(9.28)

where the point process

N̂(·) ≡ ∑
t≤T

1
{(

aT (Ut − bT ),Xt

) ∈ ·}(9.29)

is taken to be a random element of the metric spaceMp(E) of point processes
defined on the measure space(E,E) and equipped with the metric induced by the
topology of vague convergence [cf. Resnick (1987)].

It will suffice to restrict our attention to underlying measure spaces(E,E) of
the form

E =


E1 ≡ [−∞,∞) × X, for type 1 tails,

E2 ≡ [−∞,0) × X, for type 2 tails,

E3 ≡ [0,∞) × X, for type 3 tails,

(9.30)

with σ -algebraE generated by the open sets ofE. The topology onE1, E2 andE3
is assumed to be standard so that, for example,[−∞, a] × X is compact inE2 for
a < 0 and inE1 for anya < ∞.

Part 2 shows that, for type 1 and 3 tails, the marginal weak limit ofQT is a finite
convex function inz:

Q∞(z, k) = −kµ′
Xz +

∫
E

lδ(j, x
′z) dN(j, x), z ∈ R

d,(9.31)

whereN is the Poisson point process defined in the statement of Theorem 4.1.
Part 2 also shows that, for type 2 tails, the marginal weak limit ofQT is a finite

convex function inz:

Q∞(z, k) = −kµ′
Xz +

∫
E

lδ(j, x
′z) dN(j, x)

(9.32)

for z ∈ ZN ≡
{
z ∈ R

d : max
x∈X

x′z < 0
}
,

whereN is the Poisson point process defined in the statement of Theorem 4.1, and

Q∞(z, k) = +∞ for z ∈ ZP ≡
{
z ∈ R

d : max
x∈X

x′z > 0
}
.(9.33)

The functionQ∞(z, k) is convex andlδ(j, x′z) = (j − x′z)+ ≥ 0 whenj ≥ −δ.
Hence,Q∞(z, k) is also well defined over entireZ = {z ∈ R

d : maxx∈X x′z ≤ 0},
although it may equal+∞ atz : maxx∈X x′z = 0. Also, note thatZN ∪ZP is dense
in R

d .
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Recall the convexity lemma [cf. Geyer (1996) and Knight (1999)], which states:
Suppose (i) a sequence of convex lower-semicontinous functionsQT :Rd → R
marginally converges toQ∞ :Rd → R over a dense subset ofR

d , (ii) Q∞ is finite
over a nonempty open setZ0, and (iii) Q∞ is uniquely minimized at a random
vectorZ∞. Then any argmin ofQT , denoted̂ZT , converges in distribution toZ∞.

We showed (i) and (ii) in Step 2, and we assumed (iii). (A sufficient condition
for uniqueness is given in Remark 4.4.) Hence, application of the convexity lemma
to our case gives

ẐT (k)
d→ Z∞(k) ≡ argmin

z∈Rd

Q∞(z, k).(9.34)

Note also that, for type 2, tails, the argminZ∞(k) necessarily belongs toZ = {z ∈
R

d : maxx∈X x′z ≤ 0}. This gives us the conclusion stated in Theorem 4.1 upon
noting thatQ∞(z, k) differs from the limit objective function of Theorem 4.1 only
by a finite random variable that does not depend onz.

Part 2. It remains to verify that (I) there exists a nonempty open setZ0 such
that Q∞(z, k) is finite a.s. for allz ∈ Z0 and (II) Q∞(·, k) is, indeed, the weak
marginal limit ofQT (·, k).

To show (I), when tails are of type 1 and 3, chooseZ0 as any open bounded
subset ofRd ; when tails are of type 2, additionally requireZ0 ⊂ ZN for eachl

(possible by compactness ofX). For anyz ∈ Z0, (u, x) 
→ lδ(u, x′z) is in CK(E)

(continuous functions onE vanishing outside a compact setK) by the arguments
in (II). This implies

∫
E lδ(u, x′z) dN(u, x) is finite a.s., sinceN ∈ Mp(E).

To show (II), Q∞(·, k) is the marginal weak limit of{QT (·, k)} iff for any

finite collection(zj , j = 1, . . . , l), (QT (zj , k), j = 1, . . . , l)
d→ (Q∞(zj , k), j =

1, . . . , l). SinceX′zj
p→ µ′

Xzj andτT → k > 0, it remains to verify(∫
E

lδ(u, x′zj ) dN̂(u, x), j = 1, . . . , l

)
(9.35)

d→
(∫

E
lδ(u, x′zj ) dN(u, x), j = 1, . . . , l

)
.

Define the mappingT :Mp(E) → R
l (for E = E1, E2 or E3) by

T :N 
→
(∫

E
lδ(u, x′zj ) dN(u, x), j = 1, . . . , l

)
.(9.36)

(a) Consider type 1 tails and setE = E1. The map(u, x) 
→ lδ(u, x′zj ) is in
CK(E1) (continuous functions onE1 vanishing outside a compact setK), since
by construction it is continuous onE1 and vanishes outsideK ≡ [−∞,max(κ,

−δ)] × X, whereκ = maxx∈X,z∈{z1,...,zl} x′z. K is compact inE1 sinceκ < ∞ by
Condition R2. Hence,̂N 
→ T(N̂) is continuous fromMp(E1) to R

l . Thus,N̂ ⇒ N
in Mp(E1) impliesT(N̂)

d→ T(N).
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(b) Consider type 3 tails and setE = E3. The map(u, x) 
→ l(u, x′zj ) is
in CK(E3): by construction, it is continuous onE3 and vanishes outsideK ≡
[0,max(κ,0)] × X, whereκ = maxx∈X,z∈{z1,...,zl} x′z. K is compact inE3 since
κ < ∞ by Condition R2. Therefore,̂N 
→ T(N̂) is continuous fromMp(E3) to R

l .

Hence,̂N ⇒ N in Mp(E3) impliesT(N̂)
d→ T(N).

(c) Consider type 2 tails and setE = E2. (c)(i) shows that (9.35) holds onZN ,

while (c)(ii) shows thatQn(z)
p→ ∞ for anyz ∈ ZP . [SetsZN andZP are defined

in (9.32) and (9.33).]

(i) The map(u, x) 
→ lδ(u, x′z) is in CK(E2) if z ∈ ZN , since, by construc-
tion, it is continuous onE2 and vanishes outsideK ≡ [−∞,max(κ,−δ)] × X,
whereκ = maxx∈X,z∈{z1,...,zl} x′z. K is compact inE2 sinceκ < 0 if z ∈ ZN .
Hence,N̂ 
→ T(N̂) is continuous fromMp(E2) to R

l . ThenN̂ ⇒ N in Mp(E2)

impliesT(N̂)
d→ T(N).

(ii) Observe thatI ≡ ∑
t≤T lδ(aT Ut ,X

′
t z)1(aT Ut ≤ −δ) = Op(1) by the

argument in (i). Observe thatlδ(u, v) = (v − u)+ ≥ 0 for anyu ≥ −δ. Hence,

lδ(u, v) = 1(−δ ≤ u ≤ v)(v − u) ≥ 1(−δ ≤ u ≤ 0, v ≥ ε)ε
(9.37)

for anyu ≥ −δ and anyε > 0.

For a givenz ∈ ZP , sinceX equals the support ofX, maxx∈X x′z > 0 implies
that X′z ≥ ε occurs with positive probability for someε > 0. Fix this ε. Since
1/aT → ∞ for type 2 tails,P(−δ/aT ≤ U ≤ 0,X′z ≥ ε) → π = P(U ≤ 0,X′z ≥
ε) > 0.π > 0 because infx∈X P(U ≤ 0|X = x) > 0 for type 2 tails by assumptions

in Condition R1. Therefore,II ≡ ∑
t≤T 1(−δ/aT ≤ Ui ≤ 0,X′

iz ≥ ε)ε
p→ +∞

in R. SinceQT (z, k) ≥ −kµ′
Xz + I + II by (9.37),QT (z, k)

p→ +∞ for any
z ∈ ZP .

Part 3. By Lemma 9.1(ii),aT (β(τ) − βr − bT e1) → η(k). Hence,Ẑc
T (k)

d→
Zc∞(k) ≡ Z∞(k) − η(k).

Part 4. (ẐT (kj )
′, j = 1, . . . , l)′ ∈ argminz∈Rd×l [QT (z1, k1)+· · ·+QT (zl, kl)],

for z = (z1, . . . , zl). Since this objective is a sum of objective functions in Parts
1 and 2, the previous derivation of the marginal limit and subsequent arguments
apply very similarly toQT (z1, k1) + · · · + QT (zl, kl) to conclude that(ẐT (kj )

′,
j = 1, . . . , l)′ d→ (Ẑ∞(kj )

′, j = 1, . . . , l)′ = argminz∈Rd×l [Q∞(z1, k1) + · · · +
Q∞(zl, kl)]. �

9.4. Weak limit of N̂.

LEMMA 9.3 [Resnick (1987), Proposition 3.22].Suppose N is a simple
point process in Mp(E), T is a basis of relatively compact open sets such
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that T is closed under finite unions and intersections and, for any F ∈ T ,
P(N(∂F ) = 0) = 1. Then N̂ ⇒ N in Mp(E) if, for all F ∈ T ,

lim
T →∞P [N̂(F ) = 0] = P [N(F ) = 0],(9.38)

lim
T →∞EN̂(F ) = EN(F ) < ∞.(9.39)

REMARK 9.1. In our case,T consists of finite unions and intersections of
bounded open rectangles inE1, E2 andE3 [cf. Resnick (1987)].

We impose Meyer (1973) conditions on the “rare” eventsAT
t (F ) ≡ {w ∈

� : (aT (Ut − bT ),Xt) ∈ F }.

LEMMA 9.4 (Poisson limits under Meyer mixing conditions).Suppose that,
for any F ∈ T , the triangular sequence of events {(AT

t (F ), t ≤ T ), T ≥ 1} is
stationary and α-mixing with mixing coefficient αT (·), condition (9.39)holds, and
the Meyer type condition holds: There exist sequences of integers (pn,n ≥ 1),
(qn, n ≥ 1), (tn = n(pn + qn), n ≥ 1) such that as n → ∞, for some r > 0,
(a) nrαtn(qn) → 0, (b) qn/pn → 0, pn+1/pn → 1, and (c) Ipn = ∑pn−1

i=1 (pn −
i)P (A

tn
1 (F ) ∩ A

tn
i+1(F )) = o(1/n). Then in Mp(E), N̂ ⇒ N, a Poisson point

process with mean measure m :m(F) ≡ limT →∞ EN̂(F ).

PROOF. For any F :m(F) > 0, limT →∞ P [N̂(F ) = 0] = P [N(F ) = 0] =
e−m(F), by Meyer (1973). The same also holds forF :m(F) = 0, sinceEN̂(F ) → 0
impliesP(N̂(F ) = 0) → 1. Conclude by Lemma 9.3.�

REMARK 9.2. ConditionIPn = o(1/n) prevents clusters of “rare” events
AT

t (F ), eliminating compound Poisson processes as limits.

LEMMA 9.5 (Limit N under Conditions R1 and R2).Suppose Conditions
R1and R2hold and that (Yt ,Xt) is an i.i.d. or stationary strongly mixing sequence
that satisfies the conditions of Lemma 9.4with (aT , bT ) defined in (4.2).Then:

(i) N̂ ⇒ N in Mp(E), where E = E1,E2 and E3 for tails of types 1, 2
and 3, respectively. N is a Poisson point process with mean intensity measure:
m(du,dx) = K(x) × dh(u) × dFX(x), where h(u) = eu for type 1, h(u) =
(−u)−1/ξ for type 2, and h(u) = u−1/ξ for type 3 tails.

(ii) Points (Ji,Xi) of N have the representation (Ji,Xi , i ≥ 1)
d= (h−1(�i/

K(Xi )),Xi , i ≥ 1), where h−1 is the inverse of h, �i = E1 + · · · + Ei , i ≥ 1 ({Ei}
are i.i.d. standard exponential ), and {Xi} are i.i.d. r.v.s with law FX, independent
of {Ei}.
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PROOF. To show (i), by Lemmas 9.3 and 9.4 the proof reduces to verifying
limT EN̂(F ) = m(F) for all F in T . For example, as in Leadbetter, Lindgren and
Rootzén [(1983), page 103], it suffices to considerF of the formF = ⋃k

j=1 Fj ,
where Fj = (lj , uj ) × Xj , where F1, . . . ,Fk are nonoverlapping, nonempty
subsets ofE, andX1, . . . ,Xk are intersections of open bounded rectangles ofR

d

with X. Then by the stationarity andFj ’s nonoverlapping,

EN̂(F ) = E

T∑
t=1

1
[(

aT (Ut − bT ),Xt

) ∈ F
]

=
k∑

j=1

T P
[(

aT (U − bT ),X
) ∈ (lj , uj ) × Xj

]

=
k∑

j=1

T · E(
P

[(
aT (U − bT ),X

) ∈ (lj , uj ) × Xj |X])
(9.40)

=
k∑

j=1

T · E(
P

[(
aT (U − bT ) ∈ (lj , uj )

∣∣X] · 1[X ∈ Xj ])

=
k∑

j=1

T · E(
(FU [uj/aT + bT |X]

− FU [lj /aT + bT |X]) · 1[X ∈ Xj ]).
Suppose thatlj > −∞ for all j . Then asT → ∞,

EN̂(F ) =
k∑

j=1

E

((
FU [uj/aT + bT |X]
Fu[uj/aT + bT ] · T · Fu[uj/aT + bT ]

− FU [lj /aT + bT |X]
Fu[lj /aT + bT ] · T · Fu[lj /aT + bT ]

)
· 1[X ∈ Xj ]

)

∼
k∑

j=1

E
((

K(X)[h(uj ) − h(lj )])1[X ∈ Xj ])(9.41)

=
k∑

j=1

∫
Fj

K(x)dh(u) × dFX(x)

=
k∑

j=1

m(Fj ) = m(F).
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In (9.41),∼ follows from two observations. First, the assumed tail equivalence
Condition R1 implies

FU [l/aT + bT |x]
Fu[l/aT + bT ] ∼ K(x) uniformly in x ∈ X,(9.42)

since by definition of(aT , bT ) given in (4.2),l/aT + bT ↘ F−1
u (0) = 0 or = −∞

for any l ∈ (−∞,∞) for type 1 tails, anyl ∈ (−∞,0) for type 2 tails, and
l ∈ [0,∞) for type 3 tails. Second, for example, as in Leadbetter, Lindgren
and Rootzén [(1983), page 103], the definition of the tail types (3.1) implies
that (a) for tails of type 2, for anyl < 0, T Fu(l/aT ) = T Fu(−lF−1

u ( 1
T
)) ∼

(−l)−1/ξT Fu(F
−1
u ( 1

T
)) ∼ (−l)−1/ξ , (b) for tails of type 3, for anyl > 0,

T Fu(l/aT ) = T Fu(lF
−1
u ( 1

T
)) ∼ l−1/ξT Fu(F

−1
u ( 1

T
)) ∼ l−1/ξ and (c) for tails of

type 1, for any l ∈ R, T Fu(l/aT + bT ) = T Fu(l/a(F−1
u ( 1

T
)) + F−1

u ( 1
T
)) ∼

elT Fu(F
−1
u ( 1

T
)) ∼ el.

On the other hand, if for somej ’s, lj = −∞ for type 1 or 2 tails, then we have
the replacementT FU [lj /aT + bT |X] = 0 in (9.40), and (9.41) follows similarly.

To show (ii), construct a Poisson random measure (PRM) with the givenm(·).
First, define a canonical homogeneous PRMN1 with points{�i, i ≥ 1}. It has the
mean measurem1(du) = du on [0,∞), for example, Resnick (1987). Second,
by Proposition 3.8 in Resnick (1987), the composed point processN2 with points
{�i,Xi} is PRM with mean measurem2(du, dx) = du × dFX(x) on [0,∞) × X,
because{Xi} are i.i.d. and are independent of{�i}. Finally, the point processN
with the transformed points{T(�i,Xi)}, whereT : (u, x) 
→ (h−1(u/K(x)), x), is
PRM with the desired mean measure onE × X, m(dj, dx) = m2 ◦ T−1(dj, dx) =
K(x) × dh(j) × dFX(x), by Proposition 3.7 in Resnick (1987).�

9.5. Proof of Theorem 5.1. Step 1 outlines the overall proof using standard
convexity arguments, while themain Step 2 invokes regular variation assumptions
on the conditional quantile density to demonstrate a quadratic approximation of the
criterion function. Step 3 shows joint convergence of several regression quantile
statistics. Step 4 demonstrates thataT can be estimated consistently.

STEP 1. With reference to (2.4), notice that̂ZT ≡ aT (β̂(τ ) − β(τ)), defined
in (5.2), minimizes

QT (z, τ ) ≡ aT√
τT

T∑
t=1

(
ρτ

(
Yt − X′

tβ(τ ) − X′
t z

aT

)
− ρτ

(
Yt − X′

tβ(τ )
))

.(9.43)

Using Knight’s identity,

ρτ (u − v) − ρτ (u)
(9.44)

= −v
(
τ − 1(u < 0)

) +
∫ v

0

(
1(u ≤ s) − 1(u ≤ 0)

)
ds,
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write, a.s.,

QT (z, τ ) = WT (τ)′z + GT (z, τ ),

WT (τ) ≡ −1√
τT

T∑
t=1

(
τ − 1[Yt < X′

tβ(τ )])Xt,

(9.45)

GT (z, τ ) ≡ aT√
τT

(
T∑

t=1

∫ X′
t z/aT

0

[
1
(
Yt − X′

tβ(τ ) ≤ s
)

− 1
(
Yt − X′

tβ(τ ) ≤ 0
)]

ds

)
.

By Lemma 9.6,WT (τ)
d→ W ≡ N(0,EXX′), and by Step 2,

GT (z, τ )
p→ 1

2

(
m−ξ − 1

−ξ

)
z′QHz, m > 1,(9.46)

whereQH ≡ E[H(X)]−1XX′, H(x) ≡ x′c for type 2 and 3 tails, andH(x) = 1
for type 1 tails. Thus, the weak marginal limit ofQT (z) is given by

Q∞(z) = W ′z + 1

2
·
(

m−ξ − 1

−ξ

)
· z′QHz.(9.47)

We have thatEXX′ is positive definite and by Theorem 3.1 that 0< H(X) <

c < ∞ for some constantc. Thus, QH is finite andQH is positive definite.
Indeed,z′QHz = E(X′z)2/H(X) = 0 for somez �= 0 if and only if X′z = 0
a.s., which contradictsEXX′ positive definite. Thus, the marginal limitQ∞(z)

is uniquely minimized atZ∞ ≡ (
ξ

m−ξ−1
)Q−1

H W = N(0,
ξ2

(m−ξ−1)2Q
−1
H EXX′Q−1

H ).

By the convexity lemma [e.g., Geyer (1996) and Knight (1999)],ẐT
d→ Z∞.

STEP 2. This step demonstrates that asτ ↘ 0,

EGT (z, τ ) → 1

2
·
(

m−ξ − 1

−ξ

)
· z′QHz,(9.48)

while Lemma 9.6 shows that Var(GT (z, τ )) → 0. In what follows,Ft , ft andEt

denoteFU(·|Xt), fU(·|Xt) and E[·|Xt ], respectively, whereU is the auxiliary
error constructed in Condition R1.

Since

GT (z, τ )

≡
T∑

t=1

aT ·
(∫ X′

t z/aT

0

[
1(Yt − X′

tβ(τ ) ≤ s) − 1(Yt − X′
tβ(τ ) ≤ 0)√

τT

]
ds

)
(9.49)

=
T∑

t=1

(∫ X′
t z

0

[
1(Yt − X′

tβ(τ ) ≤ s/aT ) − 1(Yt − X′
tβ(τ ) ≤ 0)√

τT

]
ds

)
,
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we have

EGT (z, τ ) = T · E
(∫ X′

t z

0

Ft [F−1
t (τ ) + s/aT ] − Ft [F−1

t (τ )]√
τT

ds

)
(1)= T · E

(∫ X′
t z

0

ft {F−1
t (τ ) + o(F−1

u (mτ) − F−1
u (τ ))}

aT · √τT
· s · ds

)
(2)∼ T · E

(∫ X′
t z

0

ft {F−1
t (τ )}

aT · √τT
· s · ds

)

= T · E
(

1

2
· (X′

t z)
2 · ft {F−1

t (τ )}
aT · √τT

)
(9.50)

= E

(
1

2
· (X′

t z)
2 · F−1

u (mτ) − F−1
u (τ )

τ (ft {F−1
t (τ )})−1

)
(3)∼ E

(
1

2
· (X′

t z)
2 · 1

H(X)
· m−ξ − 1

−ξ

)

≡ 1

2
· m−ξ − 1

−ξ
· z′QHz.

Equality (1) is by the definition ofaT and a Taylor expansion. Indeed, since
τT → ∞ uniformly overs in any compact subset ofR,

s/aT = s · (
F−1

u (mτ) − F−1
u (τ )

)
/
√

τT = o
(
F−1

u (mτ) − F−1
u (τ )

)
.(9.51)

To show equivalence (2), it suffices to prove that, for any sequencevτ =
o(F−1

u (mτ) − F−1
u (τ )) with m > 1 asτ ↘ 0,

ft

(
F−1

t (τ ) + vτ

) ∼ ft

(
F−1

t (τ )
)

uniformly in t .(9.52)

This will be shown by using the assumption made in Condition R3, which is
that uniformly int , 1/ft (F

−1
t (τ )) ∼ ∂F−1

u (τ/K(Xt))/∂τ, where∂F−1
u (τ )/∂τ is

regularly varying with index−ξ − 1.
To be clear, let us first show (9.52) for the special case offt = fu andF−1

t (τ ) =
F−1

u (τ ):

fu

(
F−1

u (τ ) + vτ

) ∼ fu

(
F−1

u (τ )
)
.(9.53)

By the regular variation property of∂F−1
u (τ )/∂τ = 1/fu(F

−1
u (τ )), locally

uniformly in l [uniformly in l in any compact subset of(0,∞)],

fu

(
F−1

u (lτ )
) ∼ lξ+1fu

(
F−1

u (τ )
)
.(9.54)

That is, locally uniformly inl,

fu

(
F−1

u (τ ) + [F−1
u (lτ ) − F−1

u (τ )]) ∼ lξ+1fu

(
F−1

u (τ )
)
.(9.55)
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Hence, for anylτ → 1,

fu

(
F−1

u (τ ) + [F−1
u (lτ τ ) − F−1

u (τ )]) ∼ fu

(
F−1

u (τ )
)
.(9.56)

Hence, for any sequencevτ = o([F−1(mτ) − F−1(τ )]) with m > 1 asτ ↘ 0,

fu

(
F−1(τ ) + vτ

) ∼ fu

(
F−1

u (τ )
)
,(9.57)

because for any such{vτ }, in view of Lemma 9.2(iii), we can choose a sequence
{lτ } such that{vτ } = {[F−1

u (lτ τ ) − F−1
u (τ )]} andlτ → 1 asτ ↘ 0.

Next, let us strengthen the claim (9.53) to (9.52), completing the proof of
equivalence (2) in (9.50). Since

(a) 1/ft (F
−1
t (τ )) ∼ ∂F−1

u (τ/K(Xt))/∂τ = 1/{K(Xt)fu[F−1
u (τ/K(Xt))]}

uniformly in t by Condition R3, and
(b) fu(F

−1
u (lτ/K)) ∼ (l/K)ξ+1fu(F

−1
u (τ )) ∼ (l)ξ+1fu(F

−1
u (τ/K)), locally

uniformly in l and uniformly inK ∈ {K(x) :x ∈ X} [compact by assumptions on
K(·) andX], by (9.54) we have that locally uniformly inl and uniformly int ,

ft

(
F−1

t (lτ )
) ∼ lξ+1ft

(
F−1

t (τ )
)
.(9.58)

Repeating the steps (9.55)–(9.57) withft (F
−1
t (lτ )) in place offu(F

−1
u (lτ )), we

obtain the required conclusion (9.52).
The equivalence (3) in (9.50) can be shown as follows. By (a), uniformly int ,

F−1
u (mτ) − F−1

u (τ )

τ (ft [F−1
t (τ )])−1

∼ F−1
u (mτ) − F−1

u (τ )

τ (K(Xt)fu[F−1
u (τ/K(Xt))])−1

.(9.59)

By (b) we have that uniformly int ,

fu

[
F−1

u

(
τ/K(Xt)

)] ∼ (
1/K(Xt)

)ξ+1 · fu

(
F−1(τ )

)
.(9.60)

Putting (9.59) and (9.60) together, we have uniformly int ,

F−1
u (mτ) − F−1

u (τ )

τ (ft [F−1
t (τ )])−1

∼ 1

K(Xt)ξ
· F−1

u (mτ) − F−1
u (τ )

τ (fu[F−1
u (τ )])−1

(9.61)

= 1

H(Xt)
· F−1

u (mτ) − F−1
u (τ )

τ (fu[F−1
u (τ )])−1

,(9.62)

whereH(Xt) = X′
tc for ξ �= 0 andH(Xt) = 1 for ξ = 0. Finally, by the regular

variation property, (9.54),

F−1
u (mτ) − F−1

u (τ )

τ (fu[F−1
u (τ )])−1

≡
∫ m

1

fu[F−1
u (τ )]

fu[F−1
u (sτ )] ds(9.63)

∼
∫ m

1
s−ξ−1 ds(9.64)

= m−ξ − 1

−ξ
(lnm if ξ = 0).(9.65)

Putting (9.61)–(9.65) together gives (3) in (9.50).
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STEP 3. For ẐT (l) defined in (5.3), notice that(ẐT (li), i = 1, . . . , k) ∈
argminz∈Rd×k [QT (z1, l1τ)+· · ·+QT (zk, lkτ )] = argminz∈Rd×k [∑k

i=1 WT (τ li)
′×

zi + GT (zi, τ li)] for z = (z′
1, . . . , z

′
k)

′, where the functionsQT (·, ·), WT (·) and
GT (·, ·) are defined in (9.45). Since this objective function is a sum of the
objective functions in the preceding steps, it retains the properties of the elements
summed. Therefore, the previous argument applies to conclude that the marginal
limit of this objective function is given by

∑k
i=1 W(li)

′zi + G(zi, li), where
(W(li), i ≤ k) ≡ N(0,�) with EW(li)W(lj )

′ ≡ EXX′ min(li, lj )/
√

li lj and, by
calculations that are identical to those in the preceding section,G(z, li) ≡ G(z) ≡
1
2 ·(m−ξ −1

−ξ
) ·z′QHz. The limit objective function is minimized at(Z∞(li), i ≤ k) =

(
ξ

m−ξ−1
· Q−1

H W(li), i ≤ k). Therefore,(ẐT (li), i ≤ k)
d→ (Z∞(li), i ≤ k).

STEP 4. It suffices to prove the result forl = 1. Then

X′(β̂(mτ) − β̂(τ ))

µ′
X(β(mτ) − β(τ))

≡ X′(β̂(mτ) − β(mτ))

µ′
X(β(mτ) − β(τ))

(9.66)

− X′(β̂(τ ) − β(τ))

µ′
X(β(mτ) − β(τ))

+ X′(β(mτ) − β(τ))

µ′
X(β(mτ) − β(τ))

p→ 1,

since the first two elements on the right-hand side areOp( 1√
τT

) = op(1) by the
first part of Theorem 5.1.�

9.6. CLT for WT (τ) and LLN for GT (z, τ ).

LEMMA 9.6 (CLT and LLN). Let {Yj ,Xj }t−∞ be an i.i.d. or a stationary
α-mixing sequence. The following statements are true for WT (·) and GT (·, ·),
defined in (9.45),as τ ↘ 0 and τT → ∞:

(i) Suppose mixing coefficients satisfy αj = O(j−φ) with φ > 2, and for any
K sufficiently close to 0+ or −∞, uniformly in t and s ≥ 1, and some C > 0
[Pt denotes P(·|Ft ),Ft ≡ σ({Yj ,Xj }t−1−∞)]

Pt(Ut ≤ K,Ut+s ≤ K) ≤ CPt(Ut ≤ K)2.(9.67)

Then for any finite collection of positive constants l1, . . . , lm,

{WT (τ l1)
′, . . . ,WT (τ lm)′}′ d→ (

W(l1)
′, . . . ,W(lk)

′)′ = N(0,�)

with EW(li)W(lj )
′ ≡ EXX′ min(li, lj )/

√
li lj .
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(ii) If, in addition, αj = O(j−φ) with φ > 1
1−γ

for 0 < γ < 1 and τ1−2/γ /

T → 0, then

Var
(
GT (z, τ )

) → 0.(9.68)

REMARK 9.3. In the i.i.d. case the claim (i) simply follows from the
Lindeberg–Feller CLT. In the dependent case condition (9.67) requires that the
extremal events should not cluster, which leads to the same limits as under i.i.d.
sampling. This condition may possibly be refined along the lines of Watts, Rootzén
and Leadbetter (1982), who dealt with the nonregression case. (9.67) is analogous
to the no-clustering conditions of Robinson [(1983), A7.4, page 191] used in the
context of kernel estimation.

PROOF OF LEMMA 9.6. To show (i),{WT (τ li)
′, i ≤ m}′ suits the CLT of

Robinson (1983), which implies the same weak limit as under i.i.d. sampling.
His conditions A7.1 (withq = 0), A7.2 and A7.3 are satisfied automatically.
The assumed above mixing condition implies

∑∞
j=1 jαj < ∞, which implies his

condition A3.3. Last, condition (9.67) immediately implies his condition A7.4.
To show (ii), suppressτ . Then from (9.49),

Var
(
GT (z)

) = τ−1

(
Var(λ1) + 2

T −1∑
k=1

T − k

T
Cov(λ1, λ1+k)

)
,

for

λt =
∫ X′

t z

0

[
1
(
Yt − X′

tβ(τ ) ≤ s/aT

) − 1
(
Yt − X′

tβ(τ ) ≤ 0
)]

ds.

By Condition R2,|λt | ≤ K0|µt |, for

µt = (
1
(
Yt − X′

tβ(τ ) ≤ X′
t z/aT

) − 1
(
Yt − X′

tβ(τ ) ≤ 0
))

and someK0 < ∞. Hence,

Var(λ1) = O(Eλ2
1)

(1)= O(Eµ2
1)

(2)= O(E|µ1|)
(9.69)

(3)= O
(
fu

(
F−1

u (τ )
)
a−1
T

) = O
(√

τ/T
)
,

where (1) is by|λt | ≤ K0|µt |, (2) is by |µt | ∈ {0,1}, and (3) is by the calculation
in (9.50). Thus, in the i.i.d. case Var(GT (z)) = o(1) follows from (9.69) and
τT → ∞. Also, for all s and some positive constantsK1,K2,K3,K4,

|Cov(λ1, λ1+s)| ≤ K1(α
1−γ
s [E|λ1|r ]1/r [E|λ1|p]1/p)(9.70)

≤ K2(α
1−γ
s [E|µ1|r ]1/r [E|µ1|p]1/p)(9.71)

≤ K3(α
1−γ
s [E|µ1|]γ )(9.72)

≤ K4

(
α1−γ

s

(
τ

T

)γ /2)
,(9.73)
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where 1/p + 1/r = γ ∈ (0,1), p ≥ 1. Here (9.70) follows by Ibragimov’s mixing
inequality [e.g., Davidson (1994)], (9.71) follows by the previous bound|λt | ≤
K0|µt | and (9.72) follows by|µt | ∈ {0,1}, while (9.73) follows by (9.69). So
Var(GT (z)) = o(1) by the condition on the mixing coefficients.�

9.7. Proof of Theorem 6.1. Theorem 6.1 is a direct corollary of Theorem 5.1
and Lemma 9.1. Proof of claim (i) follows similarly to the proof in (9.66). Claim (i)
implies claims (ii)–(iv), using the properties (v) and (vi) in Lemma 9.1. Uniformity
in x in claim (iv) follows from the linearity ofρ̂x,X,1 in x. Finally, claim (v) follows
from Theorem 5.1 by the delta method.

9.8. Tightness of Z∞(k). This section provides primitive conditions for
tightness ofZ∞(k), which is assumed in the statement of Theorem 4.1 and the
conditions of uniqueness given in Remark 4.4.

We impose the design condition of Portnoy and Jurec̆ková (1999), who used
it for the caseτT → 0 and show its plausibility on page 233, for example, when
EXX′ > 0. Their proof of tightness is not applicable here, so we have it.

CONDITION PJ. LetFX denote the distribution function ofX. There are a
finite integerI , a collection of sets{R1, . . . ,RI } and positive constantsδ andη

such that:

(a) for eachu ∈ {u :‖u‖ ≥ 1, u1 ≥ 0}, there isRj(u) such thatx′u > δ‖u‖ for
all x ∈ Rj(u),

(b)
∫
Rj

dFX > η > 0 for all j = 1, . . . , I .

LEMMA 9.7. If Conditions R1, R2and PJhold, then Z∞(k) is finite a.s.

PROOF. Choosezf = (z
f
1 , . . . , z

f
d )′ ∈ R

d such that

Q∞(zf , k) ≡ −kµ′
Xzf +

∫
E
(x′zf − u)+ dN(u, x) = Op(1),(9.74)

which is possible, as shown in the proof of Theorem 4.1.
Consider a closed ballB(M) with radiusM and centerzf , and letz(k) =

zf + δ(k)v(k), wherev(k) = (v1(k), . . . , vd(k))′ is a direction vector with unity
norm‖v(k)‖ = 1 andδ(k) ≥ M . By convexity inz,

M

δ(k)

(
Q∞

(
z(k), k

) − Q∞(zf , k)
) ≥ Q∞

(
z∗(k), k

) − Q∞(zf , k),(9.75)

wherez∗(k) is a point of boundary ofB(M) on the line connectingz(k) andzf .
We will show that, for anyK andε > 0, there is largeM such that

P

(
inf

v(k) : ‖v(k)‖=1
Q∞

(
z∗(k), k

)
> K

)
≥ 1− ε.(9.76)
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(9.76) and (9.74) imply(9.75) > C > 0 with probability arbitrarily close to 1
for M sufficiently large, meaning thatZ∞(k) ∈ B(M) with probability arbitrarily
close to 1 forM sufficiently large, that is,Z∞(k) = Op(1).

Thus, it remains to show (9.76). SinceµX = (1,0, . . . ,0)′, µ′
Xz∗(k) = z

f
1 +

v1(k) · M . Hence, it suffices to show that, for anyε > 0 and any largeK > 0,

−v1(k) · k · M +
∫
E

(
x′z∗(k) − u

)+
dN(u, x) ≥ K

(9.77)
w.pr.≥ 1− ε, for large enoughM,

and, therefore, we establish (9.76). We have by Condition PJ that, for someRj(v)

with j (v) ∈ {1, . . . , I },∫
E

(
x′z∗(k) − u

)+
dN(u, x)

≥
∫
([−∞,κ]×Rj(v))∩E

(
x′z∗(k) − u

)+
dN(u, x)(9.78)

≥ N
(([−∞, κ] × Rj(v)

) ∩ E
) × (δM − κ − κ ′)+,

whereκ ∈ R is a constant to be determined later and that does not depend onv(k)

andκ ′ = maxx∈X |x′zf |.
Note that for any regionX such that

∫
X

dFX > η > 0 and anyκ1 > 0 andε > 0,
there is a sufficiently largeκ2 such that

N
(
([−∞, κ2] × X) ∩ E

)
> κ1 w.pr.≥ 1− ε.(9.79)

Hence, by (9.79) we can selectκ large enough so that

N
(
([−∞, κ] × Rj) ∩ E

)
>

(k + 1)

δ
(9.80)

for all j ∈ {1, . . . , I } w.pr.≥ 1− ε,

so that w.pr.≥ 1− ε,

−v1(k) · k · M +
∫
E
(x′z∗(k) − u)+ dN(u, x)

(9.81)

≥ −k · M + (k + 1)
(δM − κ − κ ′)+

δ
.

Now setM sufficiently large to obtain (9.77).�
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