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DECISION THEORY RESULTS FOR ONE-SIDED MULTIPLE
COMPARISON PROCEDURES1

BY ARTHUR COHEN AND HAROLD B. SACKROWITZ
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A resurgence of interest in multiple hypothesis testing has occurred
in the last decade. Motivated by studies in genomics, microarrays, DNA
sequencing, drug screening, clinical trials, bioassays, education and psychol-
ogy, statisticians have been devoting considerable research energy in an effort
to properly analyze multiple endpoint data. In response to new applications,
new criteria and new methodology, many ad hoc procedures have emerged.
The classical requirement has been to use procedures which control the strong
familywise error rate (FWE) at some predetermined levelα. That is, the prob-
ability of any false rejection of a true null hypothesis should be less than or
equal toα. Finding desirable and powerful multiple test procedures is difficult
under this requirement.

One of the more recent ideas is concerned with controlling the false
discovery rate (FDR), that is, the expected proportion of rejected hypotheses
which are, in fact, true. Many multiple test procedures do control the FDR.

A much earlier approach to multiple testing was formulated by Lehmann
[Ann. Math. Statist. 23 (1952) 541–552 and28 (1957) 1–25]. Lehmann’s
approach is decision theoretic and he treats the multiple endpoints problem
as a 2k finite action problem when there arek endpoints. This approach is
appealing since unlike the FWE and FDR criteria, the finite action approach
pays attention to false acceptances as well as false rejections. In this paper we
view the multiple endpoints problem as a 2k finite action problem. We study
the popular procedures single-step, step-down and step-up from the point of
view of admissibility, Bayes and limit of Bayes properties. For our model,
which is a prototypical one, and our loss function, we are able to demonstrate
the following results under some fairly general conditions to be specified:

(i) The single-step procedure is admissible.
(ii) A sequence of prior distributions is given for which the step-down

procedure is a limit of a sequence of Bayes procedures.
(iii) For a vector risk function, where each component is the risk for an

individual testing problem, various admissibility and inadmissibility results
are obtained.

In a companion paper [Cohen and Sackrowitz,Ann. Statist. 33 (2005)
145–158], we are able to give a characterization of Bayes procedures and
their limits. The characterization yields a complete class and the additional
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useful result that the step-up procedure is inadmissible. The inadmissibility
of step-up is demonstrated there for a more stringent loss function. Additional
decision theoretic type results are also obtained in this paper.

1. Introduction. A resurgence of interest in multiple hypothesis testing has
occurred in the last decade. Motivated by studies in genomics, microarrays, DNA
sequencing, drug screening, clinical trials, bioassays, education and psychology,
statisticians have been devoting considerable research energy in an effort to
properly analyze multiple endpoint data. In response to new applications, new
criteria and new methodology, many ad hoc procedures have emerged. The
classical requirement has been to use procedures which control the strong
familywise error rate (FWE) at some predetermined levelα. That is, the probability
of any false rejection of a true null hypothesis should be less than or equal toα.
Finding desirable and powerful multiple test procedures is difficult under this
requirement. Two useful tools for the construction of such multiple level-α tests are
the closure principle [see Marcus, Peritz and Gabriel (1976), as well as Hochberg
and Tamhane (1987)] and the partitioning principle [see Stefánsson, Kim and Hsu
(1988) and Finner and Strassburger (2002)]. These tools can be used to generate
large classes of multiple test procedures satisfying the FWE criterion.

One of the more recent ideas is concerned with controlling the false discovery
rate (FDR), that is, the expected proportion of rejected hypotheses which are,
in fact, true. Many multiple test procedures do control the FDR. See, for
example, Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001),
Efron, Tibshirani, Storey and Tusher (2001) and Sarkar (2002). This criterion
is particularly appealing if the number of endpoints is large. In some modern
applications this number can be in the thousands. A summary of studies on
multiple endpoint methods used with microarray data is given in Dudoit, Shaffer
and Boldrick (DSB) (2003).

The closure and partitioning principles tend to be linked to the step-down
approach described in Hochberg and Tamhane (1987) and studied extensively in
the literature. FDR was initially linked to the step-up approach. See Hochberg
(1988). More recently, step-down and combined step-down with step-up methods
have been viewed from an FDR point of view. Sarkar (2002) notes: “While
the FDR has been receiving increasing attention by researchers in different
fields of statistics, theoretical progress has not been made at a similar pace.”
Sarkar’s remark applies to the entire area of multiple endpoint testing. Finner
and Strassburger (2002) say: “Further and in general difficult problems are
the comparison of different multiple test procedures and the related questions
concerning admissibility.” They go on to say: “A serious issue is optimality and
admissibility of multiple decision procedures.” DSB (2003) remark “Optimality of
multiple tests is an interesting research avenue to pursue from both a theoretical
and a practical point of view.”
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A much earlier approach to multiple testing was formulated by Lehmann
(1952, 1957). Lehmann’s approach is decision theoretic and he treats the multiple
endpoints problem as a 2k finite action problem when there arek endpoints. The
formulation as a 2k action problem is particularly appealing since in terms of
what is desired, one wishes to decide whether to accept or reject for each of the
k hypotheses posed. This approach entails the specification of losses, which
can be quite general. Lehmann (1952, 1957) was able to demonstrate some
optimality properties for the single-step procedure and step-down procedure in
two-dimensional problems for some hypotheses and for some restricted classes of
procedures. Methods developed through the years to further the theory of testing a
single hypothesis (a two-action problem) do not extend easily to multiple actions
and little progress has been made for this model. Nevertheless, the potential and
importance of this approach are compelling since the evaluation of methodologies
and procedures is wanting and necessary in this subject. Little is known about
properties of the various procedures and rigorously studying the underpinnings of
the methodologies is essential. Furthermore, unlike the FWE and FDR criteria, the
finite action approach pays attention to false acceptances as well as false rejections.

Our approach will be to regard the problem as a 2k action problem. We carefully
distinguish between what is known as the global problem and multiple endpoints
problem. We are very precise about what null hypotheses and what alternative
hypotheses are to be considered. Several notions of monotonicity of procedures
and monotonicity of risk functions have been introduced and studied in Cohen
and Sackrowitz (CS) (2004). In this paper Bayes procedures, limits of Bayes
procedures and admissibility results of procedures are studied. In particular we
examine single-step, step-down and step-up procedures. We note that DSB (2003)
classify the 18 procedures they study as single step, step-down or step-up. We
consider loss functions that are sums of losses for the individual endpoints.

We confine our study to a simple but prototypical model, although many of the
results would remain true for other models. The model assumed is that we observe
a (k × 1) random vectorZ which is assumed to bek-variate normal with mean
vectorµ and known covariance�. Among the results are the following:

RESULT 1.1. Suppose the covariance matrix� is of the intraclass type, that
is, all variances equal, all covariances equal. Then under some mild conditions the
single-step procedure is admissible. The approach used to prove admissibility is
somewhat new.

RESULT 1.2. If � = σ 2I , the step-down procedure studied is shown to be a
limit of a sequence of Bayes procedures.

RESULT 1.3. Suppose� is intraclass, andρ is the common correlation
coefficient between any pair of variables. Consider a vector risk (VRI) where the
components of the vector are the risks for the individual testing problems. Then
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the single-step procedure is admissible for any−1 < ρ < 1. The step-down and
step-up procedures are admissible if and only ifρ ≥ 0. As a corollary it follows
that forρ < 0, step-up and step-down are inadmissible for the loss function which
sums the losses for the individual component problems.

In Section 2 we state the models, distinguish between global test problems
and multiple endpoint testing problems, introduce the loss functions, describe the
various properties of procedures and give other preliminaries. In Section 3 we
describe the single-step, step-down and step-up procedures. In Sections 4 and 5
we state properties of these procedures. All proofs are given in the Appendix.

2. Models and preliminaries.

2.1. Models. Let Z be a(k ×1) random vector which isk-variate normal with
mean vectorµ and known covariance�. One global one-sided hypothesis testing
problem is

H(G) :µ = 0 vs K(G) :µ ≥ 0 \ {µ = 0},(2.1)

that is, µi ≥ 0, i = 1,2, . . . , k, with at least oneµi > 0. Such a problem is
distinguished from a one-sided multiple endpoints problem in which one tests

Hi :µi = 0 vs Ki :µi > 0, i = 1,2, . . . , k.(2.2)

That is, the latter problem is a 2k action problem where one selects an action to
either accept or rejectHi , i = 1,2, . . . , k.

Note that another form of the one-sided multiple endpoints problem is

H ∗
i :µi ≤ 0 vs Ki :µi > 0.(2.3)

In the multiple endpoints literature there are ample instances of both theHi andH ∗
i

problems. We mention both since from a decision theory point of view we will see
that sometimes different results ensue depending on whetherHi or H ∗

i is being
tested. In connection with distinguishing betweenHi and H ∗

i we mention two
practical situations where the multiple endpoints scenario arises.

(I) Consider the problem of comparingk treatments with a control assuming
(often realistically) that the treatment mean will be at least as large as the control
mean. [This model is called the tree order model in Robertson, Wright and Dykstra
(1988).] Then ifZi represents the difference between a reading on theith treatment
and the control,Zi has meanµi whereµi ≥ 0. Assuming all treatment and control
observations are normal, independent, with variances 1, thenZ is multivariate
normal with mean vectorµ and covariance matrix�. The covariance matrix�
is (k × k) and

� = 2




1 1/2 · · · 1/2
1/2 1 · · · 1/2
...

...

1/2 1


 .(2.4)
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The appropriate multiple hypotheses in this case are those in (2.2).
Note that the(k × k) covariance matrix� in (2.4) is a special case of a

class of covariance matrices which are called intraclass. That is, a covariance
matrix � = (σij ) is intraclass ifσii are the same for alli = 1,2, . . . , k, andσij ,
i = 1, . . . , k, j = 1, . . . , k, i �= j , are the same. When� is intraclass, then the
normal variables are exchangeable. Note also that a special case of intraclass is
when all σii are the same and allσij = 0, i �= j . In this latter case theZi are
independent. Another special case of intraclass is whenk = 2, andσ11 = σ22. The
intraclass matrix� may be written as

� = σ 2




1 ρ · · · ρ

ρ 1 · · · ρ
...

...

ρ · · · · · · 1


(2.5)

with ρ restricted to the interval−1/(k − 1) ≤ ρ ≤ 1. See, for example, Krishnaiah
and Pathak (1967).

(II) Let Xi , i = 1,2, be independent normal with mean vectorνi and known
covariance�i . X1 corresponds to a(k × 1) vector of measurements made on a
control subject.X2 corresponds to a(k × 1) vector of measurements made on
a treatment subject. ConsiderZ = X2 − X1 and noteZ is multivariate normal with
mean vectorµ = ν2 − ν1 and covariance matrix� = �1 + �2. If one feels that
the treatment cannot decreaseν1i , i = 1,2, . . . , k, then this is the classic multiple
endpoints problem with (2.2) as the multiple hypotheses. If one feels that the
treatment can reduceν1i as well as increaseν1i , then this is the classic multiple
endpoints problem with (2.3) as the hypotheses.

2.2. Preliminaries. A 2k finite action problem has actionsa = (a1, a2, . . . , ak)
′

whereai equals 0 or 1 fori = 1, . . . , k. An action whereai = 1 means thatHi is
rejected, where ifai = 0,Hi is accepted. Thus, for example,a = (1, . . . ,1)′ means
all Hi are rejected. It will be convenient to define

� = {u : u = (u1, . . . , uk)
′, ui = 0 or 1, all i}.

Note that� can be used to represent the totality of all actions. However,� will
serve other purposes as well.

Decision rulesδ(·|z) are probability mass functions on� with the interpretation
thatδ(a|z) is the conditional probability of actiona givenz is observed. For eachz,
a nonrandomized decision rule chooses a single element of� with probability 1
and assigns all other actions probability 0. Each decision ruleδ determines a set of
test functions for the individual testing problems. These test functions are given
by ψ(z) = (ψ1(z), . . . ,ψk(z))′ where ψi(z) is the probability of rejectingHi .
A decision procedureδ(a|z) determines a set ofψδ

i (z), i = 1, . . . , k, as follows:

ψδ
i (z) = ∑

a∈Ai

δ(a|z) = ∑
a∈�

aiδ(a|z),(2.6)
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where Ai = {a ∈ � : a has a 1 in theith position}. Whereas δ(a|z) deter-
mines ψ(z), the reverse is not true. Ifψ(z) is nonrandomized it uniquely
determines someδ(a|z). Theδ(a|z) determined is nonrandomized.

For problem (2.2), we partition the parameter space	 = {µ :µi ≥ 0, i = 1,

. . . , k} into 2k sets	v, v ∈ �, where	v = {µ :µ = (µ1,µ2, . . . ,µk)
′, andµi > 0

if vi = 1 andµi = 0 if vi = 0, i = 1, . . . , k}. For problem (2.3),	 = R
k and

we have a similar partition butvi = 0 meansµi ≤ 0. Also for problem (2.2) let
	(i) = {µ :µ ∈ 	,µi = 0}.

A loss function is a function of the action taken and the true state of nature. We
will take the loss function to be additive over the individual component problems
and for each component problem we choose the loss as follows: zero loss for a
correct decision; a loss of 1 for rejectingHi when it is true and a loss ofb for
acceptingHi when it is false. The loss function for the finite action problem can
be expressed as

L(a,µ) =
k∑

i=1

ai(1− vi) +
k∑

i=1

b(1− ai)vi, µ ∈ 	v,(2.7)

with 0 < b. This loss function reflects the property that the loss is additive over the
losses for the component problems.

The risk function for a decision procedureδ is

R(δ,µ) = Eµ

∑
a∈�

L(a,µ)δ(a|z).(2.8)

For the above loss function (2.7) it follows from (2.6) that the risk depends onδ

only throughψ , so we can write (2.8) as

R(ψ,µ) =
k∑

i=1

R(i)(ψi,µ),(2.9)

where

R(i)(ψi,µ) =
{

Eµψi(z), µi = 0,

b
(
1− Eµψi(z)

)
, µi > 0.

(2.10)

The risk function (2.9) can be written as

Eµ
(
ψ ′(1 − v) + b(1 − ψ)′v

)
,(2.11)

where1 = (1, . . . ,1)′.
A decision procedureψ is said to be inadmissible if there exists another

procedureψ∗ such thatR(ψ∗,µ) ≤ R(ψ,µ) for everyµ with strict inequality
for someµ. Otherwiseψ is admissible.

As previously noted we can view the multiple endpoints problem as one
involving k endpoints in whichψi(z), i = 1, . . . , k, is a test function for theith
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endpoint. In this scenario one may wish to consider a vector risk approach where
the risk consists of a(k × 1) vectorR = (R(1), . . . ,R(k))

′, R(i) = R(ψi,µ) given
in (2.10). In this formulation any procedure which has an admissible test for each
single component is admissible in the vector risk formulation. For general results
concerning vector risks, see Cohen and Sackrowitz (1984).

3. Some procedures for multiple endpoint problems. We focus on three
special cases of the most frequently discussed procedures, namely single-step,
step-down and step-up. The three procedures are considered in Hochberg and
Tamhane (1987) and Shaffer (1995). In all that follows we assume without loss
of generality that the variance of eachZi is 1. Furthermore, for now for step-
up and step-down we limit our discussion to procedures which are symmetric in
the variablesZ1, . . . ,Zk, that is, procedures that are permutation equivariant. The
normal model, with intraclass covariance matrix, represents the most general case
of permutation invariance.

3.1. Single-step. The single-step procedure we study is:

PROCEDURE3.1. RejectHi if and only if Zi > Ci .

The constantsCi are typically chosen so that the strong familywise error rate
(FWE) is less than or equal toα.

3.2. Step-down. The step-down procedure we study is as follows:

PROCEDURE3.2. LetZ(1) ≤ Z(2) ≤ · · · ≤ Z(k) be the order statistics for the
set(Z1,Z2, . . . ,Zk)

′ and letCj be a strictly increasing set of critical values:

(i) If Z(k) > Ck , rejectH(k). Otherwise accept allHi .
(ii) If H(k) is rejected, rejectH(k−1) if Z(k−1) > Ck−1. Otherwise accept all

H(k−1), . . . ,H(1).
(iii) In general, at stagej , if Z(j) > Cj , reject H(j). Otherwise accept

H(j), . . . ,H(1).

The critical values may be chosen so that:

OUTCOME 3.3. P {Z(k) ≤ Ck} = 1 − α when all Hi are true;P {Z(k−1) ≤
Ck−1} = 1 − α, with Z(k) excluded, andH(1), . . . ,H(k−1) are true. That is, after
one of the hypotheses is rejected, we consider a new problem with the(k − 1)

remaining variables that correspond to those parameters not rejected at step 1.
P {Z(j) ≤ Cj } = 1−α, when(k − j) variables and their corresponding hypotheses
are excluded andH(1), . . . ,H(j) are true. This choice of constants leads to control
of the strong FWE.
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The step-down procedure results by applying the closure method. See Hochberg
and Tamhane [(1987), Chapter 2, Section 4.1] for a description of this method. The
method is used by Marcus, Peritz and Gabriel (1976). Finner and Roters (2002)
note that this method strongly controls the FWE and they call such a testing method
a multiple level-α test procedure. The step-down method rejects moreHi ’s than
the single-step procedure for the sameα. The single-step procedure would useCk

for Cj , all j = 1, . . . , k.

REMARK. Procedure 3.2 is one type of step-down procedure. Another type,
used, for example, by Marcus, Peritz and Gabriel (1976), uses a likelihood ratio test
in applying the closure method. This results in a different step-down procedure.

3.3. Step-up. The step-up procedure we study is as follows:

PROCEDURE3.4. LetZ(1) ≤ Z(2) ≤ · · · ≤ Z(k) be the order statistics for the
set(Z1, . . . ,Zk) and letCj be a strictly increasing set of critical values.

(i) If Z(1) ≤ C1, acceptH(1). Otherwise reject allHi .
(ii) If H(1) is accepted, acceptH(2) if Z(2) ≤ C2. Otherwise reject

H(2), . . . ,H(k).
(iii) In general, at stagej , if Z(j) ≤ Cj , accept H(j). Otherwise reject

H(j), . . . ,H(k).

The critical valuesCj are sometimes chosen so that:

OUTCOME 3.5. P {Z(1) ≤ C1,Z(2) ≤ C2, . . . ,Z(j) ≤ Cj } = 1−α (1≤ j ≤ k)
when allµi = 0, i = 1, . . . , k.

This choice of constants enables control of the strong FWE. The step-up
procedure is credited to Hochberg (1988).

4. Properties of single-step. Recall b > 0 and for� intraclass,−1/(k −
1) < ρ.

THEOREM 4.1. For problems (2.2) and (2.3), suppose � is intraclass.
Suppose the loss function is (2.7). Then the single-step procedure is admissible
if ρ ≥ −1/b.

For the proof see Appendix A.1.

REMARK 4.2. The proof that the single-step procedure is admissible under
the given conditions is accomplished by demonstrating it is uniquely locally
admissible in some sense. In a one-dimensional, one-sided hypothesis testing
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problem Lehmann (1986) describes a unique locally best test as one whose
derivative of the power function evaluated at the null point is largest among all
sizeα tests. For the multivariate global testing problem (2.1) a test is uniquely
locally best in a direction if it has a similar property as in the one-dimensional
case. Marden (1982) utilizes the notion of local admissibility for global testing
problems. For our finite action problem we introduce a notion of unique local
admissibility and demonstrate that the single-step procedure has this property. As
in the global testing problem the focus is on the pointµ = 0 and is linked to the
derivative of a function of the risk evaluated atµ = 0.

Note that the theorem applies to the tree order model since in that caseρ > 0.
The admissibility result is particularly interesting in light of a result in CS

(2004). There it is stated that whenρ > 0, no nontrivial Bayes test can be type-I
monotone for problem (2.2). See CS (2004) for the definition of type-I monotone.
The single-step procedure is type-I monotone, so a first guess might be that it is
inadmissible. The result indicates that the first guess is incorrect.

Next we have:

THEOREM 4.3. For problems (2.2) and (2.3), suppose � = I (independence
case). Suppose the loss function is (2.7).Then the single-step procedure is proper
Bayes.

For the proof see Appendix A.1.
This result should also be contrasted with the result in CS (2004) which states

that the single-step procedure cannot be Bayes if� is intraclass withρ > 0:
Our final result of this section is:

THEOREM 4.4. For problems (2.2) and (2.3), suppose � is intraclass.
Suppose the risk function for each component problem is (2.10).Then the single-
step procedure is admissible for the vector risk VRI described in Result 1.3.

For the proof see Appendix A.1.
Although the single-step procedure has the above desirable properties, many

feel that single-step procedures are too conservative. That is, they do not detect
significant effects often enough while controlling the FWE. Single-step procedures
are somewhat akin to some simultaneous confidence bound procedures which are
highly conservative, making it difficult to declare significance for an individual
endpoint.

5. Properties of step-down and step-up. In this section the loss function
is (2.7).

We establish the following theorems:
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THEOREM 5.1. For problems (2.2) and (2.3) for � = I , there exists a
sequence of prior distributions for which the step-down procedure is a limit of
a sequence of Bayes procedures.

REMARK 5.2. In Theorem 4.1 it is shown that the single-step procedure has a
limiting “local” optimality property. The limit point is0. In Theorem 5.1, however,
it is shown that the step-down procedure has a limiting optimality property, but
now the limiting parameter points receiving weight tend to∞.

THEOREM 5.3. For problem (2.3), � = I , k = 2, b = 1, the step-down
procedure is admissible.

THEOREM 5.4. For problems (2.2) and (2.3) suppose � is intraclass. Then
the step-down procedure is admissible for vector risk VRI if and only if ρ ≥ 0.

For the proof see Appendix A.2.
Theorems 5.3 and 5.4 and the proofs of these theorems also apply to the step-up

procedure given in Procedure 3.4. The most interesting properties for step-up are
given in the companion paper CS (2005).

APPENDIX

A.1. Proofs of Theorems 4.1, 4.3 and 4.4. In order to prove Theorem 4.1,
we need a definition and theorem. First the definition.

For eachv ∈ �, let 	̄v be the closure of	v. Let Rv(ψ,µ), for µ ∈ 	v, be the
continuous extension ofR(ψ,µ) for µ ∈ 	̄v. Note that the point0 ∈ 	̄v for all
v ∈ �. Since the risk function is continuous on each	v, it follows that if ψ∗ is
better thanψ , thenRv(ψ

∗,µ) ≤ Rv(ψ,µ) for all µ ∈ 	̄v. In particular,ψ∗ better
thanψ impliesRv(ψ

∗,0) ≤ Rv(ψ,0) for all v ∈ �.
The next theorem is useful when comparing decision procedures under the

assumptions of this paper. That is, assume normality and assume the risk function
is (2.11). In the casek = 1 (which is the usual one-sided hypothesis testing
problem), the theorem reduces to the well-known result that ifψ∗ is better thanψ ,
then their risks at zero (size of the test) must match.

THEOREM A.1. If ψ∗ is better than ψ , then Rv(ψ
∗,0) = Rv(ψ,0), all v ∈ �.

PROOF. The assumption thatψ∗ is better thanψ implies thatRv(ψ
∗,0) ≤

Rv(ψ,0) for all v ∈ �. SupposeR0(ψ
∗,0) < R0(ψ,0). Since R0(ψ,0) =

E0
∑k

i=1 ψi(z) and R1(ψ,0) = kb − E0
∑k

i=1 ψi(z), it follows that R1(ψ,0) <

R1(ψ
∗,0). This is a contradiction. A similar contradiction is reached if it is

assumed thatR1(ψ
∗,0) < R1(ψ,0).
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Now suppose for somev ∈ �r , r = 1, . . . , k − 1, Rv(ψ
∗,0) < Rv(ψ,0), where

�r = {v ∈ � :
∑k

i=1 vi = r}. Then from (2.11)∑
v∈�r

Rv(ψ,0) = ∑
v∈�r

E0[ψ ′(1− v) + b(1− ψ)′v].(A.1)

Now recognize that
∑

v∈�s
v = (k−1

s−1

)
1 and collect terms so that (A.1) equals

bk

(
k − 1
r − 1

)
+

[(
k − 1

r

)
− b

(
k − 1
k − r

)]
E0

k∑
i=1

ψ i (z).(A.2)

If [(k−1
r

) − b
(k−1
k−r

)] > 0, thenE0
∑

v∈�r
Rv(ψ

∗,0) < E0
∑

v∈�r
Rv(ψ,0) implies

E0
∑k

i=1 ψ∗
i (z) < E0

∑k
i=1 ψi(z). This in turn implies thatR1(ψ,0) < R1(ψ

∗,0).

This is a contradiction. If[(k−1
r

) − b
(k−1
k−r

)] < 0 or equals 0, a similar contradiction
is reached. Thus the theorem is proved.�

To prove Theorem 4.1 we need to study the behavior of linear combinations
of the Rv functions. When� is assumed to be intraclass we may write� =
σ 2((1− ρ)I + ρ11′). In this case

�−1 = (
σ 2(1− ρ)

)−1
(I − G11)′,

where

G = ρ/
(
1+ (k − 1)ρ

)
.

As earlier we takeσ 2 = 1 without loss of generality.

PROOF OF THEOREM 4.1. Let ψ∗ be the single-step procedure. Suppose
ψ is better thanψ∗. Then Theorem A.1 impliesψ cannot be uniformly better
than the single-step procedure at0; that is, there does not exist aψ such that
Rv(ψ,0) ≤ Rv(ψ

∗,0) for all v, with strict inequality for somev.
Therefore we need only consider proceduresψ such that

Rv(ψ,0) = Rv(ψ
∗,0) for all v ∈ �.(A.3)

For ψ satisfying (A.3) we study
∑

λvRv(ψ,µ), whereλv are coefficients that
can depend onµ, for v ∈ � and whereRv(ψ,µ) is evaluated atµ = �v,
� > 0. In this case write

∑
v∈� λvRv(ψ,µ) = ∑

v∈� λv(�)Rv(ψ,�v). Amongψ
satisfying (A.3), we show thatψ∗ is the unique procedure that minimizes the
derivative with respect to� of

∑
v∈� λv(�)Rv(ψ,�v), evaluated at0. This

demonstrates the admissibility ofψ∗.
Now we consider

∑
v∈� λv(�)Rv(ψ,�v), which using (2.11) is

∫
· · ·

∫ {
k∑

s=0

∑
v∈�s

λv(�)[1′(ψ + bv) − (1+ b)ψ ′v]f (z|v�)

}
dz,(A.4)
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wheref (z|v�) is obtainable from

f (z|µ) = (
1/(2π)k/2|�|1/2)

e−(1/2)(z−µ)′�−1(z−µ).

For a chosen set ofλv(�) we seek aψ , among the class of procedures
satisfying (A.3) that minimizes the derivative of (A.4) with respect to�, evaluated
at� = 0.

Recall withσ 2 = 1, �−1 = (1− ρ)−1(I − G11′).
Now we chooseλv, v ∈ �, as follows:
Let C = (C1, . . . ,Ck)

′, whereCi is given in Procedure 3.1.
Let εi = (0, . . . ,1,0, . . . ,0)′, that is, a vector with all zeros except 1 in theith

position. Letγ = [(1 − Gk) + (1 + b)G]/b(1 − Gk) = (1 + bρ)/b(1 − ρ), and
note thatγ > 0 if and only if (1+ bρ) > 0. Letλ0(�) = 1, λ1(�) = γ e−C′�−11�,
λv(�) = e−C′�−1v�, for v = εi , i = 1, . . . , k, andλv(�) = 0 otherwise.

The derivative of (A.4) with respect to� evaluated at� = 0 is expressed as

∫
· · ·

∫ {
k∑

s=1

∑
v∈�s

d
(
λv(�)f (z|v�)

)
/d�|�=0

× [1′(ψ + bv) − (1+ b)ψ ′v]
}

dz

= (
1/(1− ρ)

) ∫
· · ·

∫ {
k∑

i=1

[1′(ψ + bεi) − (1+ b)ψ ′εi]

× ε′
i (I − G11′)(z − C)

+ γ b(k − ψ ′1)k(1− Gk)(z̄ − C̄)

}
f (z|0) dz.

(A.5)

We will chooseψ(z) to minimize the integrand in (A.5) for eachz. Toward this
end we evaluate the bracketed term on the right-hand side of (A.5), which becomes

ψ ′1[k(z̄ − C̄) − k2G(z̄ − C̄)] + b[k(z̄ − C̄) − k2G(z̄ − C̄)]
− (1+ b)ψ ′(z − C) + (1+ b)kGψ ′1(z̄ − C̄)

+ γ b(k − ψ ′1)k(1− Gk)(z̄ − C̄)

= −(1+ b)ψ ′(z − C)

+ ψ ′1k(z̄ − C̄){(1− Gk) + (1+ b)G − γ b(1− Gk)}
+ bk(z̄ − C̄)[(1− G) + γ k(1− Gk)].

(A.6)

At this point we recognize that by substituting the selected value ofγ in the
bracketed term on the right-hand side of (A.6), the term becomes 0. Hence to
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minimize (A.6) we chooseψi(z) = 1 if zi > Ci and chooseψi(z) = 0 if zi < Ci .
This is the single-step procedure. Thus the single-step procedure is admissible for
problem (2.2) [and for problem (2.3), since the same proof applies] ifγ > 0. But
γ > 0 if (1+ bρ) > 0 which amounts to the given part of the theorem.�

In order to prove Theorem 4.3 we will need the following definition and
theorem.

A decision procedureψ∗ is Bayes with respect to a prior distributionξ(µ) if

EξR(ψ∗,µ) = inf
ψ

EξR(ψ,µ).

In connection with Bayes procedures, letq(ω|z) denote the posterior probability
of the subsetω ∈ 	, given z. Then the following theorem describes a Bayes
procedure.

THEOREM A.2. Consider the risk function in (2.9). The Bayes procedure is
ψ∗ = (ψ∗

1 , . . . ,ψ∗
k )′, where

ψ∗
i =

{
1, if q

(
	(i)|z)

< b/(b + 1),

0, otherwise.

PROOF. Since the loss function is additive, the sum of expected risks for the
individual components is minimized by minimizing the expected risk
for the individual components. The theorem follows by the same argument used
for a single testing problem. See, for example, Mood, Graybill and Boes [(1974),
page 417]. �

PROOF OFTHEOREM 4.3. Choose a prior distribution such thatµ1, . . . ,µk

are independent. Thenq(	(i)|z) depends only onzi . Furthermore,q(	(i)|z) is
a decreasing function ofzi . Use Theorem A.2 and the fact that the prior can be
chosen so thatq(	(i)|z) < b/(b + 1) is equivalent toZi > Ci . �

PROOF OF THEOREM 4.4. We need only show that the procedure is
componentwise admissible. That is, we need only prove that the test for each
Hi :µi = 0 vs Ki :µi > 0 is admissible. It suffices to show thatZ1 > C1 is an
admissible test forH1 :µ1 = 0 vs K1 :µ1 > 0. To prove this we note that the
multivariate normal density is proportional to

e−(1/2)z′�−1ze−(1/2)µ′�−1µeµ′�−1z.(A.7)

Letting y = �−1z, (A.7) can be written in exponential family form as

h(y)β(µ)eµ′y = h(y)β(µ)ey1µ1+∑k
i=2 yiµi .
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A result of Matthes and Truax (1967) implies that any test ofH1 :µ1 = 0 vs
K1 :µ1 > 0 which is monotone iny1 for fixed (y2, . . . , yk) is admissible. Here
monotone means ify′

1 ≤ y′′
1 and the test rejects fory′

1, then it must also reject
for y′′

1 wheny2, . . . , yk are fixed.
Now note that the single-step procedure is of the form reject ifz1 > C1. Since

z = �y, this can be expressed as

y1 + ρ

k∑
j=2

yj > C1.(A.8)

From (A.8) we see that the test forH1 is monotone iny1 for fixed (y2, . . . , yk).
�

A.2. Proofs of Theorems 5.1, 5.3 and 5.4.

PROOF OF THEOREM 5.1. A sequence of prior distributions will be put
on various points of	v. The amount of prior probability on each point will
be expressed as a ratio where the denominator is always expressed asD and
D is the sum of numerator terms. The sequence of priors is as follows: On
	(0,...,0) the numerator of the prior probability is 1. On	(1,0,...,0) the numerator,

eµ′µ/2e−Ckn
k
, is put onµ1 = nk ; all other µ’s are zero. On	(0,0,...,0,1,0,...,0),

where 1 is in theith position, the numeratoreµ′µ/2e−Ckn
k

is put on µi =
nk ; all other µ’s are zero. On	(0,...,0,1,0,...,0,1,0,...,0), where 1 is in theith

and j th positions, the numerator(1/2)eµ′µ/2e−Ckn
k−Ck−1n

k−1
is put on the

points µi = nk , µj = nk−1 and µi = nk−1, µj = nk (all other µ’s zero). On
	(0,...,0,1,0,...,0,1,0,...,0,1,0,...,0), where 1 is in theith, j th and �th positions, the

numerator(1/3!)eµ′µ/2e−Ckn
k−Ck−1n

k−1−Ck−2n
k−2

is put on six points, namely,
(µi = nk,µj = nk−1,µ� = nk−2), (µi = nk,µj = nk−2,µ� = nk−1), (µi =
nk−1,µj = nk,µ� = nk−2), (µi = nk−1,µj = nk−2,µ� = nk), (µi = nk−2,µj =
nk,µ� = nk−1), (µi = nk−2,µj = nk−1,µ� = nk) (all other µ’s are zero). In

general, ifv ∈ �s , then the numerator(1/s!)eµ′µ/2e
∑s

i=1 Ck+1−in
(k+1)−i

is put ons!
points where theµ’s are zero except for(µj1, . . . ,µjs ) and all permutations where
µj1, . . . ,µjs correspond tovj1, . . . , vjs which are 1.

Next we indicate the numerators of posterior probabilities for each	v. All
posterior probabilities have the same denominator. We will note that for each
fixed z one of the posterior probabilities will tend to 1. This fact means that
the posterior risk will be minimized by choosing the action that corresponds to
the	v whose posterior probability tends to 1. We will see that such a choice will
correspond to the step-down procedure. Here are the numerators of the posterior
probabilities denoted byξ(	v|z). All denominators of the posterior probabilities
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are the same and the denominator is the sum of the numerators:

ξ
(
	(0,...,0)|z) = 1,

ξ
(
	(1,0,...,0)|z) = e(z1−Ck)n

k

,

ξ
(
	(0,...,0,1,0,...,0)|z) = e(zi−Ck)n

k

,

ξ
(
	(0,...,0,1,0,...,0,1,0,...,0)|z) = (1/2)

[
e(zi−Ck)n

k+(zj−Ck−1)n
k−1

+ e(zj−Ck)n
k+(zi−Ck−1)n

k−1]
.

For an arbitraryv ∈ �s ,

ξ(	v|z) = (1/s!) ∑
all permutations

of vj1,...,vjs

exp

(
s∑

i=1

(
zj�

− Ck+1−i

)
n(k+1)−i

)
,(A.9)

where the indicesj� reflect a permutation ofvj1, . . . , vjs .
At this point fixz. Say, for example, and without loss of generality,zi > Ck+1−i ,

i = 1,2, . . . , r , andzi < Ck+1−i , i = r + 1, . . . , k. Then if r = 0, the posterior
probability of 	(0,...,0) denoted byq(	(0,...,0)|z) tends to 1 asn → ∞. If r ≥ 1,
thenq(	(1,...,1,0,...,0)|z), with r ones in(1, . . . ,1,0, . . . ,0), tends to 1 asn → ∞.
This is true sinceξ(	v|z) tends to∞ (except for	(0,...,0)) asn → ∞, but the
ratio ofξ(	(1,...,1,0,...,0)|z)/ξ(	v|z) wherev differs from(1, . . . ,1,0, . . . ,0) tends
to ∞ asn → ∞. Thus we have demonstrated that the step-down procedure is a
limit of a sequence of Bayes procedures.�

PROOF OF THEOREM 5.3. For problem (2.3) the risk is taken from (2.10)
and (2.11) except nowRi(ψi,µ) = Eµ(ψi(z)) whenµi ≤ 0. Let the step-down
procedure be denoted byψSD. Note that the risk function for an arbitrary procedure
ψ is as follows:

Forµ1 > 0, µ2 > 0,

R(ψ,µ) = 2− Eµ
(
ψ1(z) + ψ2(z)

)
.(A.10)

Forµ1 ≤ 0, µ2 ≤ 0,

R(ψ,µ) = Eµ
(
ψ1(z) + ψ2(z)

)
.(A.11)

Forµ1 > 0, µ2 ≤ 0,

R(ψ,µ) = 1− Eµψ1(z) + Eµψ2(z).(A.12)

Forµ1 ≤ 0, µ2 > 0,

R(ψ,µ) = 1− Eµψ2(z) + Eµψ1(z).(A.13)
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Now if ψSD is inadmissible from (A.10)–(A.13), then there exists aψ∗ which is
better, that is,

Eµ
(
ψ∗

1(z) + ψ∗
2(z)

) ≥ Eµ
(
ψSD

1 (z) + ψSD
2 (z)

)
, µ1 > 0,µ2 > 0,(A.14)

Eµ
(
ψSD

1 (z) + ψSD
2 (z)

) ≥ Eµ
(
ψ∗

1(z) + ψ∗
2(z)

)
, µ1 ≤ 0,µ2 ≤ 0,(A.15)

Eµ
(
ψSD

2 (z) − ψSD
1 (z)

) ≥ Eµ

(
ψ∗

2(z) − ψ∗
1(z)

)
, µ1 > 0,µ2 ≤ 0,(A.16)

Eµ
(
ψSD

1 (z) − ψSD
2 (z)

) ≥ Eµ

(
ψ∗

1(z) − ψ∗
2(z)

)
, µ1 ≤ 0,µ2 > 0,(A.17)

with at least one strict inequality for someµ. By letting eitherµ1 → 0 orµ2 → 0
or both µ1 → 0, µ2 → 0 in (A.14)–(A.17) we have that (A.14)–(A.17) hold
wheneverµ1 ≥ 0, µ2 ≥ 0; µ1 ≤ 0, µ2 ≤ 0; µ1 ≥ 0, µ2 ≤ 0; µ1 ≤ 0, µ2 ≥ 0,
respectively.

Consider parameter points of the formµ = (µ1,0)′, µ1 ≥ 0. In this case (A.14)
and (A.16) hold. Adding these two inequalities yields

Eµψ∗
1(z) ≥ EµψSD

1 (z).(A.18)

Let W(z) = ψ∗
1(z) − ψSD

1 (z) and let φ(u) be the standard normal density.
Then (A.18) is

0 ≤
∫ ∞
−∞

∫ ∞
−∞

W(z)φ(z1 − µ1)φ(z2) dz2 dz1

=
∫ ∞
−∞

∫ ∞
−∞

W(z)φ(z2)φ(z1)e
z1µ1e−C2µ1eC2µ1e−µ2

1/2 dz2 dz1.

(A.19)

Equivalently we have, for allµ1 ≥ 0,

0 ≤
∫ ∞
−∞

∫ ∞
−∞

W(z)φ(z2)φ(z1)e
(z1−C2)µ1 dz2 dz1

≤ 1+
∫ ∞
C2

∫ ∞
−∞

W(z)φ(z1)φ(z2)e
(z1−C2)µ1 dz2 dz1.

(A.20)

In the last integral of (A.20) whenz1 > C2, ψSD
1 (z) = 1. Thus for anyψ∗

1(z)
W(z) ≤ 0 for all z1 ≥ C2. If W(z) < 0 on a set of positive Lebesgue measure, then
the last integral in (A.20) tends to−∞ asµ1 → ∞. This would be a contradiction
and soW(z) = 0 a.s. forz1 > C2. Thus forz1 > C2, ψ∗

1(z) = ψSD
1 (z). This type of

argument, lettingµ → ∞ so that (A.20)→ ∞, is due to Stein. See, for example,
Stein (1956).

In a similar fashion we show that

ψ∗
2(z) = ψSD

2 (z) for z2 > C2,

ψ∗
1(z) = ψSD

1 (z) for z1 < C1,

ψ∗
2(z) = ψSD

2 (z) for z2 < C2.
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Thereforeψ∗(z) = ψ(z) whenever(z1 < C1, z2 < C2), (z1 < C1, z2 > C2),
(z1 > C2, z2 < C1) and (z1 > C2, z2 > C2). That is, ψ∗(z) = ψSD(z) unless
C1 < z1 ≤ C2 or C1 < z2 < C2. Next return to (A.14) and considerµ = (µ1,1)′.
We have

0≤ Eµ{ψ∗
1(z) + ψ∗

2(z) − ψSD
1 (z) − ψSD

2 (z)}.(A.21)

Let V (z) = (ψ∗
1(z) + ψ∗

2(z) − ψSD
1 (z) − ψSD

2 (z)). In the manner that (A.20)
followed from (A.19), we have that (A.21) yields

0 ≤
∫ ∞
−∞

∫ ∞
−∞

V (z)φ(z1)φ(z2 − 1)e(z1−C1)µ1 dz2 dz1

≤ 2+
∫ ∞
C2

∫ C2

C1

V (z)φ(z1)φ(z2 − 1)e(z1−C1)µ1 dz2 dz1.

(A.22)

When z1 > C2 and z2 ∈ [C1,C2] we haveV (z) ≤ 0. As before, we have a
contradiction in (A.22) asµ1 → ∞ unlessψ∗(z) = 1 in {z : z1 > C2,C1 <

z2 < C2}.
Similarly it can be shown thatψ∗(z) = ψSD(z) for almost allz not lying in the

box

{z :C1 ≤ z1 ≤ C2,C1 ≤ z2 ≤ C2}.(A.23)

The final step is to show thatψ∗(z) = ψSD(z) on (A.23). NowψSD(z) = 1
on (A.23), so (A.15) would be violated whenµ = 0 if ψ∗(z) �= 1 on a set of
positive measure in (A.23). This completes the proof.�

PROOF OF THEOREM 5.4. As in the case of the proof of Theorem 4.4 we
appeal to the Matthes and Truax (1967) theorem. We must show that the step-down
procedure is monotone iny1 for fixed (y2, . . . , yk) if and only if ρ ≥ 0.

Now recognize that the step-down procedure is of the form rejectH1 if z1 >

C(z(2)), z(2) = (z2, . . . , zk)
′, or in terms of the coordinates ofy it is of the form

reject if

y1 + ρ

k∑
i=2

yi > C

(
ρy1 + y2 + ρ

k∑
i=3

yi,

ρ(y1 + y2) + y3 + ρ

k∑
i=4

yi, . . . , ρ

k−1∑
i=1

yi + yk

)
.

(A.24)

Note that the left-hand side of (A.24) is increasing iny1 for fixed y2, . . . , yk . We
claim the right-hand side of (A.24) is nonincreasing iny1 for fixed y2, . . . , yk as
long asρ ≥ 0. To see this, note thatC(z(2)) is a nonincreasing function of its
arguments. That is, as anyzi , i = 2, . . . , k, increases it becomes easier to rejectH1;
that is, the critical value in the step-down sequence can only remain the same
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or become smaller. For example, if allzi , i = 2, . . . , k, are less thanCk , then
C(z(2)) = Ck . If exactly one ofz2, . . . , zk is bigger thanCk , thenC(z(2)) = Ck−1.
Thus the conditions of the Matthes and Truax theorem are met and the step-down
procedure (and step-up procedure) are admissible for VRI as long asρ ≥ 0.

Next we show that ifρ < 0, then the step-down (step-up) procedures are not
monotone on some sections (monotone iny1 for fixed y2, . . . , yk) and therefore
can be improved on these sections. Toward this end recall that

y = �−1z and z = �y.(A.25)

Let r = (1 ρ ρ · · ·ρ)′ be the first column of� and define the pointsz∗ andz∗∗
as follows:

z∗ = (
(Ck−1 + Ck)/2, Ck, . . . ,Ck

)
,

z∗∗ = z∗ − εr.

The step-down procedure acceptsH1 whenz∗ is observed (it is a boundary point
of the acceptance region). Sinceρ < 0 when 0< ε is sufficiently small, the step-
down procedure will rejectz∗∗. It follows from (A.25) that

y∗ = �z∗ = �(z∗∗ + εr) = �z∗∗ + ε�r

= y∗∗ + (ε,0, . . . ,0)′.
Thus the step-down is not monotone iny1. A similar argument works for step-up.

�
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