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In Bayesian decision theory, it is known that robustness with respect
to the loss and the prior can be improved by adding new observations. In
this article we study the rate of robustness improvement with respect to
the number of observations. Three usual measures of posterior global
robustness are considered: the (range of the) Bayes actions set derived from
a class of loss functions, the maximum regret of using a particular loss when
the subjective loss belongs to a given class and the range of the posterior
expected loss when the loss function ranges over a class. We show that the
rate of convergence of the first measure of robustneggniswhile it is n
for the other measures under reasonable assumptions on the class of loss
functions. We begin with the study of two particular cases to illustrate our
results.

1. Introduction. In Bayesian analysis, choosing a prior distribution and
choosing a loss function according to prior knowledge and preferences are difficult
tasks. In practice, the decision maker usually chooses convenient approximations
to the subjective prior and the subjective loss. The legitimacy of such approxi-
mations might be investigated by a sensitivity analysis of the results with respect
to the approximations. This is the purpose of robust Bayesian analysis, which re-
cently was overviewed by Rios Insua and Ruggeri (2000). An interesting approach,
called global robustness, proposes to replace a single prior distribution (resp. loss
function) by a class of priors (resp. loss functions) and then to compute the range
of the ensuing answers as the prior (resp. loss function) varies over the class.

Bayesians mainly focus on sensitivity to the prior distribution, although the
final result can be drastically affected by the loss function. Moreover, Rubin
(1987) showed that the loss function and the prior cannot be separated under
a weak system of axioms for rational behavior. It is worth pointing out that
robustness with respect to the prior can be expressed as a particular case of loss
robustness. This is illustrated by the following example: the computation of the
range of the posterior expectation when the prior densitgnges over a clads
reduces to the computation of the range of the Bayes actions (i.e., decisions that
minimize the posterior expected loss) when the loss function ranges over the class
{lap/po, p € T}, wherels is the quadratic loss ang is a fixed prior.
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When robustness is lacking, Abraham (2001) showed it can be improved by
adding new observations. It is of practical interest to know how many new
observations are needed to achieve a given robustness. Herein we answer this
question by investigating the asymptotic rate of convergence of three measures
of posterior robustness. Because of the above remark, we focus on robustness with
respect to the loss, since it provides a general framework including many prior
robustness problems.

The asymptotic of global robustness measures (e.g., the range of posterior
means or set probabilities) with respect to the prior has been investigated
for particular classes (mainly-contamination classes) by Sivaganesan (1988),
Pericchi and Walley (1991), Moreno and Pericchi (1993) and Ruggeri and
Sivaganesan (2000). The local point of view has been studied by Gustafson and
Wasserman (1995), Gustafson, Srinivasan and Wasserman (1996) and Sivaganesan
(1996). For a recent account of the theory, refer to Sivaganesan (2000).

In Sections 4-6, we proceed with the study of three measures of posterior global
robustness. Section 4 is devoted to the study of the Bayes actions set derived from a
class of loss functions. We show that the Bayes actions set tends to a limit set with
rate ./n, wheren is the number of observations. In Section 5, we are concerned
with the regret of choosing a decision associated with a particular loss function
when the true loss function varies over a given class. We show that the rate of
convergence of the supremum of the regrets/is or n, according to the class
of loss functions. Section 6 deals with the range of the posterior expected loss,
which has asymptotic ratg’n or n as well. Section 2 provides two examples. For
one of them, the above asymptotic rates are actually achieved for everyxfinite
In Section 3 we set up notation and terminology. In particular, we indicate that
the posterior distribution can be calculated under misspecified models, that is, we
contemplate that the observations are realizations from a convenient probability
distribution with densityz, (o is the parameter), while the true distributigh
may not correspond th, for all values ofo. Finally, we compile some auxiliary
results in Section 8.

2. Examples. In this section, we present two examples based on tractable
classes of loss functions. Such classes have already been considered in Martin,
Rios Insua and Ruggeri (1998) and Abraham and Daurés (1999, 2000).

2.1. Squared-error loss. Whereas squared-error loss is frequently used to
approximate nearly symmetric loss functions [Berger (1985)], it is of practical
interest to investigate robustness with respect to variations around this loss. It is
also of theoretical interest because it makes the calculations relatively simple.

The set® of parameters and the s@t of decisions are both assumed tolbe
Fix 0 < k1 < ko, depending on the incomplete information on the true loss, and
definelU :© x D — RT as

(2.1) U(o,d) = (k2{ld = 0} + ki{d < o})lo(o, d),
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where{C} denotes the usual indicator function 6fandlo(c, d) = 0.5(d — ¢)?
denotes the convenient loss chosen by the decision maker. Defme inter-
changingki and k> in the definition of U. Let Dgil stand for the derivative
of [:® x H — R with respect taZ and introduce the clas® of loss functions
[:0 x D — RT such that for alb € ®, Dg1l(o, -) is continuous](c, 0) =0 and
Do1L < Doil < Do1U.

Assume thatX1,..., X, are independent and identically distributed from
a normal N(u, »~1) distribution, where the variance~! is known. Take
a N(uo, Aal) prior. The posteriorr, is then normaIN(un,kgl) with u, =
(Aopmo+A(X14---+ Xy)) /A, and precision,, = Ao+nA. Denoting, forall € F,

d;' as a minimizer of"(-) = [g l(o, -)m,(do), elementary calculations show that
U" andL"™ admit only one minimizer given by

dly = pn+r1/vA and d} =, +r2/vVAn,

wherer; < 0 < rq are constants depending bnandko.

Let us now investigate the computation of the three measures of posterior
robustness. Since, by Abraham and Daures (1999),/ € ¥} = [d}}, d} ], the
diameter of{d', ! € ¥} is equal to(ry — r2)/+/A,, Which gives the first measure
of robustness. Write now r¢g?) =" (d) — inf o [" for the posterior regret. By the
definition of &, if d» > d1, we have for all € ¥,

dy dp
" (do) — I"(dh) = /d 1 Doil" () dt = /d 1 /O Doil (o, )7, (do) dt.
Hence, we deduce that
(2.2) supred’ (d) = max{red;, (d), reg; (d)}.

leF

Let dy = ., be the Bayes rule associated with the squared-error loss furigtion
After some calculations, we obtain that for some constanéndc,,

U"(dg) —U"(dp) =c1/h, and L*(dg) — L"(d}) = c2/Mn,
and hence

supred' (dy) = maxci, c2)/An,
leF

which gives the second measure of robustness. Finally, #f k2lp and I =
kilo, thenI,S e F andI <[ < S for all [ € . Then if we write rafi(d) =
SURcg I"(d) — infieg I"(d) for the range of the posterior expected loss, we
obviously have

rarl' (dg) = S" (dg) — 1" (dg)
= 0.5(kp — k1) /A,

hence the third measure of robustness.
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We emphasize that the constantsr», c1 andcs can be numerically computed
and that similar calculations can be done with different functidng andlg. As
a conclusion, we proved that, for the clags the speed of convergence of the
diameter of{d}',] € ¥} is /n, while the speed of convergence of the posterior
regret and the range of the posterior expected loss.are

2.2. The dam construction problemFollowing UImo and Bernier (1973), the
economical consequence of constructing a dameters high is the sum of the
cost construction and the cost due to a potential flood AAD00H — d) {H > d},
whereH is the peak water level. Note that the consequence is a random variable.
Assuming thatH is exponentially distributed with densi#y, (x) = ce~°* and
taking the expectation yields the loss

lo(o, d) = 10d + 1000 ~Lexp(—do).

A similarly constructed utility functiortan be found in Bergd(1985), page 58].

The lossip can be viewed as a convenient approximation to the true loss. Let
us proceed similarly to Section 2.1 to study the robustness of the Bayes action.
Consider the clas$ of functions!/ such thatDg1L < Dgil < Dg1U. Whereas the
minimum ofly(o, -) is obtained whedo = log 10, we define

U(o,d)= (CD(do —log 10 + 0.5) lo(o,d)
and
L(o,d) = (15— ®(do — log 10)) lp(c, d),

whered denotes the cumulative distribution function/ét0, 1). Letd;' andd; be
generic notation for the Bayes actions associated with the loss funétaomd,
respectively. It can be proved th&i(o, -) and L(o, -) are convex functions with

a unique minimizer. Thus, the set of Bayes actions is[sff}l, 47 ] and the largest
posterior regret can be calculated by (2.2). The posterior distribution is derived
from n independent observations with density and a reference priot (o) =

o1 (n, ~ Gamman, > 1 Xi)). We simulatedk = 100 observations with respect

to hos and computed numerically % x; = 1936, d}, = 2.7,d} =7.7,d} = 4.5

and sup. ¢ red' (dy) = 19.5. Thus, the optimal dam size is somewhere between
2.7 and 77 m, and using the optimal decision associated Vgthives an excess
posterior loss less than B Can we get more precise results by adding new
observations? Sections 4 and 5 answer in the negative. Indeed, Theorem 4.1
applied to£ = {U, L} shows that the range of the optimal sizes approaches
df — df, with rate \/n, whered is the true value of the parameter andd? and

df/ are the minimizers ot/ (¢, -) and L (0, -). From the data we can gueso be

about 05 (because & = 0.51) and deduce thall — ¥, is around 5 by numerical
computation of?f anddy, for 6 = 0.5. Sinced} — di;, =5, we cannot expect to
improve the result. Note that the cla$sis large since, even whehis given, it
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is only known that the optimal size is somewhere betw#erandd? . Also note

that if we had chosen a clags such thatlf, = d¢, the range of the optimal sizes
could have been arbitrarily reduced by adding observations [see Abraham (2001)
for a description of the limit of the Bayes actions set]. Similarly, we know from
Theorem 5.1 that the largest posterior regret approachesegady ), req, (d§)},

which remains about 20, Whedé denotes the minimizer d§(9, -).

3. Preliminaries and notation.

3.1. The model. Let X = (X1, X2, ...) be a sample sequence of independent
and identically distributed random variables defined on some measurable space
(X0, Bo), whereBg denotes the Boret-field of Xg. In the sequeD refers to the

joint distribution on(X, 8) of the sequenc&, whereX = XON and 8 denotes
the Borelo -field of X.

We introduce the family of probability densitiés,, o € ®} with respect to
someo -finite measurg: on (X, Bo), where the parameter spa€eis R* with
Borelo -field Bg . Note that the model may be misspecified since we do not assume
that Q corresponds to any of the densities. For technical reasons, we make the
additional assumption th&t, xg) — A, (x0) is Be ® Bo measurable.

From now on, we fix a prior distribution on (®, Bg). The existence of the
posterior distribution for misspecified models was studied by Berk (1970). For
simplicity, we assume that the posterior distributign defined for allA € B by

T (A) = fA i:l_[lh“(xi)n(da) / /O iz]'llho<x,-)n(do),

does exisD-almost surely.

We assume the model, to be regular enough so that the maximum
likelihood estimaté, is asymptotically normal [i.e., for somec ®, /n(6, — 0)
converges in distribution to a normal random varialdlg] and the posterior
distribution concentrates around the true value of the parameieraso. The
precise assumptions M on the model are given in the beginning of Section 8.
Sufficient conditions for the existence and the asymptotic normalit§, df.e.,
assumption M1) with misspecified models were given by White (1982) for the
case when® is compact. Moreover, Abraham and Cadre (2002) studied the
concentration ofr,, around the true value of the parameter; see also Strasser (1976)
when the model is correctly specified. More precisely, both works give sufficient
conditions so that M2—M4 hold.

3.2. The basic class of loss functiongror simplicity, let & = R? be the
decision space. In the sequel a loss function is defined to be a function
[-® x D — R such thatl/(-, d) is measurable for each € D andi(o, ) is
twice continuously differentiable for eaehe ©.
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If o; (resp.d;) denotes théth component ob € © (resp.d € D), we write,
when they exist,

Denl < al ) Drl — < dl )
ol =\ s 10t = s
3d,‘ i=1,...,p 89 i=1,...k

.....

Do < 921 ) Dol < 921 )
02t = s 20l = ,
ad; dd; /)i j=1...p 360,00 )i j=1,. .k

..........

.....

wherei and; stand for the row index and the column index, respectively.

In this article a clas< of loss functions is said to be locally-dominated if, for
all d € D, there exist a functiog € L1(xr) which is bounded on a neighborhood
of 6, and an open balB(d, r) with centerd and radius: > 0 such that

sup sup |[[Doyl(o,0)| < g(o), ce®, y=0,1,2,

leL1€B(d,r)
with the notationDggl = I. Here and in the sequdl| denotes the maximum
of the absolute values of the coordinates of a vector or a matnixith real
coefficients. Thus, a locallyt-dominated class is also locally,-dominated on
the even{/ g(o)m,(do) < oo}, the probability of which tends to 1 when— oo
by Lemma 8.1. Since this article deals with convergence in probability and in
distribution, we may restrict our attention to the elements of this set.

To shorten notation, we writé' (d) = [ (o, d)m,(do) as the expectation of
(-, d) with respect tar,,. Note that in a locallyr-dominated class differentiation
and integration can be inverted, and we let

Doyl”(d)=/()Doyl(o,d)nn(do), y=12

Furthermore, ifDg, (o, -) is continuous forr-almost allo, Dg, (" is continuous
as well.

3.3. The Bayes action processSince, for each loss functioh ["(d) is
a measurable function af and a continuous function @, it is possible, for each
x € X such that argmipep 1" (d) # @, to select a minimizing decisiod’ (x) in
such amanner that the functien- d;' (x) is 8 measurable [Rockafellar and West
(1998), Theorem 14.37]. The decisidhis called the Bayes action associated with
the losd.

We use the outer probability theory to avoid strong assumptions dhat
ensure the measurablllty atl)')e.. We denote byQ* the outer probability

derived fromQ, by Y, 2y the convergence in outer probability and By~~ Y
the weak convergence (with respeci2d) of Y, to Y. For more details about outer
probability, refer to van der Vaart and Wellner (1996).
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Throughout this article denotes a locallyr-dominated class of loss functions
such that the outer probability that arg mim, /" (d) = @ for somel € L is zero.
We then define a Bayes actions process to be a fa@jly;c, of minimizing
decisions. We equip the space of functions frénmto the space of matrices with
real coefficients with the supremum norm.

4, Asymptotic of the Bayes actions process. This section is devoted to the
study of the Bayes actions process. To get asymptotic results, it is necessary to
put some restrictions og#f. We assume throughout th4t satisfies the following
properties [recall thad is fixed (see Section 3.1)]:

la. Forevery e £, argmin (o, -) = {df}.

1b. There exists a neighborhodd of 6 such that, for all € £, D01l(-,df) is
continuously differentiable oly.

1c. sup.,lID111(8,d)|| < oo, supe £ 1 Do2l (8, d)|| < oo and infic | detDo2l (6,
d?)| > 0.

1d. The families{D11/ (-, d{)ly,, I € £}, {Do2l (-, d)lv,, | € £} and{i(-, d)ly,,
l e £, d € K} are equicontinuous &tfor any compack C D.

Let B(c, r) be generic notation for an open ball with centemd radius- > 0.

le. For everyy > 0, there exist, € L1(mr) with SURs ey, Pp(0) =>3—00 and
such that for alb € ® we have

sup sup ||Dozl(o,d) — Do2(a,d))|| < py(o).
leL deB(d! n)

1f. There exist > 0 and a compact s&f C D such that

supinf 1(8,d) < inf inf inf I(o,d).
lefdeK leLoeB(®,r)deK¢

1g. Foreveny > 0,

k() =inf inf  [10,d)—1©,d)]>0.
leL geBe@?,n)
The homogeneity off is ensured by conditions 1b—1e. From 1f we prove that
the Bayes actions remain in a compact set (Lemma 8.2). Let us illustrate the
assumptions by the following examples.

EXAMPLE 4.1 (Prior robustness). Ldf be a class of densities with re-
spect to (w.r.t.) the Lebesgue measuwteon R and assumer has a posi-
tive density wg w.r.t. m. Consider the classt of functionsi(o,d) = (d —
a(o))?w(o)/wo(c) with w € I'. For instance, we take(c) = o or a(o) =
{o € S} whether we are interested in the posterior expectation or the poste-
rior probability of a setS. For simplicity, let us choose(o) = o. Assume
that wg and eachw € I are continuously differentiable on a neighborhdad
of 6. If furthermore sup - sup, ¢y, w(o) < 00, SUP,cr SUR; ey, W' (0)| < oo and
infyerinfsey, w(o) > 0, assumptions 1a—1g are fulfilled.
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Classes as in Example 4.1 include density band classes, mixture classes and
g-contamination classes with adequate conditions. [Conditions on the
g-contamination class are those used by Sivaganesan (1996).]

EXAMPLE 4.2. Consider the cas® = H = R. Assume thatfg |o|” x
n(do) < oo and letg:R — [0, 00) be a polynomial of degreg. Consider
the classg of three times differentiable non-negative functiofissuch that
| @ (1)| < g(r). Assume further thaf is decreasing oii—oo, 0] and increasing
on [0, co) with a uniqgue minimizer at 0 and that there exig3fs> 0 such that
SUPrex f(0) < 00, supycs f(0) <infreginfy=p f(r) and O<infrex 70 <
SUPrc f"(0) < 0o. Thenthe clas< of loss functiong(o,d) = f(d—o0), f € 4,
satisfies every assumption of Section 3.2 and 1a—1g of Section 4.

This example includes, for instance, parametric classes (with Linex losses) and
g-contamination classes with adequate conditions [for definitions and examples of
classes of loss functions, refer to Rios Insua and Ruggeri (2000)].

To shorten notation, we writg(!) instead of Dol (6, d/)171D111(8, d?).

THEOREM4.1. Under the assumptiond:

(i) asupes Il —df) +¢) @ — o) % 0.
(i) n(d! —dier ~ (@) Zo)ies-
(i) /7 SURey Il — df]| ~ sup. s lle() Zs .

From a robust point of view it is of interest to know the rate of convergence of
the Bayes actions set with respect to the Hausdorff matriet A = {a’,e,l e L}
andA" = {d',] € L£}. Recall thath (4", A) < 6 if and only if every point inA
is within distance$ of at least one point imt" and vice versa. Thug(A, A™) <
sup. lld" — d’|| and, by Theorem 4.1,

S Juph(A, A S0
for any sequence of positive numbers such that> oo, thus improving the main
resultin Abraham (2001). Clearly, the same result hold$.#, 4") is replaced by
(diameter4” — diametert). Assuming moreover tha = ® =R andd! = d? is
independent of € .£, we get from Theorem 4.1,

Vndiameterd” ~~ suple(l) Zg) — inf (¢(1) Zy).
lesf leL

EXAMPLE 4.1 (continued). Assume that for some € I with f@az X
w(o)do < oo we havew < w for all w € I'. The classt is thenz-dominated.
Write ["(d) = [o(d — o)?w,(do), wherew, is the posterior distribution derived
from the prior densityw, and denote byt” the set of posterior expectations. Since
¢() = —1 andA" = A", we deduce from above thafr diameterA” ~ 0.
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EXAMPLE 4.2 (continued). Since(l) = —1, we have,/n diameter™ ~ 0.

PrRooOF OFTHEOREM 4.1. Recall that integration and differentiation can be
interchanged in a locally -dominated class. By definition @f’, 0= Do!" (d}").
Fors € [0, 1] write ', = d} + s(d]' —d}). By Taylor's formula we have

1
0= ViDoul"(df) + v/ [ Doa"1)'(df = df s
= V/n(Doyl" (d]) — D11l(0,d}) (6, — 6))
1
+| [ Doa" 7" ds [y — dfy + Dt 6. df )0, - 6)

=, () + Ay (D/n(d]' —dj) — Ry (1)

with evident definitions o#, (1), A,(!) andR, (/). By Theorem 8.1 the supremum
when! ranges ovett of «, (1) tends to 0 in outer probability. Then (i) is straight-
forward from Lemmas 8.4 and 8.6. By Slutsky’s lemma and M1, (i) gives (ii).
Taking into account the continuity of the applicatior> sup. ; [1z())|l, wherez

is a function from. to R¥, we easily deduce (iii) from (ii). O

5. Posterior regret. Letig e £. From now on we think ofy as a convenient
approximation of the true loss. For simplicity of notation we WI&@ and dy
instead ofdl% and d,’(’). We let 8o C L be a class which satisfies the following
conditions (recall thats andp, were defined by 1b and 1e):

2a. Forevery e 4, I(-, dg) is continuously differentiable o¥y.
2b. For every; > 0 ando € ©, we have

sup sup | Doil(o,d) — Doal(o, dp)|l < py(o).
l€80deB(df.n)

2c. The familieg Doal (-, d$)v,, I € S0} and{D1ol (-, d§)lv,, | € S0} are equicon-
tinuous ab.
2d. Sup.s, lDo1l (0, d§)ll < oo and sup, [ D10l (0, d§)|| < oo.

Similarly, the class§ C £ is defined by replacing by @’ and 8o by 4 in
conditions 2a-2d. In the remainder of this section we restrict our attention to a
class of loss functiong£1 C § N 4.

For everyl € £1 and everyl € D, write

ey e m _ .
red'(d) =1"(d) dlg})l (d) and reﬁ(d) 10,d) dlg})l(@,d).
This section is devoted to the study of the posterior regret process for the decision

dy associated with the convenient ldgsThis measure of robustness was used by
Berger (1984).
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THEOREMS5.1. Under the assumptiond,
Vn(red (dg) — red (dg))le£1
~ ([=Doal (0, dg)" ¢ (1) + D10l (0, dg)" — D10l (0, d))1Zs),c -

Taking into account the continuity of the applicatior> sup. », lz(/)|| defined

on the functions from£; to R¥, we deduce from Theorem 5.1 the asymptotic
bound for every: € R,

lim SUDQ*<ﬁ sup|red'(dg) — red (d§)| = u) < Q( sup|M;| > u),
n leLy leLy

where (M));c, is the limit process that appears in Theorem 5.1. The above
inequality provides information on the value ofthat we need to obtain an
arbitrarily robust analysis. For instance, choaserbitrarily small and: € R so

that the right-hand term is less than Then with probability greater than-1 «,

the posterior regret régd;) associated with any loss functiére £ is less than

u/\/n+ sup z, req (d§) for largen.
PrROOF OFTHEOREMb5.1. By Proposition 8.1 we have
Vi SUDII" ) — 116, df) ~ D16, dfY 6, ~ 6)| % 0
€41
and

</ supll"(dg) —1(6, dg)
ledLq
— Doyl (8. d§)'(df — d§) — D1l (8, d)' (6, — 6)] % 0.
The conclusion easily follows from Theorem 4.1 and Slutsky’s lemma.

From a practical point of view, it is of interest to consider the particular case
where the optimal decisiodﬁ is actually independent of, as is the case in
estimation problems. If we assume moreover tgas such that§ = df, then
by Theorem 5.1,

V/n supred' (dg) ~ 0.
ledLq
In this situation, we can expect to obtain a better rate of convergence. As a matter
of fact, it turns out that the rate of convergence of the posterior regret is of order

THEOREM 5.2. Assume thau§ = df for every! e £1. Then under the
assumption$/,

nlsgcprewg) ~ %fﬁip[zé (p(lo) — @) Dol 8, df) (@ (lo) — (1)) Zg].
eLq S
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The theorem gains in interest if we consider the special case whete®,
andip and every e £ are functions ol — o, which is a very common situation
in estimation problems. In this casg(/) = —1,, wherel, is the p x p identity
matrix and

n supreg' (dg) ~ 0.
leL1

It is easy to check that every assumption of this section is satisfied by the class of
Example 4.2. Thus, the result above also holds for this class.

EXAMPLE 4.1 (continued). The assumptions of Section 5 are fulfilled with
lo(o, d) = (d — 0)2. Define p(w, n) such that”(d) = p(w, n)["(d) and assume
that sup,.r p(w, n) remains bounded i@* probability [this holds, e.qg., if there
existsw such thatw > w for all w € T and if w and wq satisfy the conditions
of Strasser (1976) or Abraham and Cadre (2002)]. We deduce from the above
remark thak sup, .- (/ (dg —0)2w, (do)—V(wy,)) ~ 0, wheredy andV (w,) are,
respectively, the posterior expectation derived from the pripand the posterior
variance derived from the priaw.

PROOF OF THEOREM 5.2. Since Doil"(d') = 0, we have, by Taylor's
formula,

req' (dg) =1"(d§) — I"(d]")
1
:/ (1 —s5)(dg —d") Do2l" (d]' — s(dy — d["))(dg — d}') ds.
0
However, by Theorem 4.1 and Lemma 8.4,
sup sup | Doat” (d!' — s(d2 — di')) — Dozl (6. d)| % 0.
leL5s€[0,1]
Moreover, we easily get by Theorem 4.1 that

Vn(dg —d)ies, ~ ((p(lo) — w(l))ZO)Zexl'
Hence
nlsip|reg“(d6’) — 3(d§ — df') Do2l 6. df)(d§ — )| % 0.
S

We conclude by using again the asymptotic behavioyetdy — d')ice,. O

6. Range of the posterior expected loss. The beginning of this section is
devoted to the study of the range of the posterior expected loss,

(6.1) rarl (d) = supl"(d) — inf I"(d),
leso 1€

whered € D and4 is defined in Section 5.
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THEOREM6.1. Assume tha#§ =d andi(6,d§) =1'(6, d§) for everyl and
I’ € %o. Then under the assumptiond,

nrar (dg) ~» suplD1ol (6, d3)" Zo1 — inf [D10l(6, d§)' Zo].
ledg ledp

PROOFR SinceDgl (9, dg) = 0, Proposition 8.1 shows that

Ja SUpI (d2) — 16, dS) — D1ol (0, dg)' (6, — 0)] S 0.
ledo

This gives (v/n(I"(d3) — 1(0,d5))ies, ~ (D10l(6,d§) Zp)ies, according to
Theorem 4.1, but, by assumption,
rarfy (dg) = supil” (dg) — 1(6. dg)] — inf [I" (dg) — 1(6, d§)].
le g 1€

so that the conclusion follows from a continuity argument as in the proof of
Theorem 4.1(iii). O

It is worth pointing out that rd}%(a’) = S"(d) — I"(d) when there exist and S
in 8p such that SURg, !l =S and infcs,/ = I. Because of the above remark, let
us define another class of loss functions which is well adapted to the study of
the range of posterior expected loss. et 8o and S € 8, and defing(Z, S]
to be the class of loss functiods® x D — R* such that/ </ < S. Such a
class was considered in Abraham (2001). The important point to note here is that
regularity assumptions are only required BnS andlg. Thus, this class includes
very irregular losses as soon as they are bounddddmgS. This is very attractive
from a practical point of view sinclg can be regarded as a tractable approximation
of the true loss, the accuracy of which is now given bynd S. It is also of
computational interest because it involves only two loss functions. For simplicity
of notation, we write rafy (d) instead of raﬁys] (d), where the previous expression
is defined by replacingo by [/, S]in (6.1). Similarly, we write

rar ¢(d) = sup [(8,d) — inf [(6,d).
l€[1,S] lell,S]

THEOREM®6.2. Under the assumptiond,
Vn(rarf¢(dg) — rarfg(dg))
~ [[D10(S — 1)(8, d§)1" — [Do1(S — 1)(8, d§)1 ¢(l0)] Zs.

PROOF SinceS € 4, Proposition 8.1 yields

SIS (d2) — S0, dY) — DorS(©@, dS)' (dlk — df) — D10S(6, d)' (6, — 6)| S 0.



ASYMPTOTIC GLOBAL ROBUSTNESS 1353

The same result holds withi replaced byl. Theorem 6.2 is then an immediate
consequence of Theorem 4.1 and assumption M2, since by assumption

rarffg(dh) — rarfg(d§) = [S"(d8) — SO, d)1+ [1(6,d§) — I"(@))]. O

Observe that ifS, I andlg are functions ofl — o, Theorem 6.2 reduces to
Vn(rarfs(dg) — rarfs(dg)) ~ O.

In this case we can improve the rate of convergence.

THEOREM 6.3. Assume thatl(-,a'g) and S(-,dg) are twice continuously
differentiable D1ol (9, d§) = D10S(6,d§) and D11 (0, d) = Do1S(0,d§). Then
under the assumptiorid,

n(rarfg(dg) — rarfs(dg)) ~ 3[Z5(Ns — N1)Zg + Ls — L],
where
Ns = ¢(0) Do2S (0, d§)¢(lo) + D20S(8, d) — 2D115(6, d)' ¢ (lo),

Ny is defined by replacings by I in the above formulaand the constants
Ls and L; are defined in SectioB by replacing f by S(-,d§) and I(-,d§),
respectivelyin (8.6).Furthermoreif Do1S(6,d§) = D10S(6,d§) = 0, then

6.2) n(S"(dg) — S(0,dg)) ~ 312y NsZo + Ls].

The same result holds if is replaced byl in (6.2) under the assumptions
Doyl (6,dg) = D1ol (6, dg) =O.

Consider again the usual case whites and/ may be expressed as functions
of d — 0. Then we havep(lp) = —1I,, Dg2S = D20S = —D11S and finally
Ng = N; =0, so that, by Theorem 6.3,

n(rarf ¢ (dg) — rarf s(d§)) ~ 3(Ls — Ly).

EXAMPLE 4.1 (continued). Takew; andwg in T’ an*d consider the density
ratio clasd”’ = {w € L1(m):w; <w < wg}. If p(wg, n) g wo(0)/ws (@) [which
holds under the conditions of Strass&B76) or Abraham and Cadre (2002)], it
can be proved from (6.2) that

-1
nsup | (di— o)zwn(dcr)<19/ tng(dt))
wel’ /O ®

remains asymptotically in the intervil, ws(0)/w;(0)].
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PROOF OF THEOREM 6.3. Write A = § — I. Let us first examine the
convergence of the sequeng@\" (dy) — A(0, dg)). By Taylor’s formula,

A"(dg) — A" (d§)
= Do1A"(d)' (dg — d§)
1
+/O (L— $)(d8 — d8) DoA™ (df + s (d — d&))(dl — df) ds

=A+B,

whereA andB are obviously defined. Theorems 4.1 and 8.1 show that

n|A — (6, —6) D11A(®, dg)t(dg — a'g)l —Q> 0.
Moreover, by Lemma 8.4 and Theorem 4.1, we have

n|B — 3(df — df) DoaA (O, d)(dl — d5)| 5 0.
Finally, sinceD10A (8, dj) = 0, Theorem 8.2 shows that

n|A™(d§) — AB,d§) — (0, — 6) D2oA B, dg) (6, —0) — 3L | 2o

Therefore, it follows from Theorem 4.1 that

n| A (d) — A, d) — 316y — 0) Na(@n — 0) + Lal| 3 0.

The second part of Theorem 6.3 is obtained by replacthdy S and 7,
respectively, in the above calculations.]

7. Discussion. We give in this article sufficient conditions to get optimal rates
of convergence. Let us investigate whether they are necessary. We mainly discuss
the existence of the secoddderivative.
Consider the clas§ of Section 2.1 and define a new clagsby replacing
U and L, respectively, byU(o,d) = f(d — o) and L(o,d) = f(o — d) in
the construction off, where f(r) = ¢! +r — 1. Note that the quadratic loss
lo defined in Section 2.1 belongs t6. From the arguments of Section 2.1,
the diameter of{d;",/ F1 is equal to the diameter o{fdg,dZ}. Thus, from

Section 4 (Example 4.2 applied t6 = {U, L}), /ndiametefd,l € £} ~ 0
while \/ndiametetd]', | € ¥} ~» ry —r2 > 0. The difference in the limit indicates
different rates of convergence, which are due to the factfilyat/ (6, 0) does not
exist while DooU (o, 0) =~ DooU (6, 6) for o close tod. From a technical point of
view the termDo2l" (1", ), defined in the proof of Theorem 4.1, no longer converges
to Do2l (0, dﬁ) when/ = U, but switches fromk, andk, according to the sign of
dy; — 0 even for largen. Consequently, it is no longer possible to derive in this
way the limit of \/n(d}, — 6) and Theorem 4.1 does not hold fdr= {L, U}.
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[A theoretical asymptotic study of such classes can be found in Abraham (2002).]
The default of smoothness [i.dg2U (6, 6) does not exist] slows down the rate of
convergence. Analogous situations have already been noted in prior robustness:
classes with point mass priors have slower rates of convergence [Sivaganesan
(1988)].

8. Auxiliary assumptionsand results.

8.1. The assumptionsl.

M1. There existd € ® and a matrix/y such that\/n(6, — 6) converges in
distribution to a centered normal random varialde with covariance
matrix .

M2. Foreveryg € L1(;r) anda > 0, there existg > 0 such that

o / 2(0)my(do)— 0 in O probability.
lo—0]=a

Write for all k > 0,
WE={oe®:|T(@)| <Vklogn},

whereT (o) = ﬁ]e_l/z(o — 6,). Let F,, be the probability distribution induced
by T applied tor, and letB* be the closed ball with centérand radius,/kTog.
M3. Forall» > 0, there exisk > 0 andc > 0 such that

Q@ (®\ W >cn™) — 0.

M4. There exist a probability distribution with zero meBgnsuch that
| #@Fo) > [ g@Fado)
Bk e

in Q probability, for allg : ® — R with |g(0)| < ¢(1+ ||o'||?) for somec > 0O
and allo € ©.

8.2. Asymptotics for the posterior expectatiorl.hroughout this section, we
denote byG f (o) the gradient at- € ® of a functionf: ® — R.

8.2.1. First order result. We denote byP, a set of functionsf : ® — R with
the following properties:

Al. Forall f € $y, f(8) =0.

A2. There exists an open neighborhody of 6 on which any f € 7 is
continuously differentiable and sypp, |G f (0) | < oo.

A3. The family{Gf|Vé, f € Py} is equicontinuous at.



1356 C. ABRAHAM AND B. CADRE

A4. There exist ar-integrable functiory : ® — R anddg > 0 such that

sup|f(o)| <q(o) Yoe® and sup g(o) < .
fePs llo—0ll<do

THEOREM8.1. Underthe assumptiorid,

V/n sup /Of(a)ﬂn(dff) — Gf(6) 6y —9)‘g0~

fePyl/C

PROOF We proceed analogously to the proof of Theorem 1 of Strasser (1975).
We separate the proof into two steps.

STEP1. Letus prove that for every> 0, there existé > 0 such that

Q*(ﬁ sup | f(0)|mp(do) > c) — 0.
fePy JO\W

Leti =infj, =1 ||19_1/20|| ands = idg, wheredy is the real number of A4. Clearly,

we have > 0 and hencé > 0. Moreover, we also have, by A4,

o= sup qglo)< sup g(o)<oo.
Iy 2@ —0)l1<5 lo=611=<3

Fix ¢ > 0. By A4, we have, for alk > 0,
isup [ if©)lm(do)>c = ﬁL\qu<o>nn<da> >,

fGﬂ)() ®\Wn
and if the latter property holds, then

—1/2
1, Y20, — o) =8/2  or

(8.1)
~1/2

8
(ﬁ/@\wq(a)nn(do) >c, |1, 776, —0)| < E)'

The probability of the event associated with the first property tends to 0 by M1.
We now focus on the second property. Let us denoté€ liye subset o® defined
as

g={oeo:|I, %0 —-0) <5}

There existgV > 1 such that iﬂ|19_1/2(9n —0)|| <é§/2,thenforall > N, W,’f Cé.

Thus, if the second property in (8.1) holds,
(va[ a@mor=3) or (V[ q@me)>5wice).
0\& 2 e\Wk 2

Using the obvious notation, let and B be the events associated with the above

properties. On one hand, the probability4tends to 0 by M2. On the other hand,
B C {ay/nm,(©\ W5 > ¢/2}

and, for somé& > 0, the probability of the latter event tends to 0 by M3.
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STEP2. Letus prove that for all, ¢ > 0,

Q*(ﬁz sup

fePy

/ f(©@)ma(do) - Gf () (6, — 9)‘ > c) — 0.
WVl
We obviously have, for alf € 5,

(8.2) | f@mdn = [ (T o)Fo.

whereT andB! are defined in Section 3 [recall that1(r) =6, + n~21,/%1].
If 7-1(r) e V,, then there exists € 0, 1] such that, according to A1,

(8.3) F(T7H@) = Gf (6 + hu() u(),

whereu(t) =6, — 0 + n‘l/zlel/zr. Let us denote byd the property

VvieBY T7lr)eVv, and 6+ ru(r)eV].
It is easy to check that there exist- 0 and N > 1 such that, for allk > N,
I16, — 08| <s = H. Then, if the property

J/n sup
fePy
holds, we havdl6, — 0| > s or

(8.4) (ﬁ sup

fePy

[ s @mtdo) Gy @, -0)| > ¢

[ s @)~ Gro) 6, -0 = c.1r).
Wn

By M1 we need only to focus on the latter propertyHitholds, we have, according
to (8.2) and (8.3),

sup f f<a>nn<da>—Gf<9>f<9n—0>\
fepl Wi
= sup / Gf (0 + ru(r)) u(r)Fy(dt) — Gf(0) (6, —9)’
fePyl B
(85) < sup| [ (GF(0+3u(®) = GF®) u(®) Fo(d)
fePyl/Bf
+ Sup|Gf () (6, — 0)(Fu(By) — 1)
fePy
-1/2 t71/2
+.)§€L;)p9n ‘Gf(@) I —/B,lfan(dT) .

Lety > 0. By A3 there exist® > 0 such that, for alt € VQ’ with o — 0| < 8,
sup |Gf (o) = Gf O] <y.

fePy
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Leta = sup;cp, IGf(0)I, which is finite by A2. For alin > N, if the property
in (8.4) holds, we have, by (8.5),

_ 1/2
(16, — 61l +n~Y2|1 1,72 /KTogn > B),
1/2 C
(yﬁnen—en +y I fB Il Fy(dT) > é),

(&ﬁ||9n — 0| |Fy(BY —1| > %)

(a1 [ wFutam)| = )

SinceFy is centered,/‘Brlg tF,(dt) — 0 in probability by M4. Hence the proba-
bility of the event associated with the latter property vanishes. The probabilities
of the events related with the other properties tend to 0 by M2 and M4, for some
choicey. Step 2 is then proved and the theorem is a straightforward consequence
of Steps 1 and 2. [J

or

8.2.2. Second order result. Throughout this section we denote Byf (o) the
Hessian matrix ab € ® of a function f:® — R that satisfies the following
properties:

B1. There exists an open neighborhdgtof ® on which f is twice continuously
differentiable.

B2. f(0) =0andGf () =0.

B3. f ism-integrable.

We introduce the notation
(8.:6) L= [ a0 area)?

provided such a quantity may be defined. Note tRatis normal under usual
models [Strasser (1976)].

T)Fy(dr),

THEOREM8.2. Under the assumptiorid,

n

/ F(@)a(do) — 16, — 0) HF (0)(6, — 0) — %Lf‘ -0
®
in probability.

PrROOF Following the arguments of the first step of the proof of Theorem 8.1,
we can prove that for all > 0 there existg > 0 such that

Q(n /@\W,,k | f(o)|m,(do) > c) — 0.
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Hence, we need only to prove that for Al 0,

n

[, F@mado) = 36, ~0) H©)(6, ~6) 3L, >0

in probability. We use the notation of the proof of Theorem 8.1. According to B2,
if 7-1(¢) € V/, then there exists € ]0, 1[ such that

(8.7) F(T7H0) = Ju@) Hf (6 + hu(r))u().
Fix k > 0 and denote by{’ the property
VeeBY Tl v)eVv)] and 6+iu(r)eV).

For somes > 0 andN > 1, we have||9, — || <s = H' foralln > N. If H’
holds, then according to (8.2) and (8.7),

1 ; 1

‘/W}f f(©@)n(do) = =0 =) Hf (0) (O —6) — ELf‘
;

< —
-2

/Bk u(x) (Hf (0 + ru(t)) — Hf (0))u(t) Fy(dT)
1
(8.8) +§||9n — QP Hf O)II| Fu(BY) — 1)

1 12
+ = IH @) NI6, ol H/B;;’F"(d’)

1
+ E’/Bk(191/21)’Hf(9)(191/2r)Fn(dr) _ Lf‘.

Let y > 0. According to B1, there exist§ > 0 such that ifo € V; with
lo =0l <5,

|Hf(o)—Hf@O)| <vy.
Fix ¢ > 0 and let

1/2

L :/Bk(lel/zr)’Hf(G)(Ie 1) Fu(d1).

We deduce from (8.8) that if we have

n

| F©@a(do) = 36, —0) H©)6, —6) ~ 3L | > c.
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then for alln > N,

1
(160 — 6l >5) or (nen ~ 61+ 11 21 Elogn > ﬁ),

ny 5 c
(7 /B ()12 F(de) > Z)’
(8.9) (%nen —OIRIHS O Fa(B) — 1] > 2)
F.(d ¢
/B,’fr 2 (dT) >Z) or

<1|L" Lyl c)
2 =)

According to M2 and M4, the sequenOefBg lu(7)|I2F,(d7)), is stochastically
bounded and hence, for somewe have

1/2

<x/ﬁlle(9)Illl9n — O™

Q(ng /Bk lu(D)|12F, (d7) > 2) 0.

Moreover, the probability of the events associated with the other properties of (8.9)
obviously vanishes according to M2 and M4.]

8.3. Technical results for the classes § and 4.

LEMMA 8.1. Letg be an-integrable and nonnegative real-valued function
such that there exists a bounded neighborhool of whichg is boundedThen
under the assumptiorid,

Q(/@g(cr)rrn(a’a) < oo) — 1

PrOOF Denote byB the bounded neighborhood éf For: > 1 let f,(¢) =
O([pe g(0)my(do) > t). By M2 we have

supl f, (1) = Q(/Bcg(a)nn(da) > 1) — 0.

t>1

Furthermore, lim., » f,(¢) exists sincef, is decreasing and bounded, so that
iMoo iMoo fr (1) =liM;_ o lim,_ » f,(t) = 0. We conclude by noting that

Q( [ g(o)nn<da>=oo) < lim Q( [ g(o)nn(dcr)zt) +lim £,

hence the lemma, singeis bounded orB. [
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LEMMA 8.2. Under the assumptiongl, there exists a compact s& C D
suchthatQ*(3l e £, di' € K¢) — 0.

PrRooOFr Taker > 0 andK compact as in 1f and introdueeand O< ¢ < 1
such that

supinf [(8, d 1- inf inf inf l(o,d
le£p dekK ( )< o <a< leLoeB(0,rydeK® (0, ).

Then, ifd € K¢, we have
1"(d) =/ (o, d)m,(do) +/ (o, d)m,(do)
B(0,r) BC(,r)

> am,(B(6,r)).
Thus
dle L, d eKC
= 3dleL,Ide K, 1I"(d) §tiQIf{l"(t)

= 3le L am(BO.n) < infl"(0)
te

— (Elleo[i am,(BO,r)) < infl(@,t)+eg) or
tek 2
(Ell €L, |nf ") > |nf [(6,1) +82>
. (oe(——+nn B, r))) §supinfl(9,t)> or
leL €K

(supsupll"(t) 10,0 > ¢ 2)

leLteK

— (n,, (B, 1)) = Z) or

(/ supsupl(a, 1) — 10, 1) |7, (do) > e%)

leLteK

By M2, Q(r,(B€(@,r)) > ¢/2) — 0. Moreover, if the last condition on the right-
hand side holds, then for gl > 0,

/ supsupll(o, 1) — 10, 1) |7, (do) > &
B(0.p) leL teK 4

or

/ supsupll(a, £) — 10, )|, (0) > e
B°(8.p) le £ teK 4
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By 1d we chooseo small enough so that the a@utprobability of the event
associated with the first property tends to 0. Then, for the second property, bound
the integrand by € L1(7r) and conclude by the concentration assumption M2.
Since £ is r-dominated, the existence gf is deduced from the compactness

of K. O

LEMMA 8.3. Under the assumptiorid,

suplldy' —df'| 0.
leL

PrROOF According to Lemma 8.2, we may restrict our attention to those
xef{xeX,VledL d'(x) e K}, whereK is a compact set. By 1f there is no
loss of generality in assuming thdf € K forl € L. Let ¢ > 0. Note that, for
l e £andd € B¢(d!, ¢), the property” (d) < 1"(d?) implies that

I"(d) —1(0,d) < —(1(0,d) — 1(0,d))) + (I"(@d) — 1(0,d))
< —k(&) + (")) =16, d))),

where the last inequality follows from 1g. According to the above remark, we have,
forall r > 0,

suplld!' —d!|| > ¢
leL
— 3ledL,3IdeBd, e)NK,I"(d) <I"(d))

= (sup sup  |I"(d) -1, a’)|>Q) or
leL geBe(df ,e)nK

(supll”(a’,)—l(@ a’,)l > @)

leL
n K(e)
—  supsup|l*(d) —1(6,d)| > —=
leLdeK
— supsup sup |l(o,d)—1(6,d)|

leLdeK oceB(8,r)

+/ supsupli(o,d) — (0, d)|n,(do) > ﬁ,
Be(0,r) leL deK 2

By 1d, we can choose> 0 such that

supsup sup |l(o,d)—10,d)| < K(g)

leL deK oeB(©O,r) 4
and we thus get
suplld; — a’,9|| > — supsup|i(o,d) — 10, d)|r,(do) > ﬁ
leL Be(0,r) leL deK 4
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Taking into account the compactnesskbfwe can deduce from the definition of a
locally w-dominated class that there exigtse L1(r) such that

supsup|i(o,d) —1(8,d)| < g1(o) Yo e®.
leL deK

The conclusion then follows from M2 and 1g]

LEMMA 8.4. Foreveryn> 1,5 €[0,1]andl € £, Iettl’fs : X — D beamap
such thatsupc » SUR (0.1 11’5 — dﬁ I < 0. Then under the assumptiond,

Q*
sup sup [|Do2l" (#]',) — Do2l (8, d})|| = 0.
leL se€[0,1]

PROOF.  Fix e > 0. By le takey > 0 such that sup.y, p,(0) < &/2. Then

sup sup || Do2l" (1]',) — Do2l" ()| > &
leL s€[0,1]

— (sup sup |11, —df || > 77) or
ledL s€[0,1]

&
</V9“ pp(0)my(do) > E)

The outer probability of the events associated with the above properties tends to 0
by assumption and M2. Consequently, it remains to prove that

Q*
sup sup [|Do2l"(df) — Do2l (8, df)|| = O.
leL se€[0,1]

By 1d takeg > 0 such that

£
sup sup IIDozl(G,dle)—Dozl(Q,df)llSE.
leL oeB(0,p)

Then by sfitting the integral according t® = B(9, 8) U B(®, B)¢, we have

SU#
leL

/ (Do2l (0, d’) — Dol 6, dﬁ))nn(da)H o6
®

&
— suf|| Dozl (o, d)|| + || Do2l (8, d))||)7wn (do) > =.
B0,B) leL 2

Taking into account thatt is locally w-dominated, the outer probability of the
event associated with the above property tends to 0 by NMI2.

Following the arguments of the proof of Lemma 8.4, we obtain the result below.
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LEMMA 8.5. Foreveryn > 1,s €[0, 1] and! € 4, Iettl’fs ' X — D beamap

such thatsup. 5, SUR¢fo,1; 11’5 — di| £o. Then under the assumptiorid,
Q*
sup sup || Doy (1) — Dol (8, dg)I| = O.
le$g5€[0,1]

The result s still true iy and 8o are replaced by’ and 8, respectivelyin which
caseDo1/(9,d’) =0.

PROPOSITION8.1. Under the assumptiorid,
Vi sup|l" (dg) —1(6. dg)
ledo
Ot an _ 10 0\t o
— Dol (0, dy) (dg — dpy) — D10l(6, dg) (0, — 6)| = 0.
The result is still true itZ§, 4 and 4o are replaced byi?, /" and 8, respectively
in which caseDil (0, df) = 0.

PROOFR Letl € 8g. Then
1"(d8) —1(0,df) = (I"(dE) — 1" (d$)) + (1" (d§) — 1(0, db)).
By Taylor’s formula, the first term on the right-hand side equals

/01 Doyl™(d§ + s(di — dS))' (di — df) ds,
so that, by Lemma 8.5 and Theorem 4.1,
/i SUPIL" () —1"(df) — Dol (0, d§) (d§ — df)] 0.
€
Moreover, by Thegrem 8.1,
Vn lSt;pll”(dS)) —1(0,d§) — D10l (0,8 (6, — ) %0,
€
which proves the (;)ropositionD

8.4. Technical result related to weak convergenceet F (L) be the set of
mappings fromL into R and letM; ;(F (L)) be the set of x j matrices with
coefficient in F(L£). For A € M; j(F(L)), write ||Allcc = SURc, IA(®)]l. The
proof of the following lemma is left to the reader.

LEMMA 8.6. For all n > 1, consider the mapsV,,: X — M, 1(F (L)),
A X — My p(F(L)) and R, : X — M, 1(F(L)). LetA e M, ,(F(L)) such
that inf;c ¢ |detA(l)] > 0 and ||A]| < co. Assume thatAn%A, R, ~ R, where

R:X — M, 1(F (L)) is Borel measurable anlA, M, — R, |l o 0. Then we
have||M, — A~1R, o % 0.
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