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CONVERGENCE RATES FOR POSTERIOR DISTRIBUTIONS
AND ADAPTIVE ESTIMATION

BY TZEE-MING HUANG

Iowa State University

The goal of this paper is to provide theorems on convergence rates of
posterior distributions that can be applied to obtain good convergence rates
in the context of density estimation as well as regression. We show how to
choose priors so that the posterior distributions converge at the optimal rate
without prior knowledge of the degree of smoothness of the density function
or the regression function to be estimated.

1. Introduction. Bayesian methods have been used for nonparametric infer-
ence problems, and many theoretical results have been developed to investigate
the asymptotic properties of nonparametric Bayesian methods. So far, the posi-
tive results are on consistency and convergence rates. For example, Doob (1949)
proved the consistency of posterior distributions with respect to the joint distrib-
ution of the data and the prior under some weak conditions, and Schwartz (1965)
extended Doob’s result to Bayes decision procedures with possibly nonconvex loss
functions. For the frequentist version of consistency, see Diaconis and Freedman
(1986) for a review on consistency resultson tail-free and Dirichlet priors. Barron,
Schervish and Wasserman (1999) gave some conditions to achieve the frequentist
version of consistency in general. Ghosal, Ghosh and Ramamoorthi (1999) also
gave a similar consistency result and applied it to Dirichlet mixtures.

For convergence rates, there are some general results by Ghosal, Ghosh and van
der Vaart (2000) and Shen and Wasserman (2001). However, there are few results
on adaptive estimation in the study of posterior convergence rates. Belitser and
Ghosal (2003) dealt with adaptive estimation in the infinite normal mean set-up.
In this paper, we also have results on adaptive estimation, but these are done in the
density estimation and regression setups.

The goal of this paper is to develop theorems on convergence rates for posterior
distributions which can be used for adaptive estimation. In this paper we have
theorems on convergence rates in two contexts: density estimation and regression.
In either case, we consider the Bayesian estimation of some functionf (a density
function or a regression function) based on a sample(Z1, . . . ,Zn) and are
interested in the convergence rates for the posterior distributions forf .

Below is the specific problem setup. Suppose that whenf is given,(Z1, . . . ,Zn)

is a random sample from a distribution with densitypf with respect to a measureµ
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on a sample space(S,B), fo is the true value forf , and fo belongs to
some function spaceF . Suppose that̃π is a prior onF and B̃d(sn) = {f ∈
F :d(f,fo) ≤ sn} is ansn neighborhood offo with respect to the metricd , where
d is the Hellinger distance in the density estimation case and is theL2 distance in
the regression case.

We would like to show that the posterior probability

π̃
(
B̃d(sn)

c|Z1, . . . ,Zn

)=
∫
B̃d (sn)c

∏n
i=1 pf (Zi) dπ̃(f )∫

F

∏n
i=1 pf (Zi) dπ̃(f )

(1)

converges to zero inP n
fo

probability, and the ratesn is as good as if the degree of
smoothness offo were known. This is known as the adaptive estimation problem.

For the purpose of adaptive estimation, we takeF to be
⋃

j∈J Fj , whereJ is
a countable index set (not necessarily a set of integers) and theFj ’s are function
spaces of different degrees of smoothness. A natural way to construct priors
onF is to consider sieve priors. A sieve prior is a priorπ̃ of the following form:

π̃ = ∑
j∈J

aj π̃j ,

whereaj ≥ 0,
∑

j∈J aj = 1, and each̃πj is a prior defined onF but supported
on Fj . To make it easier to specify thẽπj ’s, we assume that eachFj is
finite-dimensional and can be represented as{fθ,j : θ ∈ �j } for some parameter
space�j . We also assume that eachπ̃j is induced by a priorπj defined on�j .
Then the posterior probability in (1) can be written asUn/Vn, where

Un =∑
j

aj

∫
Bd,j (sn)c

n∏
i=1

pfθ,j
(Zi)

pfo(Zi)
dπj (θ)

and

Vn =∑
j

aj

∫
�j

n∏
i=1

pfθ,j
(Zi)

pfo(Zi)
dπj(θ),

whereBd,j (sn) = {θ ∈ �j :d(fθ,j , fo) ≤ sn}.
This paper is organized as follows. Section 2 gives a theorem on convergence

rates in the density estimation case and some examples of applying the theorem to
obtain adaptive rates. Section 3 contains the same things as in Section 2, but in the
context of regression. Proofs are in Section 4.

2. Density estimation.

2.1. Theorem. This section gives a convergence rate theorem for Bayesian
density estimation. The setup is as described in Section 1, withpf = f andd

being the Hellinger metricdH, which is defined by

dH(f, g) =
√∫ (√

f − √
g
)2

dµ.
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To make the posterior probabilityUn/Vn → 0, we need some conditions to give
bounds forUn andVn.

To boundUn, we will make an assumption about the structure of each parameter
space�j , and then specify theaj accordingly. Let‖ · ‖∞ denote the sup norm

BdH,j (η, r) = {θ ∈ �j : dH(fη,j , fθ,j ) ≤ r}
and N(B, δ, d ′) denote theδ-covering number of a setB with respect to
a metricd ′, which is defined as the smallest number ofδ-balls (with respect tod ′)
that are needed to cover the setB. Here is the assumption.

ASSUMPTION 1. For eachj ∈ J , there exist constantsAj andmj such that
Aj ≥ 0.0056,mj ≥ 1, and for anyr > 0, δ ≤ 0.0056r , θ ∈ �j ,

N
(
BdH,j (θ, r), δ, dj,∞

)≤
(

Ajr

δ

)mj

,

wheredj,∞(θ, η) is defined as‖ logfθ,j − logfη,j‖∞ for all θ , η ∈ �j .

Suppose Assumption 1 holds. We specify theaj ’s in the following way:

aj = α exp
(
−
(

1+ 1− 4γ

8

)
ηj

)
,(2)

whereα is a normalizing constant so that
∑

j aj = 1,γ .= 0.1975 is the solution to
0.13γ/

√
1− 4γ = 0.0056, and

ηj = 4mj

1− 4γ
log

(
46.2Aj

√
1− 4γ

γ

)
+ 8Cj

1− 4γ
(3)

for someCj such thatCj ≥ 0 and
∑

j e−Cj ≤ 1.
Note:

1. Assumption 1 is based on Assumption 1 in Yang and Barron (1998) so that their
results can be applied here. The constantsAj andmj can be figured out based
on the local structure of�j . In many cases,mj can be taken as the dimension
of �j , as stated in Lemma 2.

2. The constantsCj ’s are here to make sure that
∑

j aj < ∞ sinceaj ≤ αe−Cj .
Indeed, we may takeηj to be some large constant timesmj logAj , if this choice
makes{aj } summable. Also, specific constant values are given in (2) and (3)
for calculational convenience. Different choices are possible.

To find a bound forVn, we will use Lemma 1 of Shen and Wasserman (2001),
which says we can boundVn from below if the prior puts enough probability on
a small neighborhood of the true densityfo. To guarantee enough prior probability
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aroundfo, we proceed as follows.

1. Find a modelFjn that receives enough weightajn and is close tofo, that is,
there existsβn in �jn so thatfβn,jn is close tofo.

2. Make sure the priorπjn puts enough probability on a neighborhood ofβn. This
helpsπ̃ put some probability aroundfo sinceajn is not too small.

For the first step, we simply assume that it is possible.

ASSUMPTION2. There existjn andβn ∈ �jn such that

max
(
D
(
fo‖fβn,jn

)
,V

(
fo‖fβn,jn

))+ ηjn

n
≤ ε2

n(4)

for some sequence{εn}, where D(f ‖g) = ∫
f log(f/g) dµ, V (f ‖g) =∫

f (log(f/g))2dµ, ηjn is as defined in (3) withAjn andmjn in Assumption 1.

Before going to assumptions for the second step, we add one more condition
here to allow us to use neighborhoods that are different but comparable to the
neighborhoods in Lemma 1 of Shen and Wasserman (2001).

ASSUMPTION3. For thejn in Assumption 2, there exists a metricdjn on�jn

such that ∫
fo

(
log

fη,jn

fθ,jn

)2

dµ ≤ K ′
0d

2
jn

(η, θ)(5)

for all η, θ in �jn , and

D
(
fo‖fθ,jn

)≤ K ′′
0V

(
fo‖fθ,jn

)
for all θ ∈ �jn , whereK ′

0 andK ′′
0 are constants independent ofn.

The following two assumptions are for the second step.

ASSUMPTION 4. Forjn, Ajn , mjn , βn, εn anddjn in Assumptions 1–3, there
existsb1 ≥ 0 such that

N
(
�jn, εn, djn

)≤ (
A

b1
jn

K4
)mjn ,

where N(�jn, εn, djn) is the εn-covering number of�jn with respect to the
metricdjn .

ASSUMPTION 5. Forjn, Ajn , mjn , βn, εn anddjn in Assumptions 1–3, there
exist constantsK5 andb2 ≥ 0 such that for anyθ1 ∈ �jn ,

πjn(Bdjn ,jn(θ1, εn))

πjn(Bdjn ,jn(βn, εn))
≤ (

A
b2
jn

K5
)mjn .
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Note:

1. Assumption 4 is here to give more control of the overall size of�jn in terms
of the εn-covering number (Assumption 1 essentially deals with the local
structure). This control is to prevent the total prior probability from getting
spread out so much that each neighborhood gets little probability.

2. Assumption 5 is to make sure that the prior supported on�jn puts enough
probability nearβn compared to some other neighborhood.

Finally, we assume the following.

ASSUMPTION6. Asn → ∞,

εn → 0 and nε2
n → ∞.

Now we have the following theorem.

THEOREM 1. Suppose that Assumptions 1–6 hold. Then with aj defined in
(2), there exist positive constants c, K1 and K2 that are independent of n, so that

π̃
(
B̃dH(K1εn)

c|X1, . . . ,Xn

)≤ c exp(−K2nε2
n)(6)

except on a set of probability converging to zero.

The proof of Theorem 1 is given in Section 4.

2.2. Example: spline basis. In this section, we assume that logfo is in the
Sobolev spaceWs∞[0,1] = {g :‖Dsg‖L∞[0,1] < ∞}, wheres is a positive integer
and‖ · ‖L∞[0,1] is the essential sup norm with respect to the Lebesgue measure
on [0,1]. We will see that using the sieve prior given below, the posterior
distribution converges at the raten−s/(1+2s) in Hellinger distance.

LEMMA 1. Suppose that logfo ∈ Ws∞[0,1] as defined above and µ is the
Lebesgue measure on [0,1]. Let J = {(k, q,L) :k, q and L are integers k ≥ 0,

q ≥ 1, and L ≥ 1}. For j = (k, q,L) ∈ J , let mj = k + q, and for i ∈ {1, . . . ,mj },
let Bj,i be the normalized B-spline associated with the knots yi, . . . , yi+q as in
Definition 4.19,page 124in Schumaker (1981),where

(y1, . . . , yq, yq+1, . . . , yq+k, yq+k+1, . . . , y2q+k)

= (0, . . . ,0︸ ︷︷ ︸
q times

,1/(1+ k), . . . , k/(1+ k),1, . . . ,1︸ ︷︷ ︸
q times

).

Define

�j = {
θ ∈ Rmj : θ ′1mj

= 0,‖Dr logfθ,j‖L∞[0,1] ≤ L,∀ r ∈ {0,1, . . . , q − 1}},
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where 1mj
= (1, . . . ,1)′ ∈ Rmj , logfθ,j = −ψ(θ)+θ ′B, ψ(θ) = log

∫ 1
0 eθ ′B(x) dx

is the normalizing constant, and B = (Bj,1, . . . ,Bj,mj
). Define ηj as in (3) with

Aj = 19.28
√

q(2q + 1)9q−1(L + 1)eL/2 + 0.06 and Cj = mj + L;(7)

define aj as in (2). Let πj be the Lebesgue measure on �j . Let π̃j be the induced
prior of πj and B̃dH(sn) denote the sn Hellinger neighborhood of fo, as defined
on page 3 of Schumaker (1981).Then for the prior π̃ = ∑

j aj π̃j , the posterior
probability π̃(B̃dH(sn)

c|X1, . . . ,Xn) converges to zero in probability for some
sn ∝ n−s/(1+2s).

The proof of Lemma 1 is given in Section 4.
Note:

1. Log-spline models have been used in density estimation and give good
convergence rates; see Stone (1990), for example.

2. The prior does not depend ons, but it adapts to the smoothness parameters.
3. Here we takeπj to be the Lebesgue measure on�j , but we may also takeπj

to be some measure that has a densityqj with respect to the Lebesgue measure
on�j . As long as‖ logqj‖∞ is uniformly bounded inj , the convergence rates
should be the same.

4. Cj = mj + L is just one possible choice. In general, if we choose{Cj } so
that

∑
j e−Cj < ∞ andCjn → ∞ no faster thanmjn logAjn , wherejn is as in

Assumption 2, then it should be a good choice.
5. To figure outAj andmj , the following lemma, from Lemma 1 by Yang and

Barron (1998), is useful.

LEMMA 2. Suppose that {Sl : l ∈ �} is a countable collection of linear
function spaces on [0,1]. Suppose that for each Sl there is a basis {Bl,1, . . . ,Bl,ml

}.
Suppose that there exist constants T1 and T2 such that for θ = (θ1, . . . , θml

) ∈ Rml ,∥∥∥∥∥
ml∑
i=1

θiBl,i

∥∥∥∥∥∞
≤ T1 max

i
|θi |(8)

and ∥∥∥∥∥
ml∑
i=1

θiBl,i

∥∥∥∥∥
2

≥ T2√
ml

√√√√ ml∑
i=1

θ2
i ,(9)

where ‖ · ‖2 denotes the L2 norm with respect to the Lebesgue measure on [0,1].
Let

logfθ,j = −ψ(θ) +
ml∑
i=1

θiBl,i ,(10)
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where ψ(θ) = log
∫ 1
0 exp(

∑ml

i=1 θiBl,i(x)) dx is the normalizing constant. Suppose
that 1 ∈ Sl for all l ∈ �, J = {(l,L) : l ∈ �,L is a positive integer} and for j ∈ J ,

�j ⊂ {θ ∈ Rml :‖ logfθ,j‖∞ ≤ L}.
Then Assumption 1 holds with

Aj = 19.28
T1

T2
(L + 1)eL/2 + 0.06 and mj = ml.(11)

2.3. Example: Haar basis. In this section, we assume that logfo is a contin-
uous function on[0,1] with ‖ logfo‖∞ ≤ M0, and we approximate logfo using
the Haar basis{1[0,1](x),ψj1,k1(x) : 0 ≤ j1,0 ≤ k1 ≤ 2j1 − 1}, whereψj1,k1(x) =
2j1/2ψ∗(2j1x − k1) andψ∗(x) = 1[0,0.5](x) − 1[0.5,1](x). We also assume that the
coefficients of theL2 expansion of logfo for the Haar basis, denoted bydj1,k1,
satisfy the following condition:

∑
j1≥0

(2j1+1 − 1)2α
2j1−1∑
k1=0

d2
j1,k1

≤ H 2
0(12)

for someH0 > 0 andα ∈ (0,1). According to Barron, Birgé and Massart [(1999),
page 330], the above condition on the Haar basis coefficients corresponds to the
Besov spaceBα

2,2[0,1]. The Besov spaceBα
2,2[0,1] is indeed the Sobolev space

Wα
2 [0,1], so the optimal convergence rate isn−α/(1+2α) in L2-distance. We will

see that using the sieve prior given below, the posterior distribution converges at
the raten−α/(1+2α)(logn)1/2 in Hellinger distance, which is close to the optimal
raten−α/(1+2α) within a (logn)1/2 factor:

LEMMA 3. Suppose that logfo is in the space specified above and µ is the
Lebesgue measure on [0,1]. Let J = {(l,L) : l and L are integers. l ≥ 0,L ≥ 1}.
For j = (l,L) ∈ J , let mj = 2l+1. Reindex the Haar basis in the following way:

{
ψj1,k1 : 0 ≤ j1 ≤ l,0≤ k1 ≤ 2j1 − 1

} def= {Bj,i : 1 ≤ i ≤ mj − 1}.
Then for θ ∈ Rmj −1, define logfθ,j = −ψ(θ) + θ ′B, where ψ(θ) =
log

∫ 1
0 eθ ′B(x) dx is the normalizing constant and B = (Bj,1, . . . ,Bj,mj

). Define

�j = {θ ∈ Rmj −1 :‖θ ′B‖∞ ≤ L}
and let πj be the Lebesgue measure on �j . Define aj and ηj according to (2) and
(3) with

Aj = 19.28· 2(l+1)/2(2L + 1)eL + 0.06 and Cj = mj + L.(13)

Let πj be the Lebesgue measure on �j . Let π̃j be the induced prior of πj

and B̃dH(sn) denote the sn Hellinger neighborhood of fo, as defined on page 3
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in Schumaker (1981). Then for the prior π̃ = ∑
j aj π̃j , the posterior proba-

bility π̃(B̃dH(sn)
c|X1, . . . ,Xn) converges to zero in probability for some sn ∝

n−α/(1+2α)(logn)1/2.

The proof of Lemma 3 is given in Section 4.
Note:

1. For the choice ofaj andπj , see the note for Lemma 1.
2. To specifyAj andmj , Lemma 2 is no longer applicable sinceT1 in (8) cannot

be taken as a constant in this case. We use the following lemma [from Lemma 2
by Yang and Barron (1998)] instead.

LEMMA 4. Suppose that {Sl : l ∈ �} is a countable collection of linear
function spaces on [0,1] and that for each l there exists a constant Kl > 0 such
that for all h ∈ Sl ,

‖h‖∞ ≤ Kl‖h‖2.(14)

Suppose that each Sl is spanned by a bounded and linearly independent (under
L2 norm) basis 1, Bl,1, . . . ,Bl,ml

. For θ ∈ Rml , define logfθ,j = −ψ(θ) +∑ml

i=1 θiBl,i , where ψ(θ) = log
∫ 1
0 exp(

∑ml

i=1 θiBl,i (x)) dx. Suppose that J =
{(l,L) : l ∈ �,L is a positive integer} and for each j ∈ J ,

�j ⊂ {θ ∈ Rml :‖ logfθ,j‖∞ ≤ 2L}.(15)

Then Assumption 1 holds with

Aj = 19.28Kl(2L + 1)eL + 0.06 and mj = ml + 1.(16)

In the spline density estimation result, the convergence rate is optimal and
we have full adaption. But the Haar basis result here is quite different. The
convergence rate involves an extra log factor, which comes from theKl in (16).
In the spline case there is noKl andAj is approximately a constant whenj = jn

for largen (jn is the index for one of the best models at sample sizen). In this
caseAj is approximately proportional to the model dimensionmj whenj = jn

because of the factorKl .

3. Regression.

3.1. Theorem. In this section, a Bayesian convergence rate theorem is given
in the context of regression. The setup is as described in Section 1, withZi =
(Xi, Yi), whereYi = f (Xi) + εi , Xi and εi are independent,Xi is distributed
according to some probability measureµX and εi is normally distributed with
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mean zero and known varianceσ 2. Thus the densitypf (with respect toµX ×
Lebesgue measure onR ) is

pf (x, y) = 1√
2πσ

e−(y−f (x))2/(2σ2).

The metricd is theL2(µX) metric. We also assume that‖fo‖∞ is bounded by
a known constantM .

To boundUn andVn, we modify the assumptions in Theorem 1 in the following
way. Let

BL2(µX),j (η, r) = {
θ ∈ �j :‖fη,j − fθ,j‖L2(µX) ≤ r

}
.

Assumption 1 is replaced with the following.

ASSUMPTION 7. For eachj , there exist constantsAj and mj such that
0 < Aj ≤ 0.0056,mj ≥ 1, and for anyr > 0, δ ≤ 0.0056r , θ ∈ �j ,

N
(
BL2(µX),j (θ, r), δ, dj,∞

)≤
(

Ajr

δ

)mj

,

wheredj,∞(θ, η) = ‖fθ,j − fη,j‖∞ for all θ , η ∈ �j .

Also, suppose Assumption 7 holds: we specify the weightsaj in the following
way to give an upper bound forUn:

aj = α exp
(
−
(

1+ 1

2σ 2
+ 0.0056

σ

)
ηj

)
,(17)

whereα is a normalizing constant so that
∑

j aj = 1 and

ηj = 4mj

c1,M,σ (1− 4γ )
log(1072.5Aj) + Cj max

(
1,

8

c1,M,σ (1− 4γ )

)
(18)

for someCj such thatCj ≥ 0 and
∑

j e−Cj ≤ 1.
Assumption 2 is replaced with the following assumption.

ASSUMPTION8. There existjn andβn ∈ �jn such that

max
(
D
(
pfo‖pfβn,jn

)
,V

(
pfo‖pfβn,jn

))+ ηjn

n
≤ ε2

n(19)

for some sequence{εn}, whereηjn is as defined in (18) withAjn and mjn in
Assumption 7.

Assumption 3 is replaced with the following.

ASSUMPTION9.∥∥fθ,jn − fη,jn

∥∥2
L2(µX) ≤ K ′

0d
2
jn

(θ, η) for all θ, η ∈ �jn.(20)
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Assumptions 4–6 remain unchanged except that “Assumptions 1–3” should be
changed to “Assumptions 7–9.”

Now we have the following theorem.

THEOREM 2. Suppose that ‖fθ,j‖∞ ≤ M for all j and θ ∈ �j . Suppose that
Assumptions 7–9 and Assumptions 4–6 hold with the reference change made as
mentioned above. Then with aj defined in (17), there exists a positive constant K1

such that π̃(B̃L2(µX)(K1εn)
c|X1, . . . ,Xn) converges to zero in probability. Here

B̃L2(µX)(K1εn) denotes the K1εn neighborhood of fo with respect to the L2(µX)

metric, as defined on page 1557.

The proof of Theorem 2 is given in Section 4.

3.2. An example. In this section, we considerfo ∈ Ws∞[0,1] = {g :
‖Dsg‖L∞[0,1] < ∞} and approximatefo using a spline basis. The minimax rate
for this space inL2 metric, according to Stone (1982), isn−s/(1+2s). We will see
that, using the sieve prior given below, the posterior distribution converges at the
optimal raten−s/(1+2s) in L2 distance.

LEMMA 5. Suppose that fo ∈ Ws∞[0,1], ‖fo‖∞ < M , where M is a known
constant. Suppose that µX is the Lebesgue measure on [0,1]. Let J = {(k, q,L) :
k, q and L are integers; k ≥ 0, q ≥ 1,L ≥ 1}. For j = (k, q,L) ∈ J , let mj =
k + q, and for i ∈ {1, . . . ,mj }, let Bj,i be the normalized B-spline associated with
the knots yi, . . . , yi+q , where

(y1, . . . , yq, yq+1, . . . , yq+k, yq+k+1, . . . , y2q+k)

= (0, . . . ,0︸ ︷︷ ︸
q times

,1/(1+ k), . . . , k/(1+ k),1, . . . ,1︸ ︷︷ ︸
q times

).

Define

�j = {
θ ∈ Rmj :‖Drfθ,j‖L∞[0,1] ≤ L, ∀ r ∈ {0,1, . . . , q−1} and ‖fθ,j‖∞ ≤ M

}
,

where for θ = (θ1, . . . , θmj
) ∈ Rmj ,

fθ,j =
mj∑
i=1

θiBj,i
def= θ ′B.(21)

Define ηj according to (18) with

Aj = 9.64
√

q(2q + 1)9q−1 + 0.06 and Cj = mj + L,(22)

and define aj according to (17). Let πj to be the Lebesgue measure on �j . Let
π̃j be the induced prior of πj and B̃L2(µ)(sn) denote the sn L2(µ) neighborhood
of fo, as defined on page 1557.Then for the prior π̃ = ∑

j aj π̃j , the posterior
probability π̃(B̃L2(µ)(sn)

c|X1, . . . ,Xn) converges to zero in probability for some
sn ∝ n−s/(1+2s).
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The proof for Lemma 5 is given in Section 4.
Here is a lemma that is useful for verifying Assumption 7 to prove Lemma 5.

LEMMA 6. Suppose that {Sj : j ∈ J } is a countable collection of linear func-
tion spaces on [0,1]. Suppose that for each Sj there is a basis {Bj,1, . . . ,Bj,mj

}.
Suppose that there exist constants T1 and T2 such that for θ = (θ1, . . . , θmj

) ∈ Rmj ,∥∥∥∥∥
mj∑
i=1

θiBj,i

∥∥∥∥∥∞
≤ T1 max

i
|θi |(23)

and ∥∥∥∥∥
mj∑
i=1

θiBj,i

∥∥∥∥∥
2

≥ T2√
mj

√√√√mj∑
i=1

θ2
i ,(24)

where ‖ · ‖2 denotes the L2 norm with respect to the Lebesgue measure on [0,1].
Suppose that for j ∈ J , �j ⊂ Rmj and fθ,j is as defined in (21). Then
Assumption 7 holds with

Aj = 9.64
T1

T2
+ 0.06.(25)

The proof is a straightforward modification of the proof for Lemma 1 of Yang
and Barron (1998).

4. Proofs.

4.1. Proof of Theorem 1. We prove Theorem 1 by giving bounds for
Un and Vn, respectively, and then combining the bounds to show thatUn/Vn

converges to zero. For finding an upper bound forUn, we would like to use
the following lemma, which is a modified version of Lemma 0 by Yang and
Barron (1998).

LEMMA 7. Suppose that Assumption 1 holds and

ξj

mj

≥ 4

1− 4γ
log

(
46.2Aj

√
1− 4γ

γ

)
.

Then

P ∗
o

[
for some θ ∈ �j,

1

n

n∑
i=1

log
fθ,j (Xi)

fo(Xi)
≥ −γ d2

H(fo, fθ,j ) + ξj

n

]

≤ 15.1 exp
(
−1− 4γ

8
ξj

)
,

where P ∗
o is the outer measure for P n

fo
.
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PROOF. Suppose that Assumption 1 holds. We will show that for anyr > 0
andδ ≤ 0.056r ,

N
(
BdH,j (r), δ, dj,∞

)≤
(

3Ajr

δ

)mj

,(26)

whereBdH,j (r) is as defined on page 1557. Then the result in Lemma 7 follows
from Lemma 0 in Yang and Barron (1998).

Below is the proof of (26). Fixε > 0. Letθ∗ ∈ �j be such that

dH
(
fo, fθ∗,j

)≤ εr + inf
θ∈�j

dH(fo, fθ,j ).

Then forθ ∈ �j ,

dH(fo, fθ,j ) ≥ 1

2

(
dH
(
fo, fθ∗,j

)+ dH(fo, fθ,j )
)− εr

2

≥ 1

2
dH
(
fθ,j , fθ∗,j

)− εr

2
,

so we have

BdH,j (r) = {θ ∈ �j :dH(fo, fθ,j ) ≤ r}
⊂ {

θ ∈ �j :dH
(
fθ,j , fθ∗,j

)≤ (2+ ε)r
}

= BdH,j

(
θ∗, (2+ ε)r

)
,

where BdH,j (θ∗, (2 + ε)r) is as defined on page 1558. Takeε = 1; then by
Assumption 1, for anyr > 0 andδ ≤ 0.056r , (26) holds, so by Lemma 0 in Yang
and Barron (1998) the proof for Lemma 7 is complete.�

Suppose Assumption 1 holds. Letaj andηj be as specified in (2) and (3) take
ξj = ηj + γ ns2

n/2. Then by Lemma 7 and we have

Un ≤
(∑

j

aj e
ξj

)
e−γ ns2

n

= αe−γ ns2
n/2

∑
j

exp
(
−1− 4γ

8
ηj

)
≤ αe−γ ns2

n/2

except on a set of probability no greater than∑
j

15.1 exp
(
−1− 4γ

8
ξj

)

= 15.1 exp
(
−(1− 4γ )γ ns2

n

16

)∑
j

exp
(
−1− 4γ

8
ηj

)

≤ 15.1 exp
(
−(1− 4γ )γ ns2

n

16

)
.
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That is, an upper bound forUn is given by

P n
fo

[
Un > αe−γ ns2

n/2]≤ 15.1 exp
(
−(1− 4γ )γ ns2

n

16

)
.(27)

To find a lower bound forVn, we will use Lemma 1 of Shen and Wasserman
(2001). Let

B̃D(r) = {g :D(fo‖g) ≤ r,V ′(fo‖g) ≤ r},
whereV ′(f ‖g) = ∫

f (log(f/g) − D(f ‖g))2 dµ. Here is the lemma.

LEMMA 8. For tn > 0,

P n
fo

(
Vn ≤ 1

2
π̃
(
B̃D(tn)

)
e−2ntn

)
≤ 2

ntn
.

Suppose that Assumptions 2–5 hold. LetBdjn,jn(θ, εn) denote thedjn -ball
centered atθ with radiusεn in �jn and define

BD,jn(tn) = {
θ ∈ �jn :D

(
fo‖fθ,jn

)≤ tn,V
(
fo‖fθ,jn

)≤ tn
}
.

We will first show that

Bdjn,jn(βn, εn) ⊂ BD,jn(tn)(28)

for sometn ∝ ε2
n and that

πjn

(
Bdjn,jn(βn, εn)

)≥
(

1

A
b1+b2
jn

K4K5

)mjn

.(29)

Then we will deduce a lower bound forπ̃(B̃D(tn)) based on (28) and (29) to apply
Lemma 8.

To prove (28), note that forθ ∈ Bdjn,jn(βn, εn), by Assumptions 2 and 3 we
have

V
(
fo‖fθ,jn

)≤ 2ε2
n + 2K ′

0ε
2
n

and

D
(
fo‖fθ,jn

)≤ K ′′
0V

(
fo‖fθ,jn

)≤ 2K ′′
0(1+ K ′

0)ε
2
n.

Therefore, (28) holds fortn = 2 max(1,K ′′
0)(1+ K ′

0)ε
2
n

def= K ′ε2
n.

To prove (29), note that by Assumption 4 there existθ1, . . . , θd∗ ∈ �jn such that

d∗ ≤ (
A

b1
jn

K4
)mjn and

d∗⋃
i=1

Bdjn,jn(θi, εn) ⊃ �jn,
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so

πjn

(
Bdjn,jn(βn, εn)

)≥ πjn(Bdjn,jn(βn, εn))∑d∗
i=1 πjn(Bdjn ,jn(θi, εn))

≥
(

1

A
b1+b2
jn

K4K5

)mjn

,

where the last inequality follows from Assumption 5.
It is clear that

π̃
(
B̃D(tn)

) ≥ ajnπjn

(
BD,jn(tn)

)
(28)≥ ajnBdjn,jn(βn, εn)

(29)≥ ajn

(
1

A
b1+b2
jn

K4K5

)mjn

,

so by Lemma 8, we have that except on a set of probability no greater than 2/(ntn),

Vn ≥ 1

2
e−2ntnajnπjn

(
BD,jn(tn)

)

≥ e−2ntn

2
α exp

(
−
(

1+ 1− 4γ

8

)
ηjn

)(
1

A
b1+b2
jn

K4K5

)mjn

≥ α

2
exp

(
−2ntn − ηjn

(
1+ 1− 4γ

8
+ b1 + b2 + (

log(K4K5)
)
+
))

(30)

(4)≥ α

2
exp

(
−2ntn − nε2

n

(
1+ 1− 4γ

8
+ b1 + b2 + (

log(K4K5)
)
+
))

= α

2
e−Knε2

n,

whereK = 2K ′ + 1 + (1 − 4γ )/8 + b1 + b2 + (log(K4K5))+. Here the third
inequality follows from the fact that

ηj

mj

≥ 4

1− 4γ
log

(
46.2Aj

√
1− 4γ

γ

)
Aj ≥0.0056=0.13γ /

√
1−4γ≥ max(1, logAj)

for all j .
Now we will bound Un/Vn by combining (27) and (30). In (27) sets2

n =
4Kε2

n/γ . Then

π̃
(
B̃dH(sn)

c|X1, . . . ,Xn

)= Un

Vn

≤ 2 exp(−Knε2
n)

except on a set of probability no greater than

15.1 exp
(
−(1− 4γ )Knε2

n

4

)
+ 2

K ′nε2
n

,
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which converges to zero becausenε2
n → ∞ by Assumption 6.

4.2. Proof of Lemma 1. We will verify Assumptions 1–6 for the spline
example. To verify Assumption 1, we will apply Lemma 2. From page 143 (4.80)
in Schumaker (1981) ∥∥∥∥∥

mj∑
i=1

θiBj,i

∥∥∥∥∥∞
≤ max

i
|θi |.

Sincemj andBj,i depend on(k, q) but not onL, we setl = (k, q), ml = mj

and Bl,i = Bj,i . Then (8) holds withT1 = 1. To check (9), note that from
(4.79) and (4.86) in Schumaker (1981), we have that for eachi ∈ {1, . . . ,ml},

|θi | ≤ (2q + 1)9q−1(yi+q − yi)
−1/2∥∥θiBl,i

∥∥
L2[yi,yi+q ] ,

wherey1, . . . , y2q+k are as defined in Lemma 1 andL2[yi, yi+q ] is theL2 metric
with respect to the Lebesgue measure on[yi, yi+q ]. Sinceyi+q − yi ≥ 1/(1+ k),

ml∑
i=1

θ2
i ≤ (2q + 1)292(q−1)(k + 1)

ml∑
i=1

‖θiBl,i‖2
L2[yi,yi+q ]

≤ (2q + 1)292(q−1)(k + q)q

∥∥∥∥∥
ml∑
i=1

θiBl,i

∥∥∥∥∥
2

2

,

which implies that (9) holds withT2 = 1/(
√

q(2q + 1)9q−1). By Lemma 2,
Assumption 1 holds forAj andmj in (7). Also note that for theCj specified
in (7),

∑
j e−Cj = e−2/(1− e−1)3 < 1 as required.

To verify Assumption 2, we need to findjn andβn. Takejn = (kn, q
∗,L∗),

where{kn} is a sequence of positive integers such that

c3n
1/(1+2s) ≤ kn ≤ c4n

1/(1+2s) for all n

for some constantsc3 andc4, q∗ = s + 1, and

L∗ = min
{
L :L is a positive integer,L ≥ 2s + αq∗M0 + M0

}
,

whereM0 = max0≤r≤s ‖Dr logfo‖L∞ . To control the error max(D(fo‖fβn,jn),
V (fo‖fβn,jn)), we use the following fact.

FACT 1. Forj such thatq ≥ s + 1, there existsβ ∈ Rmj such that

‖Dr(logfo − logfβ,j )‖∞ ≤ αq

(
1

k + 1

)s−r

M0 for 0 ≤ r ≤ s − 1,

(31)
‖Ds logfβ,j‖∞ ≤ αqM0.
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This fact follows from (6.50) in Schumaker (1981) and the result that for
θ = (θ1, . . . , θmj

) ∈ Rmj,

|ψ(θ)| =
∣∣∣∣∣ log

∫ 1

0
exp

(
− logfo(x) +

mj∑
i=1

θiBj,i(x)

)
fo(x) dx

∣∣∣∣∣
≤
∥∥∥∥∥ logfo −

mj∑
i=1

θiBj,i

∥∥∥∥∥∞
.

From the fact, there existsβn ∈ Rmjn such that

∥∥ logfo − logfβn,jn

∥∥∞ ≤ αq∗M0

(
1

kn + 1

)s

.

SinceD(fo‖fβn,jn) andV (fo‖fβn,jn) are bounded by‖ logfo − logfβn,jn‖∞, we
have

max
(
D
(
fo‖fβn,jn

)
,V

(
fo‖fβn,jn

))+ ηjn

n

≤ αq∗M0

(
1

kn + 1

)2s

+ c2kn

n
≤ c1n

−2s/(1+2s)

for some constantsc1 andc2. So Assumption (2) holds ifβn ∈ �jn and

ε2
n = c1n

−2s/(1+2s).(32)

To verify that βn ∈ �jn , we need to make sureβ ′
n1mjn

= 0 and
max0≤r≤q−1‖Dr logfβn,jn‖L∞ ≤ L∗. For the first condition,β ′

n1mjn
= 0, we can

assume it without loss of generality, because logfβn,jn does not change whenβn is
shifted by a constant. The second condition holds because of the second equation
in (31).

Now let us verify Assumptions 3–5 withdjn = djn,∞, wheredjn,∞ is as defined
in Assumption 1. For the verification of Assumption 3, we will use the following
fact.

FACT 2. Suppose that∫
fo

(
log

fη,jn

fθ,jn

)2

≤ K0d
2
jn

(η, θ) for all η, θ ∈ �jn(33)

for some constantK0 and

sup
θ∈�jn

∥∥ logfo − logfθ,jn

∥∥∞ ≤ logK3(34)

for some constantK3. Then Assumption 3 holds withK ′
0 = K0 andK ′′

0 = K3/2.
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The proof of the fact is a straightforward application of an equation in Lemma 1
by Barron and Sheu (1991), which gives

D
(
fo‖fθ,jn

)≤ 1
2e‖ logfo−logfθ,jn‖∞V

(
fo‖fθ,jn

)
(35)

for all θ ∈ Rmjn . It is clear that (33) holds withK0 = 1 and that (34) holds with
K3 = e2L∗

, so by Fact 2, Assumption 3 holds.
For Assumption 4, by Theorems IV and XIV of Kolmogorov and Tikhomirov

(1961), there exists anεn-netFεn for �jn with respect todjn so that

log card
(
Fεn

) ≤ cq∗,L∗
(

1

εn

)1/(q∗−1)

= cq∗,L∗
(

1

εn

)1/s

≤ cq∗,L∗(kn + 1) ≤ cq∗,L∗mjn.

Therefore, Assumption 4 holds withK4 = ecq∗,L∗ andb1 = 0.
We will check Assumption 5. For a positive integerm, for t = (t1, . . . , tm) ∈ Rm,

define

‖t‖∞ = max
1≤i≤m

|ti |.

To boundπjn(Bdjn ,jn(βn, εn)), we will show that{
θ ∈ Rmjn : θ ′1mjn

= 0,‖θ − βn‖∞ ≤ c6

(
1

kn + 1

)s}
⊂ Bdjn,jn(βn, εn),(36)

wherec6 = min(1,
√

c1/2(supn ns/(1+2s)(kn + 1)−s)). To prove (36), suppose that
θ ∈ Rmjn and

θ ′1mjn
= 0 and ‖θ − βn‖∞ ≤ c6

(
1

kn + 1

)s

.

We will show that

djn(θ, βn) ≤ εn(37)

and

θ ∈ �jn.(38)

Inequality (37) holds since∥∥ logfθ,jn − logfβn,jn

∥∥∞ ≤ 2‖θ − βn‖∞ ≤ 2c6c5n
−s/(1+2s) ≤ εn,

wherec5 = supn(kn + 1)−sns/(1+2s). Here the second inequality holds because

|ψ(θ) − ψ(βn)| =
∣∣∣∣ log

∫
e(θ−βn)

′Beβ ′
nB−ψ(βn)

∣∣∣∣≤ ‖θ − βn‖∞.
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To prove (38), we need the following inequality:

‖Dr(θ ′B − β ′B)‖L∞ ≤ 2r(k + 1)r‖θ − β‖∞ for all 0≤ r ≤ s,(39)

which is deduced from (4.54) in Schumaker (1981). Now note that for 0< r < s,∥∥Dr logfθ,jn

∥∥∞ = ‖Drθ ′B‖∞
≤ ‖Dr(θ ′B − β ′

nB)‖∞ + ‖Dr(β ′
nB − logfo)‖∞

+ ‖Dr logfo‖∞
(39),(31)≤ 2r (kn + 1)r‖θ − βn‖∞ + αq∗M0

(
1

kn + 1

)s−r

+ M0

≤
(

1

kn + 1

)s−r

(2r + αq∗M0) + M0 ≤ L∗,

for r = 0,∥∥ logfθ,jn

∥∥∞ ≤ ∥∥ logfθ,jn − logfβn,jn

∥∥∞ + ∥∥ logfβn,jn − logfo

∥∥∞ + ‖ logfo‖∞
≤ 2‖θ − βn‖∞ + ∥∥ logfβn,jn − logfo

∥∥∞ + M0

≤
(

1

kn + 1

)s

(2+ αq∗M0) + M0 ≤ L∗,

and forr = s,∥∥Ds logfθ,jn

∥∥
L∞ = ‖Dsθ ′B‖L∞

≤ ‖Ds(θ ′B − β ′
nB)‖L∞ + ‖Dsβ ′

nB‖L∞
(39),(31)≤ 2s + αq∗M0 ≤ L∗.

Therefore,θ ∈ �kn,q∗,L∗ , so (38) and (36) hold. To boundπjn(Bdjn ,jn(θ1, εn)) in
Assumption 5, note that for allε > 0 and for allj ,{

θ ∈ �j :
∥∥ logfθ,j − logfθ1,j

∥∥∞ ≤ ε
}⊂ {

θ ∈ �j :‖θ − θ1‖∞ ≤ 2β∗
q∗ε

}
,(40)

where β∗
q∗ is some positive constant. This result follows from Lemma 4.3 of

Ghosal, Ghosh and van der Vaart (2000), which implies that for allθ , θ1 ∈ Rmjn ,

‖θ − θ1‖∞ ≤ ∥∥ logf(θ−θ1),jn

∥∥∞ times some constant depending onq∗,

and from the fact that∥∥ logf(θ−θ1),jn − (
logfθ1,jn − logfθ,jn

)∥∥∞
= ∣∣ψ(θ − θ1) − (

ψ(θ) − ψ(θ1)
)∣∣

=
∣∣∣∣log

∫
exp

(
θ ′B − ψ(θ) − (

θ ′
1B − ψ(θ1)

))∣∣∣∣
≤ ∥∥ logfθ1,jn − logfθ,jn

∥∥∞.
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Then by (40) and by (36) we have

πjn(Bdjn ,jn(βn, εn))

πjn(Bdjn ,jn(θ1, εn))
≥ (c6(1/(kn + 1))s)kn+q∗−1

(β∗
q∗εn)kn+q∗−1

≥
(

c6

β∗
q∗εn(1+ (c4

√
c1/εn)1/s)s

)kn+q∗−1

.

Forn such that 0< εn ≤ 1,

πjn(Bdjn ,jn(βn, εn))

πjn(Bdjn ,jn(θ1, εn))
≥
(

c6

β∗
q∗εn((1/εn)

1/s + (c4
√

c1/εn)
1/s)s

)kn+q∗−1

=
(

c6

β∗
q∗(1+ (c4

√
c1 )1/s)s

)kn+q∗−1

.

Without loss of generality, we can assume thatβ∗
q∗ > 1, so it is clear that

Assumption 5 holds withK5 = β∗
q∗(1+ (c4

√
c1 )1/s)s/c6 andb2 = 0.

For Assumption 6, it should be clear that it holds with theεn specified in (32).
Now by Theorem 1, the result in Lemma 1 holds.

4.3. Proof of Lemma 3. We will verify Assumptions 1–6 for the Haar basis
example. To verify Assumption 1, we will apply Lemma 4. First, by (3.7) in
Barron, Birgé and Massart (1999), (14) holds forKl = 2(l+1)/2. Second, for
all j andθ ∈ �j , |φ(θ)| = | log

∫
eθ ′B | ≤ ‖θ ′B‖∞, so (15) holds. Therefore, by

Lemma 4, Assumption 1 holds forAj andmj in (13). Note that for theCj specified
in (13),

∑
j e−Cj < 1 as required.

To verify Assumption 2, we will first choosejn andβn, and then show that

∥∥ logfo − logfβn,jn

∥∥
2 ≤ c1,α,fo,H0

(
1

mjn

)α

,

(41) ∥∥ logfo − logfβn,jn

∥∥∞ ≤ 2c2,fo

for some constantsc1,α,fo,H0 andc2,fo and thatβn ∈ �jn . Then we will takeεn

according to an upper bound for the left-hand side of (31) so that Assumption 2
holds. We will see thatεn converges to zero at the rate(logn)1/2n−α/(1+2α) as
required.

jn andβn are defined as follows. Let{ln} be a sequence of integers such that

k3n
1/(1+2α) ≤ 2ln+1 ≤ k4n

1/(1+2α),

wherek3 andk4 are positive constants. Let

β0 +
mjn−1∑
i=1

βln,iBln,i
def= β0 + β ′

nB
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be theL2 projection of logfo to the space spanned by 1 andBln,i : i = 1, . . . ,

mjn − 1. LetM0 = ‖ logfo‖∞ andc2,fo = supn ‖ logfo − β0 − β ′
nB‖∞. (c2,fo is

finite sinceβ0 + β ′
nB converges to logfo uniformly.) Define

L∗ = min
{
L :L is a positive integer andL ≥ 2c2,fo + 3M0

}
.

Setjn = (ln,L
∗).

To prove (41), we will bound logfo − β0 − β ′
nB andβ0 + ψ(βn), respectively.

By (12) we have

‖ logfo − β0 − β ′
nB‖2 ≤ H02−α(ln+1)

√
1− 2−2α

≤ H0√
1− 2−2α

(
1

mjn

)α

.

To boundβ0 + ψ(βn), let � = ∫
(eβ0+β ′

nB−logfo − 1)fo andb = ‖ logfo − β0 −
β ′

nB‖∞. Then

|β0 + ψ(βn)| =
∣∣∣∣ log

∫
eβ0+β ′

nB−logfofo

∣∣∣∣
= | log(1+ �)|
≤ max

(
�,

−�

1+ �

)

≤ |�|eb+M0(sincee−b−M0 ≤ 1+ � ≤ eb+M0)

≤ eb+2M0

(
1+ 1

2
eb‖ logfo − β0 − β ′

nB‖2

)
‖ logfo − β0 − β ′

nB‖2,

where the last inequality follows from the Cauchy–Schwarz inequality and (3.3)
in Barron and Sheu (1991), which says that

z2

2
e−max(−z,0) ≤ ez − 1− z ≤ z2

2
emax(z,0) for all z.

Therefore, the first inequality in (41) holds. The second inequality in (41) also
holds since

‖ logfo − β0 − β ′
nB‖∞ ≤ ‖ logfo − β0 − β ′

nB‖∞ + |β0 + ψ(βn)|
= c2,fo +

∣∣∣∣ log
∫

eβ0+β ′
nB−logfofo

∣∣∣∣≤ 2c2,fo.

Now we have proved (41), which implies that‖ logfβn,jn‖∞ ≤ L∗, soβn ∈ �jn .
The L2 bound in (41) gives a bound for the error max(D(fo‖fβn,jn),

V (fo‖fβn,jn)) since

V
(
fo‖fβn,jn

)=
∫

fo

(
log

fo

fβn,jn

)2

≤ e‖ logfo‖∞∥∥ logfo − logfβn,jn

∥∥2
2(42)

and by (35) and (41),

D
(
fo‖fβn,jn

)≤ 1
2e2c2,fo V

(
fo‖fβn,jn

)
.(43)
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By (41)–(43) and the definition ofηjn , we can find two constantsk1 andk2 which
depend only onα, fo andH0 such that

max
(
D
(
fo‖fβn,jn

)
,V

(
fo‖fβn,jn

))+ ηjn

n
≤ k1

(
1

mjn

)2α

+ k2
mjn logmjn

n
.

Sinceln is chosen such thatk3n
1/(1+2α) ≤ mjn ≤ k4n

1/(1+2α), we have

max
(
D
(
fo‖fβn,jn

)
,V

(
fo‖fβn,jn

))+ ηjn

n

≤
(

k1

k2α
3

+ k2k4 logk4 + k2k4

1+ 2α

)
n−2α/(1+2α) logn

def= k5n
−2α/(1+2α) logn.

Hence, Assumption 2 holds withε2
n = k5n

−2α/(1+2α) logn.
To verify Assumption 3, for all positive integersm and for allt = (t1, . . . , tm) ∈

Rm define

‖t‖ =
√√√√ m∑

i=1

t2
i .

Let djn = ‖ · ‖ on Rmjn−1. We will verify Assumption 3 using Fact 2. For
η, θ ∈ �jn , since

ψ(η) − ψ(θ) = log
∫

e(θ−η)′Bfη,jn

≤ log
∫ (

1+ (θ − η)′Be(θ−η)′B)fη,jn

≤ log

(
1+

√∫ (
(θ − η)′B

)2√∫
e2(θ−η)′Bf 2

η,jn

)

≤ log
(
1+ ‖θ − η‖e4L∗)

≤ e4L∗‖θ − η‖,
∥∥logfη,jn − logfθ,jn

∥∥2
2 = (

ψ(η) − ψ(θ)
)2 + ‖η − θ‖2

and ∫
fo

(
log

fη,jn

fθ,jn

)2

≤ e‖ logfo‖∞∥∥ logfη,jn − logfθ,jn

∥∥2
2

= eM0
∥∥ logfη,jn − logfθ,jn

∥∥2
2,

(33) holds withK0 = eM0(1 + e8L∗
) and clearly, (34) holds withK3 = eM0+2L∗

.
Therefore, by Fact 2, Assumption 3 holds.
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For checking Assumption 4, note that

�jn ⊂ {θ ∈ Rmjn−1 :‖θ‖∞ ≤ L∗},
which implies that for everyε > 0, there exists anε-netFε for �jn with respect to
‖ · ‖∞ so that

card
(
Fεn

)≤
(

1+ 2L∗

ε

)mjn−1

.

By the fact that‖θ‖ ≤ √
mjn − 1‖θ‖∞ for all θ ∈ �jn , there exists anεn-netFεn

for �jn with respect todjn such that

card
(
Fεn

)≤
(

1+ 2L∗√mjn − 1

εn

)mjn−1

.

Since

1+ (2L∗√mjn − 1)/εn

A3α
jn

≤ (1+ 2L∗√k4/k5)n
1.5α/(1+2α)

k1.5α
3 n1.5α/(1+2α)

,

Assumption 4 holds withK4 = (1+ 2L∗√k4/k5)/(k
1.5α
3 ) andb1 = 3α.

For Assumption 5, to boundπjn(Bdjn ,jn(βn, εn)), we will show that{
θ ∈ Rmjn−1 :‖θ − βn‖∞ ≤ εn

mjn

√
mjn − 1

}
⊂ Bdjn,jn(βn, εn)(44)

for n such that εn ≤ M0. For θ ∈ Rmjn−1 such that ‖θ − βn‖∞ ≤ εn/

(mjn

√
mjn − 1),

‖θ − βn‖ ≤ √
mjn − 1‖θ − βn‖∞ ≤ εn

mjn

≤ εn,

so it suffices to show thatθ ∈ �jn . Forn such thatεn ≤ M0,

‖θ ′B‖∞ ≤ ‖θ ′B − β ′
nB‖∞ + ‖β0 + β ′

nB − logfo‖∞ + |β0| + ‖ logfo‖∞
≤ mjn‖θ − βn‖ + 2c2,foM0 + 2M0

≤ εn + 2c2,foM0 + 2M0

≤ 2c2,foM0 + 3M0 ≤ L∗,
so θ ∈ �jn and (44) holds. To boundπjn(Bdjn ,jn(θ1, εn)) in Assumption 5, note
that for allε > 0 and for allj ,

{θ ∈ �j :‖θ − θ1‖ ≤ ε} ⊂ {θ ∈ �j :‖θ − θ1‖∞ ≤ ε}.(45)

By (44) and (45) we have

πjn(Bdjn ,jn(θ1, εn))

πjn(Bdjn,jn(βn, εn))
≤
(

εn

εn/(mjn

√
mjn − 1)

)mjn−1

≤ (
mjn

√
mjn − 1

)mjn .
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Since (
mjn

√
mjn − 1

A3
jn

)mjn ≤
( m1.5

jn

(
√

mjn )3

)mjn = 1,

Assumption 5 holds withb2 = 3 andK5 = 1.
It is clear that Assumption 6 holds with the aboveεn, which tends to zero at the

rate(logn)1/2n−α/(1+2α). By Theorem 1, the result in Lemma 3 holds.

4.4. Proof of Theorem 2. We prove Theorem 2 by giving bounds for
Un andVn, and then combining the bounds to show thatUn/Vn converges to zero.

To bound Un, we will use Lemma 9, which is the regression version of
Lemma 7.

LEMMA 9. Suppose that Assumption 7 holds and γ ∈ (0,0.25) is defined so
that

0.0056= 0.13

c2,c0,M
√

c1,M,σ

γ√
1− 4γ

.

Then for all j and for all ξj such that

ξj

mj

≥ 4

c1,M,σ (1− 4γ )
log(1072.5Aj),

P ∗
fo

[
1

n

n∑
i=1

(
Yi − fo(Xi)

)2 − 1

n

n∑
i=1

(
Yi − fθ,j (Xi)

)2

≥ −γ ‖fo − fθ,j‖2
L2(µX) + ξj

n
+ 0.0224

∣∣∣∣∣1n
n∑

i=1

εi

∣∣∣∣∣
√

ξj

n

for some θ ∈ �j and
1

n

n∑
i=1

|εi | ≤ c0,
1

n

n∑
i=1

ε2
i ≤ c2

0

]

≤ 15.1 exp
(
−c1,M,σ (1− 4γ )ξj

8

)
,

where

c1,M,σ = min
(

1− exp(−M2/(2σ 2))

2M2
,

1

2σ 2

)
and c2,c0,M = 2(c0 + 2M).

The proof of Lemma 9 is long and is deferred to Section 4.4.1.
Now suppose that Assumption 7 holds. Takec0 = 2σ and defineγ as in

Lemma 9. LetCj ≥ 0 be such that
∑

j e−Cj ≤ 1 and defineηj and aj as
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(18) and (17), respectively. We will apply Lemma 9 to prove (46), which gives
an upper bound forUn,

Pfo

[
Un ≤ α exp

(
0.0056Z2

n

σ
− γ ns2

n

4σ 2

)]
≥ 1− (p1 + p2 + p3),(46)

where

Zn = 1√
nσ

n∑
i=1

εi ∼ N(0,1),

p1 = P

[
1

n

n∑
i=1

|εi | > c0

]
, p2 = P

[
1

n

n∑
i=1

ε2
i > c2

0

]

and

p3 = 15.1 exp
(
−c1,M,σ (1− 4γ )γ ns2

n

32(0.5+ 0.0056σ)

)
.

To prove (46), take

ξj = ηj + γ ns2
n

4(0.5+ 0.0056σ)
.

SinceUn is

∑
j

aj

∫
(BL2(µX),�j

(sn))c

exp(1/(2σ 2)
∑n

i=1(Yi − fo(Xi))
2)

exp(1/(2σ 2)
∑n

i=1(Yi − fθ,j (Xi))2)
dπj (θ),

Lemma 9 gives

Un ≤ ∑
j

aj exp

(
1

2σ 2

(
−γ ns2

n + ξj + 0.0224

∣∣∣∣∣ 1√
n

n∑
i=1

εi

∣∣∣∣∣
√

ξj

))

=∑
j

aj exp
(
−γ ns2

n

2σ 2
+ ξj

2σ 2
+ 0.0112

σ
|Zn|

√
ξj

)

≤ ∑
j

aj exp
(
−γ ns2

n

2σ 2 + ξj

2σ 2 + 0.0056

σ
(Z2

n + ξj )

)

= exp
(

0.0056Z2
n

σ
− γ ns2

n

4σ 2

)∑
j

aj exp
(

0.5+ 0.0056σ

σ 2
ηj

)

= α exp
(

0.0056Z2
n

σ
− γ ns2

n

4σ 2

)∑
j

e−ηj

≤ α exp
(

0.0056Z2
n

σ
− γ ns2

n

4σ 2

)
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except on a set of probability no greater than

P

[
1

n

n∑
i=1

|εi | > c0

]
+ P

[
1

n

n∑
i=1

ε2
i > c2

0

]
+ 15.1

∑
j

exp
(
−c1,M,σ (1− 4γ )ξj

8

)
.

Note that∑
j

exp
(
−c1,M,σ (1− 4γ )ξj

8

)

= exp
(
−c1,M,σ (1− 4γ )γ ns2

n

32(0.5+ 0.0056σ)

)∑
j

exp
(
−c1,M,σ (1− 4γ )ηj

8

)

≤ exp
(
−c1,M,σ (1− 4γ )γ ns2

n

32(0.5+ 0.0056σ)

)
,

so now we have the following bound forUn:

Pfo

[
Un ≤ α exp

(
0.0056Z2

n

σ
− γ ns2

n

4σ 2

)]
≥ 1− (p1 + p2 + p3).

The process of deriving a bound forVn is the same as in Section 4.1 except for
the following changes:

1. Replacefo by pfo , fθ,jn by pfθ,jn
and Assumptions 2 and 3 by Assumptions

8 and 9.
2. The proof of (28) is modified as follows. First, note that in our regression

setting, for allθ ∈ �j and for allj ,

D
(
pfo‖pfθ,j

)= ‖fo − fθ,j‖2
L2(µX)

2σ 2(47)

and

V
(
pfo‖pfθ,j

)= ‖fo − fθ,j‖2
L2(µX)

σ 2
+ 1

4σ 4

∫
(fo − fθ,j )

4

(48)

≤
(

1

σ 2 + M2

σ 4

)
‖fo − fθ,j‖2

L2(µX).

By (47), (48) and (20), forθ ∈ Bdjn,jn(βn, εn), we have

D
(
pfo‖pfθ,jn

) ≤ D
(
pfo‖pfβn,jn

)+ ‖fβ,jn − fθ,jn‖2
L2(µX)

2σ 2

≤ ε2
n + K ′

0ε
2
n

2σ 2

and

V
(
pfo‖pfθ,jn

)≤
(

2+ 2M2

σ 2

)
D
(
pfo‖pfθ,jn

)
.
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Therefore, (28) holds for

t2
n =

(
2+ 2M2

σ 2

)(
1+ K ′

0

2σ 2

)
ε2
n

def= K ′ε2
n.

3. The process of deriving a lower bound forVn in (30) is modified as follows:

Vn ≥ 1

2
e−2nt2

n ajnπjn

(
BD,jn(tn)

)

≥ αe−2nt2
n

2
exp

(
−
(

1+ 1

2σ 2
+ 0.0056

σ

)
ηjn

)(
1

A
b1+b2
jn

K4K5

)mjn

≥ α

2
exp

(
−2nt2

n − ηjn

(
1+ 1

2σ 2 + 0.0056

σ

+ c1
(
b1 + b2 + (

log(K4K5)
)
+
)))

(49)

(19)≥ α

2
exp

(
−2nt2

n − nε2
n

(
1+ 1

2σ 2 + 0.0056

σ

+ c1
(
b1 + b2 + (

log(K4K5)
)
+
)))

≥ α

2
e−Knε2

n,

wherec1 = c1,M,σ and

K = 2K ′ + 1+ 1

2σ 2 + 0.0056

σ
+ c1

(
b1 + b2 + (log(K4K5))+

)
.

Here we have used the fact that

c1ηj

mj

≥ 4

1− 4γ
log

(
1072.5Aj

√
1− 4γ

γ

)
≥ max(1, logAj)

for all j .

Now we will boundUn/Vn by combining (46) and (50). In (46), set

s2
n = 8σ 2Kε2

n

γ
.

Then

π̃
(
B̃L2(µX)(sn)

c|X1, . . . ,Xn

)= Un

Vn

≤ 2 exp
(

0.0056Z2
n

σ

)
exp(−Knε2

n)
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except on a set of probability no greater than

p1 + p2 + 15.1 exp
(
−c1,M,σ (1− 4γ )8σ 2Knε2

n

32(0.5+ 0.0056σ)

)
+ 2

K ′nε2
n

,

where

Zn = 1√
nσ

n∑
i=1

εi ∼ N(0,1),

p1 = P

[
1

n

n∑
i=1

|εi | > c0

]

and

p2 = P

[
1

n

n∑
i=1

ε2
i > c2

0

]
.

Note thatc0 = 2σ > max(E|εi |,Eε2
i ), so p1 + p2 → 0 as n → ∞. Since

2e0.0056Z2
n/σ converges in distribution ande−Knε2

n converges to zero by As-
sumption 6, we have that 2e0.0056Z2

n/σ e−Knε2
n converges to zero in probability.

Therefore,π̃(B̃L2(µX)(sn)
c|X1, . . . ,Xn) converges to zero in probability as stated

in Theorem 2.

4.4.1. An exponentional inequality. We claim that to prove Lemma 9, it
suffices to prove Lemma 10, which has a slightly different assumption.

ASSUMPTION10. For somej ∈ J , for θ ∈ �j , ‖fθ,j‖∞ ≤ M , and there exist
constantsA > 0, m ≥ 1 and 0< ρ ≤ A such that for anyr > 0, δ ≤ ρr , θ ∈ �j ,
theδ-covering number

N
(
BL2(µX),�j

(r), δ, dj,∞
)≤

(
Ar

δ

)m

,

where BL2(µX),�j
(r) = {θ ∈ �j :‖fo − fθ,j‖L2(µX) ≤ r} and for η, θ ∈ �j ,

dj,∞(η, θ) = ‖fη,j − fθ,j‖∞.

LEMMA 10. Suppose that Assumption 10 holds with

ρ ≥ 0.13

c2,c0,M
√

c1,M,σ

γ√
1− 4γ

.

Then for ξ such that

ξ

m
≥ 4

c1,M,σ (1− 4γ )
log

(
15.4c2,c0,M

√
c1,M,σA

√
1− 4γ

γ

)
,
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P ∗
[

1

n

n∑
i=1

(
Yi − fo(Xi)

)2 − 1

n

n∑
i=1

(
Yi − fθ,j (Xi)

)2

≥ −γ ‖fo − fθ,j‖2
L2(µX) + ξ

n
+ 4

∣∣∣∣∣1n
n∑

i=1

εi

∣∣∣∣∣δ
for some θ ∈ �j and

1

n

n∑
i=1

|εi | ≤ c0,
1

n

n∑
i=1

ε2
i ≤ c2

0

]

≤ 15.1 exp
(
−c1,M,σ (1− 4γ )ξ

8

)
,

where

δ = 2γ

15.4c2,c0,M

√
c1,M,σ (1− 4γ )

√
ξ

n
,

c1,M,σ = min
(

1− exp(−M2/(2σ 2))

2M2 ,
1

2σ 2

)
and c2,c0,M = 2(c0 + 2M).

To see that the claim is true, note that in the proof for (26),dH can be replaced by
L2(µX). Therefore, if Assumption 7 holds, then for allj ∈ J , Assumption 10 holds
with A = 3Aj andρ = 0.0056. Suppose that Lemma 10 is true. Then Lemma 9
follows by settingρ = 0.0056 and choosingγ such that

ρ = 0.13

c2,c0,M
√

c1,M,σ

γ√
1− 4γ

.

PROOF OFLEMMA 10. We follow the proof of Lemma 0 in Yang and Barron
(1998). First, divide the space�j into rings

�j,i = {
θ ∈ �j : ri−1 ≤ ‖fo − fθ,j‖L2(µX) ≤ ri

}
, i = 0,1, . . . ,

where ri = 2i/2√ξ/n for i ≥ 0 and r−1 = 0. For each ring�j,i , we will use
a chaining argument to bound

qi
def= P ∗

[
1

n

n∑
i′=1

(
Yi′ − fo(Xi′)

)2 − 1

n

n∑
i′=1

(
Yi′ − fθ,j (Xi′)

)2

≥ −γ ‖fo − fθ,j‖2
L2(µX) + ξ

n
+ 4

∣∣∣∣∣1n
n∑

i′=1

εi′

∣∣∣∣∣δ
for someθ ∈ �j,i and

1

n

n∑
i′=1

|εi′ | ≤ c0,
1

n

n∑
i′=1

ε2
i′ ≤ c2

0

]
.
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Then we will put all the bounds forqi together to complete the proof. So let
us focus on one�j,i first. Let {δk}∞k=0 be a sequence decreasing to zero with
δ0 ≤ min(ρr0, δ) and definẽδk = δk for k ≥ 1 andδ̃0 = δ0/2. Then by assumption
we can find a sequence of netsF̃0, F̃1, . . . , where eachF̃k is a δ̃k net in �j,i

satisfying the cardinal number constraint in Assumption 10. In other words, for
eachk, there exists a mapping̃τk :�j,i → F̃k such that‖fτ̃k(θ),j − fθ,j‖∞ ≤ δ̃k

for all θ ∈ �j,i , and

card(F̃k) ≤
(

Ark

δ̃k

)m

.

Instead of applying the chaining argument using the netsF̃k , we will modify the
netF̃0 first and then apply the chaining argument using the netsFk , whereFk = F̃k

for k ≥ 1 andF0 is the modifiedF̃0. Now modify the netF̃0 in the following way:
Consider a positive numberε. For eachθ̃0 in F̃0, find θ0 in

τ̃−1
0 (θ̃0) = {θ ∈ �j,i : τ̃0(θ) = θ̃0}

such that ∥∥fo − fθ0,j

∥∥2
L2(µX) ≤ inf

θ∈τ̃−1
0 (θ̃0)

‖fo − fθ,j‖2
L2(µX) + ε.

Defineτ (θ̃0) = θ0, andF0 = {τ (θ̃0) : θ̃0 ∈ F̃0}. Defineτ0 = τ (τ̃0) andτk = τ̃k for
k ≥ 1. Then by the triangle inequality,‖fτ0(θ),j − fθ,j‖∞ ≤ δ0, soF0 is a δ0 net
and for eachk, Fk is aδk net. Now we can start the chaining argument. For each
θ ∈ �j,i , define

l0 = 1

n

n∑
i=1

(
Yi − fo(Xi)

)2 − 1

n

n∑
i=1

(
Yi − fτ0(θ),j (Xi)

)2
and

lk = 1

n

n∑
i=1

(
Yi − fτk−1(θ),j (Xi)

)2 − 1

n

n∑
i=1

(
Yi − fτk(θ),j (Xi)

)2
for k ≥ 1. Then

1

n

n∑
i=1

(
Yi − fo(Xi)

)2 − 1

n

n∑
i=1

(
Yi − fθ,j (Xi)

)2 = l0 +
∞∑

k=1

lk.

Now, instead of giving bounds forlk − Elk as in Yang and Barron (1998), we will
give bounds forlk − Eεlk , where

Eεlk = 2

n

n∑
i=1

εi

∫ (
fτk(θ),j − fτk−1(θ),j

)
dµX

+ ∥∥fo − fτk−1(θ,j )

∥∥2
L2(µX) − ∥∥fo − fτk(θ,j )

∥∥2
L2(µX)
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is the conditional expectation oflk givenε1, . . . , εn for k ≥ 1. Note that
∞∑

k=1

Eεlk = 2

(
1

n

n∑
i=1

εi

)∫ (
fθ,j − fτ0(θ),j

)
µX

+ ∥∥fo − fτ0(θ,j )

∥∥2
L2(µX) − ‖fo − fθ,j‖2

L2(µX)

≤ 2

∣∣∣∣∣1n
n∑

i=1

εi

∣∣∣∣∣
∫ (

fθ,j − fτ0(θ),j

)
µX + ε

≤ 4

∣∣∣∣∣1n
n∑

i=1

εi

∣∣∣∣∣δ0 + ε ≤ 4

∣∣∣∣∣1n
n∑

i=1

εi

∣∣∣∣∣δ + ε,

so

qi ≤ P ∗(B0 ∩ B)

≤ P ∗
({

l0 ≥ −2γ r2
i + ξ

n
− ε for someθ ∈ �j,i

}
∩ B

)

+
∞∑

k=1

P ∗({lk − Eεlk ≥ ηk for someθ ∈ �j,i} ∩ B
)

def= q
(1)
i +

∞∑
k=1

q
(2)
i,k

if
∑∞

k=1 ηk ≤ γ r2
i , where

B0 =
{
l0 +

∞∑
k=1

(lk − Eεlk) ≥ −ε − γ ‖fo − fθ,j‖2
L2(µX) + ξ

n
for someθ ∈ �j,i

}

and

B =
{

1

n

n∑
i=1

|εi | ≤ c0,
1

n

n∑
i=1

ε2
i ≤ c2

0

}
.

�

To boundq(1)
i , we will use the following inequality of Chernoff (1952):

FACT 3. Suppose thatXi are i.i.d. from a distribution with densityg2 with
respect to measureµ andg1 is a density with respect to the same measure. Then

P

[
1

n

n∑
i=1

log
g1(Xi)

g2(Xi)
≥ t

]
≤ exp

(
−n

2

(
d2

H(g1, g2) + t
))

.

Since

l0 = 2σ 2

n

n∑
i=1

log
pfτ0(θ),j

(Xi)

pfo(Xi)
,
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Fact 3 implies that for aτ0(θ),

P [l0 ≥ t] ≤ exp
(
−n

2

(
d2

H
(
pfτ0(θ),j

, pfo

)+ t/(2σ 2)
))

.(50)

To replace the Hellinger distanced2
H(pfτ0(θ),j

, pfo) with theL2 distance‖fτ0(θ),j −
fo‖L2(µX) in (50), note that

d2
H
(
pfτ0(θ),j

, pfo

) = 2
∫ (

1− exp
(
−(fτ0(θ),j (x) − fo(x))2

8σ 2

))
dµ(x)

≥ 1− exp(−M2/(2σ 2))

2M2

∫ (
fτ0(θ),j (x) − fo(x)

)2
dµ(x)(51)

def= c0,M,σ

∥∥fτ0(θ),j − fo

∥∥2
L2(µX).

Here the equality follows from direct calculation and the inequality follows
from the fact that(1 − e−x)/x is decreasing withx on (0,∞) and that
‖fτ0(θ),j‖∞,‖fo‖∞ ≤ M . Now by (50) and (51), we have

P [l0 ≥ t] ≤ exp
(
−n

2

(
c0,M,σ

∥∥fτ0(θ),j − fo

∥∥2
L2(µX) + t/(2σ 2)

))

≤ exp
(
−c1,M,σn

2

(∥∥fτ0(θ),j − fo

∥∥2
L2(µX) + t

))
,

wherec1,M,σ = min(c0,M,σ ,1/(2σ 2)). Sett = −2γ r2
i + ξ

n
− ε. Then for aτ0(θ),

P

[
l0 ≥ −2γ r2

i + ξ

n
− ε

]
≤ exp

(
−c1,M,σn

2

(
r2
i−1 − 2γ r2

i + ξ

n
− ε

))
.

Therefore,

q
(1)
i ≤ card(F0)exp

(
−c1,M,σn

2

(
r2
i−1 − 2γ r2

i + ξ

n
− ε

))
(52)

≤ card(F0)exp
(
−c1,M,σn

2

(
(i + 1)(1− 4γ )

ξ

n
− ε

))
,

where the last inequality was verified in Yang and Barron (1998), from the end of
page 111 to the beginning of page 112.

To boundq(2)
i,k , we will use Hoeffding’s inequality.

FACT 4. Suppose that{Yi}ni=1 are independent with mean zero and that
ai ≤ Yi ≤ bi for all i. Then forη > 0,

P

[
n∑

i=1

Yi ≥ η

]
≤ exp

( −2η2∑n
i=1(bi − ai)

2

)
.
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For a pair(τk−1(θ), τk(θ)),∣∣(Yi − fτk−1(θ),j (Xi)
)2 − (

Yi − fτk(θ),j (Xi)
)2∣∣

≤ 2
∣∣fτk−1(θ),j (Xi) − fτk(θ),j (Xi)

∣∣
×
∣∣∣∣εi + fo(Xi) − fτk−1(θ),j (Xi) + fτk(θ),j (Xi)

2

∣∣∣∣
≤ 2(δk−1 + δk)(|εi | + 2M) ≤ 4(|εi | + 2M)δk−1.

By Hoeffding’s inequality, the conditional probability

P [lk − Eεlk ≥ η|ε1, . . . , εn] ≤ exp
( −2n2η2∑n

i=1 64(|εi | + 2M)2δ2
k−1

)

≤ exp
( −2nη2

64(c0 + 2M)2δ2
k−1

)

if
∑n

i=1 |εi |/n ≤ c0 and
∑n

i=1 ε2
i /n ≤ c2

0. Integrating the conditional probability
over setB, we have

P ({lk − Eεlk ≥ η} ∩ B) ≤ exp
( −2nη2

64(c0 + 2M)2δ2
k−1

)
.

Therefore,

q
(2)
i,k ≤ card(Fk−1)card(Fk)exp

( −2nη2
k

64(c0 + 2M)2δ2
k−1

)
.(53)

Now combine (52) and (53) and letε → 0. Then we have

qi ≤ card(F0)exp
(
−nc1,M,σ

2
(i + 1)(1− 4γ )

ξ

n

)

+
∞∑

k=1

card(Fk−1)card(Fk)exp
( −2nη2

k

64(c0 + 2M)2δ2
k−1

)

≤
(

Ari

δ̃0

)m

exp
(
−c1,M,σ

2
(i + 1)(1− 4γ )ξ

)

+
∞∑

k=1

(
Ari

δ̃k−1

)m(Ari

δ̃k

)m

exp
( −2nη2

k

64(c0 + 2M)2δ2
k−1

)
.

Now chooseδ0, δk so that

log
(

Ar0

δ̃k

)m

= c1,M,σ (k + 1)(1− 4γ )ξ

4
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andηk such that

2nη2
k

64(c0 + 2M)2δ2
k−1

= im log 2+ (2k + 1)c1,M,σ (1− 4γ )ξ

4
+ (i + 1)kc1,M,σ (1− 4γ )ξ

8
.

Now the bound forqi becomes

qi ≤ 2im/2 exp
(

c1,M,σ (1− 4γ )ξ

4

)
exp

(
−c1,M,σ

2
(i + 1)(1− 4γ )ξ

)

+
∞∑

k=1

exp
(
−(i + 1)c1,M,σk(1− 4γ )ξ

8

)

≤ exp
(

im

2
log 2− (i + 1)c1,M,σ (1− 4γ )ξ

4

)

+ exp
(
−(i + 1)c1,M,σ (1− 4γ )ξ

8

)

×
(

1− exp
(
−(i + 1)c1,M,σ (1− 4γ )ξ

8

))−1

.

Note that by assumption,

m

2
log

2A

ρ0
≤ c1,M,σ (1− 4γ )ξ

8
,

where

ρ0 = 2γ

15.4c2,c0,M

√
c1,M,σ (1− 4γ )

.

Sinceρ0 ≤ ρ ≤ A, we have

log2

2
≤ m

2
log2≤ m

2
log

2A

ρ0
≤ c1,M,σ (1− 4γ )ξ

8
,(54)

so

qi ≤ exp
(
−(i + 1)c1,M,σ (1− 4γ )ξ

8

)

×
(

1+
(

1− exp
(
−c1,M,σ (1− 4γ )ξ

8

))−1
)

≤
(

1+
√

2√
2− 1

)
exp

(
−(i + 1)c1,M,σ (1− 4γ )ξ

8

)
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and

P ∗
[

1

n

n∑
i=1

(
Yi − fo(Xi)

)2 − 1

n

n∑
i=1

(
Yi − fθ,j (Xi)

)2

≥ −γ ‖fo − fθ,j‖2
L2(µX) + ξ

n
+ 4

∣∣∣∣∣1n
n∑

i=1

εi

∣∣∣∣∣δ
for someθ ∈ �j and

1

n

n∑
i=1

|εi | ≤ c0,
1

n

n∑
i=1

ε2
i ≤ c2

0

]

≤
∞∑
i=0

qi

≤
(

1+
√

2√
2− 1

)
exp

(
−c1,M,σ (1− 4γ )ξ

8

)

×
(

1− exp
(
−c1,M,σ (1− 4γ )ξ

8

))−1

(54)≤ 15.1 exp
(
−c1,M,σ (1− 4γ )ξ

8

)
.

It remains to check that{δk}∞k=0 is a decreasing sequence
∞∑

k=1

ηk ≤ γ r2
i ,(55)

and

δ0 ≤ min(r0ρ, δ),(56)

as claimed in the beginning of the proof. By (54),δ0/δ1 ≥ 1, so {δk}∞k=0 is
decreasing by construction. To verify (55), letc2 = 2(c0 + 2M) andc1 = c1,M,σ .
Then

η1 = 2c2A

√
ξ

n
exp

(
−c1(1− 4γ )ξ

4m

)√
im8 log 2

n
+ (i + 7)c1(1− 4γ )ξ

n

(54)≤ 2c2A
ξ

n

√
c1(1− 4γ )exp

(
−c1(1− 4γ )ξ

4m

)√
3i + 9,

and fork ≥ 2,

ηk = c2A

√
ξ

n
exp

(
−c1k(1− 4γ )ξ

4m

)

×
√

im8 log 2

n
+ 2(2k + 1)c1(1− 4γ )ξ

n
+ (i + 1)kc1(1− 4γ )ξ

n
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(54)≤ c2A
ξ

n

√
c1(1− 4γ )exp

(
−c1k(1− 4γ )ξ

4m

)

×√
2(2k + 1) + (i + 1)(k + 2)

≤ c2A
ξ

n

√
c1(1− 4γ )exp

(
−c1k(1− 4γ )ξ

4m

)√
(i + 5)(k + 2)

≤ c2A
ξ

n

√
c1(1− 4γ )exp

(
−c1k(1− 4γ )ξ

8m

)√
i + 5.

Therefore,

∞∑
k=1

ηk ≤ c2A
ξ

n

√
c1(1− 4γ )exp

(
−c1(1− 4γ )ξ

4m

)√
i + 5

×
(

2
√

3+ 1

1− exp(−c1(1− 4γ )ξ/(8m))

)

≤ c2A
ξ

n

√
c1(1− 4γ )exp

(
−c1(1− 4γ )ξ

4m

)√
5 2i

×
(

2
√

3+ 1

1− exp(−c1(1− 4γ )ξ/(8m))

)

(54)≤ c2A
ξ

n

√
c1(1− 4γ )exp

(
−c1(1− 4γ )ξ

4m

)√
5 2i

(
2
√

3+
√

2√
2− 1

)

≤ 15.4c2
√

c1A

√
1− 4γ

γ
exp

(
−c1(1− 4γ )ξ

4m

)
γ 2i ξ

n

= 15.4c2
√

c1A

√
1− 4γ

γ
exp

(
−c1(1− 4γ )ξ

4m

)
γ r2

i .

To make (55) hold, it is sufficient to require that

ξ

m
≥ 4

c1(1− 4γ )
log

(
15.4c2

√
c1A

√
1− 4γ

γ

)

as in the assumption. Now it remains to verify (56). (56) follows from the fact that

δ0 = 2A

√
ξ

n
exp

(
−c1(1− 4γ )ξ

4m

)
(54)≤ ρ0

√
ξ

n
= δ

and that

δ0

r0
= 2Aexp

(
−c1(1− 4γ )ξ

4m

)
(54)≤ 2A

ρ0

2A
≤ ρ.

The proof for Lemma 10 is complete.�
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4.5. Proof of Lemma 5. We will prove Lemma 5 by verifying the assumptions
in Theorem 2. To verify Assumption 7, we will apply Lemma 6. Following the
same arguments in the verification of Assumption 1 of Lemma 1 in Section 4.2,
we have that (8) and (9) hold withT1 = 1 andT2 = 1/(

√
q(2q + 1)9q−1). By

Lemma 6, Assumption 7 holds forAj andmj in (22). Note that for theCj specified
in (22),

∑
j e−Cj = e−2/(1− e−1)3 < 1 as required.

To verify Assumption 8, we choosejn and βn as in the verification for
Assumption 2 in the proof of Lemma 1 except for the following changes:

1. Fact 1 is replaced by Fact 5.

FACT 5. Forj such thatq ≥ s + 1, there existsβ ∈ Rmj such that

‖Dr(fo − fβ,j )‖∞ ≤ αq

(
1

k + 1

)s−r

M0 for 0 ≤ r ≤ s − 1,

(57)
‖Dsfβ,j‖∞ ≤ αqM0,

whereM0 = max0≤r≤s ‖Drfo‖L∞ .

The above fact follows from (6.50) in Schumaker (1981).
2. βn ∈ Rmjn is chosen so that

∥∥fo − fβn,jn

∥∥∞ ≤ αq∗M0

(
1

kn + 1

)s

.(58)

By (47), (48) and (58), for the abovejn andβn,

max
(
D
(
fo‖fβn,jn

)
,V

(
fo‖fβn,jn

))+ ηjn

n
≤ c1n

−2s/(1+2s),

so Assumption (2) holds ifβn ∈ �jn and

ε2
n = c1n

−2s/(1+2s).(59)

To verify thatβn ∈ �jn , we need to make sure max0≤r≤q−1‖Drfβn,jn‖L∞ ≤ L∗
and‖fβn,jn‖∞ ≤ M . The first condition follows from the second equation in (57).
The second condition holds for largen because of (58) and the fact that‖fo‖ < M .
Therefore, Assumption 8 holds for largen for theεn in (59).

Assumption 9 holds withdjn(η, θ) = ‖fη,jn − fθ,jn‖∞ for all η, θ ∈ �jn since
(20) holds withK ′

0 = 1.
For Assumption 4, the verification is the same as the one for Assumption 4 in

the proof of Lemma 1.
To verify Assumption 5, we need to boundπjn(Bdjn,jn(βn, εn)) by showing that{

θ ∈ Rmjn :‖θ − βn‖∞ ≤ c6

(
1

kn + 1

)s}
⊂ Bdjn,jn(βn, εn),(60)
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where c6 = min(1,
√

c1/(supn ns/(1+2s)(kn + 1)−s)). For θ ∈ Rmjn such that
‖θ − βn‖∞ ≤ c6(1/(kn + 1))s , we will prove (37) and (38). The inequality (37)
follows from the same arguments as in the verification for (37) in the proof of
Lemma 1, except that‖ logfθ,jn − logfβn,jn‖∞ is replaced by‖fθ,jn − fβn,jn‖∞
and the factor 2 is dropped. To prove (38), note that for 0≤ r ≤ s,∥∥Drfθ,jn

∥∥∞ ≤ L∗ and
∥∥Dsfθ,jn

∥∥
L∞ ≤ L∗,

where the results follow from the same arguments for the verification of (38) in the
proof of Lemma 1 except that logfθ,jn is replaced byfθ,jn , logfo is replaced by
fo and the caser = 0 is combined with the case 0< r < s here. Also,∥∥fθ,jn

∥∥∞ = ‖θ ′B‖∞
≤ ‖θ ′B − β ′

nB‖∞ + ‖β ′
nB − fo‖∞ + ‖fo‖∞

(39),(57)≤ ‖θ − βn‖∞ + αq∗
(

1

kn + 1

)s

M0 + ‖fo‖∞

≤
(

1

kn + 1

)s

(1+ αq∗M0) + ‖fo‖∞ < M

for largen since‖fo‖∞ < M . Therefore,θ ∈ �kn,q∗,L∗ and (60) holds.
To boundπjn(Bdjn ,jn(θ1, εn)) in Assumption 5, note that by Lemma 4.3 of

Ghosal, Ghosh and van der Vaart (2000), there existsβ∗
q∗ > 1 such that for all

ε > 0 and for allj ,{
θ ∈ �j :

∥∥fθ,j − fθ1,j

∥∥∞ ≤ ε
}⊂ {

θ ∈ �j :‖θ − θ1‖∞ ≤ β∗
q∗ε

}
.(61)

Then by (61) and (60), following the arguments after the verification of (40) in the
proof of Lemma 1, Assumption 5 holds withK5 = β∗

q∗(1 + (c4
√

c1 )1/s)s/c6 and
b2 = 0.

For Assumption 6, it should be clear that it holds with theεn specified in (59).
Apply Theorem 2 and we have the result in Lemma 5.

Acknowledgments. The author thanks Professor L. Wasserman for supervis-
ing the author’s thesis work, from which this paper is taken. The author also thanks
the referees and an Associate Editor for constructive suggestions to improve the
readibility and accuracy of this paper.

REFERENCES

BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via
penalization.Probab. Theory Related Fields 113 301–413.

BARRON, A., SCHERVISH, M. and WASSERMAN, L. (1999). The consistency of posterior
distributions in nonparametric problems.Ann. Statist. 27 536–561.

BARRON, A. and SHEU, C. (1991). Approximation of density functions by sequences of
exponentional families.Ann. Statist. 19 1347–1369.



BAYESIAN ADAPTIVE ESTIMATION 1593

BELITSER, E. and GHOSAL, S. (2003). Adaptive Bayesian inference on the mean of an infinite-
dimensional normal distribution.Ann. Statist. 31 536–559.

CHERNOFF, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations.Ann. Math. Statist. 23 493–507.

DIACONIS, P. and FREEDMAN, D. (1986). On the consistency of Bayes estimates (with discussion).
Ann. Statist. 14 1–67.

DOOB, J. L. (1949). Application of the theory of martingales.Coll. Int. du CNRS Paris no. 13 23–27.
GHOSAL, S., GHOSH, J. K. and RAMAMOORTHI , R. V. (1999). Posterior consistency of Dirichlet

mixtures in density estimation.Ann. Statist. 27 143–158.
GHOSAL, S., GHOSH, J. K. andVAN DER VAART, A. W. (2000). Convergence rates of posterior

distributions.Ann. Statist. 28 500–531.
KOLMOGOROV, A. N. and TIKHOMIROV, V. M. (1961). ε-entropy andε-capacity of sets in

functional space.Amer. Math. Soc. Transl. Ser. 2 17 277–364.
SCHUMAKER, L. L. (1981).Spline Functions: Basic Theory. Wiley, New York.
SCHWARTZ, L. (1965). On Bayes procedures.Z. Wahrsch. Verw. Gebiete 4 10–26.
SHEN, X. and WASSERMAN, L. (2001). Rates of convergence of posterior distributions.Ann. Statist.

29 687–714.
STONE, C. (1982). Optimal global rates of convergence for nonparametric regression.Ann. Statist.

10 1040–1053.
STONE, C. (1990). Large-sample inference for log-spline models.Ann. Statist. 18 717–741.
YANG, Y. and BARRON, A. (1998). An asymptotic property of model selection criteria.IEEE Trans.

Inform. Theory 44 95–116.

DEPARTMENT OFSTATISTICS

IOWA STATE UNIVERSITY

314 SNEDECORHALL

AMES, IOWA 50011-1210
USA
E-MAIL : tmhuang@iastate.edu


