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CONVERGENCE RATES FOR POSTERIOR DISTRIBUTIONS
AND ADAPTIVE ESTIMATION

By TzEe-MING HUANG
lowa State University

The goal of this paper is to provide theorems on convergence rates of
posterior distributions that can be applied to obtain good convergence rates
in the context of density estimation as well as regression. We show how to
choose priors so that the posterior distributions converge at the optimal rate
without prior knowledge of the degree of smoothness of the density function
or the regression function to be estimated.

1. Introduction. Bayesian methods have been used for nonparametric infer-
ence problems, and many theoretical results have been developed to investigate
the asymptotic properties of nonparametric Bayesian methods. So far, the posi-
tive results are on consistency and convergence rates. For example, Doob (1949)
proved the consistency of posterior distributions with respect to the joint distrib-
ution of the data and the prior under some weak conditions, and Schwartz (1965)
extended Doob’s result to Bayes decision procedures with possibly nonconvex loss
functions. For the frequentist version of consistency, see Diaconis and Freedman
(1986) for a review on consistency resuitstail-free and Dirichlet priors. Barron,
Schervish and Wasserman (1999) gave some conditions to achieve the frequentist
version of consistency in general. Ghosal, Ghosh and Ramamoorthi (1999) also
gave a similar consistency result and applied it to Dirichlet mixtures.

For convergence rates, there are some general results by Ghosal, Ghosh and van
der Vaart (2000) and Shen and Wasserman (2001). However, there are few results
on adaptive estimation in the study of posterior convergence rates. Belitser and
Ghosal (2003) dealt with adaptive estimation in the infinite normal mean set-up.
In this paper, we also have results on adaptive estimation, but these are done in the
density estimation and regression setups.

The goal of this paper is to develop theorems on convergence rates for posterior
distributions which can be used for adaptive estimation. In this paper we have
theorems on convergence rates in two contexts: density estimation and regression.
In either case, we consider the Bayesian estimation of some fungt{ardensity
function or a regression function) based on a samie, ..., Z,) and are
interested in the convergence rates for the posterior distributions. for

Below is the specific problem setup. Suppose that whisrgiven,(Z4, ..., Z,)
is a random sample from a distribution with dengitywith respect to a measuye
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on a sample spacé$, 8), f, is the true value forf, and f, belongs to
some function spacé& . Suppose thafr is a prior onF and B;(s,) = {f €
F:d(f, f,) <s,}is ans, neighborhood off, with respect to the metri¢, where
d is the Hellinger distance in the density estimation case and i tldistance in
the regression case.

We would like to show that the posterior probability

Si g5y Tiza P (ZD) A (f)

fjt H” 1Pf(Z')d7~T(f)
converges to zero m?" probability, and the rate, is as good as if the degree of
smoothness of, were ‘known. This is known as the adaptive estimation problem.

For the purpose of adaptive estimation, we t&keo belJ;.; 5, whereJ is
a countable index set (not necessarily a set of integers) ang; ¥hare function
spaces of different degrees of smoothness. A natural way to construct priors
on ¥ is to consider sieve priors. A sieve prior is a prioof the following form:

=) ai;,
jeJ

wherea; > 0, }°;c;a; = 1, and eactx; is a prior defined or but supported
on F;. To make it easier to specify th&;'s, we assume that eacl is
finite-dimensional and can be represented as; :0 € ©,} for some parameter

space® ;. We also assume that eagh is induced by a priorr; defined on®;.
Then the posterior probability in (1) can be writtenlas V,,, where

N (Z,
U, = Za// I M dr ;(0)
]

Bd,j (sn)¢ i=1 Pfa (Zl)

(1) 7 (Ba(sn)1Z1, ...\ Zy) =

and
z)

P 0
v, Z /1‘[1 ey i)
WheI’EBd /(Sn) ={0 e @ d(f@ Jo Jo) < sn}.

This paper is organlzed as follows. Section 2 gives a theorem on convergence
rates in the density estimation case and some examples of applying the theorem to
obtain adaptive rates. Section 3 contains the same things as in Section 2, but in the
context of regression. Proofs are in Section 4.

2. Density estimation.

2.1. Theorem. This section gives a convergence rate theorem for Bayesian
density estimation. The setup is as described in Section 1, pyite= f andd
being the Hellinger metridy, which is defined by

du(f, g) = /f(ﬁ _ /2)%du
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To make the posterior probabili#y, / V,, — 0, we need some conditions to give
bounds forU,, andV,,.

To boundU,,, we will make an assumption about the structure of each parameter
space® ;, and then specify the; accordingly. Let| - |« denote the sup norm

Bay, i, 1) ={0 € ©; :du(fy.j. fo.;)) <1}

and N(B,$,d’) denote thes-covering number of a seB with respect to
a metricd’, which is defined as the smallest numbesdfalls (with respect ta’)
that are needed to cover the #tHere is the assumption.

AssumPTION1. For eachj € J, there exist constants; andm ; such that
A; >0.0056,m; > 1, and for any- > 0,6 < 0.0056-, 60 € ©,

Ajr\™Mi
N (B j0.7).5.d1) = (S0)
whered; (0, n) is defined ag{1og fy,; — 109 f;, il forall 6, n e ®;.
Suppose Assumption 1 holds. We specify #h&s in the following way:

@) ajzozexp(—(1+1_84y)nj),

wherea is a normalizing constant so tha}; a; = 1,y = 0.1975 is the solution to
0.13y/4/1—4y =0.0056, and

4m 46.2A;/1—4 8C;
© = o log (Y )y 2
1-4y 14 1-4y
for someC; such thaiC; > 0 andy_; e~/ < 1.
Note:

1. Assumption 1is based on Assumption 1 in Yang and Barron (1998) so that their
results can be applied here. The constantandm ; can be figured out based
on the local structure a® ;. In many casesy; can be taken as the dimension
of ®;, as stated in Lemma 2.

2. The constant€’;'s are here to make sure tht; a; < oo sincea; < ae™ .
Indeed, we may take; to be some large constanttimeslog A ;, if this choice
makes{a;} summable. Also, specific constant values are given in (2) and (3)
for calculational convenience. Different choices are possible.

To find a bound forV,,, we will use Lemma 1 of Shen and Wasserman (2001),
which says we can bound, from below if the prior puts enough probability on
a small neighborhood of the true densjty To guarantee enough prior probability
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aroundf,, we proceed as follows.

1. Find a model#;, that receives enough weight, and is close tof,, that is,
there existg, in ©;, sothatfg, ;, is close tof,.

2. Make sure the priat ;, puts enough probability on a neighborhoo@sef This
helpsz put some probability aroung}, sincea;, is not too small.

For the first step, we simply assume that it is possible.

ASSUMPTION2. There exisj, andg, € ®;, such that
N jn
(4) maX(D(fOHfﬁn’]n)’V(f0||fﬁn5]n))+7j585

for some sequencee,}, where D(fllg) = [ flog(f/g)du, V(fllg) =
[ faog(f/g))?du, n;, is as defined in (3) with ;, andm ;, in Assumption 1.

Before going to assumptions for the second step, we add one more condition
here to allow us to use neighborhoods that are different but comparable to the
neighborhoods in Lemma 1 of Shen and Wasserman (2001).

ASSUMPTION3. For thej, in Assumption 2, there exists a mettg on®;,
such that

N2

(5) /fo (log ;Z—’) dp < Kod? (n,0)
»Jn

foralln,0in®;,, and

D(fo”f@,j,,) =< K(/)/V(fonfe,jn)

forall 6 € ®;,, whereK() andK, are constants independentof
The following two assumptions are for the second step.

ASSUMPTION4. Forj,, Aj,, mj,, Bn, €, @andd;, in Assumptions 1-3, there
existsb1 > 0 such that
N(®),.en.d;,) < (A7 K",
where N(©®;,, e,,d;,) is the g,-covering number of®; with respect to the
metricd;, .

ASSUMPTIONS. Forj,, Aj,, mj,, Ba, &, andd;, in Assumptions 1-3, there
exist constant&’s andb, > 0 such that for any, € ©;,,

wi (Bg. i (01,¢ A
jn( d_/n vfﬂ( 1 n)) S (A?ZKS)mjn'
Tj, (ijn,j,, (Bn, €n)) "
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Note:

1. Assumption 4 is here to give more control of the overall siz&gfin terms
of the g,-covering number (Assumption 1 essentially deals with the local
structure). This control is to prevent the total prior probability from getting
spread out so much that eachgtdiorhood gets litd probability.

2. Assumption 5 is to make sure that the prior supportedgn puts enough
probability neais,, compared to some other neighborhood.

Finally, we assume the following.

ASSUMPTIONG6. ASn — oo,

gn— 0 and ns2— oco.

Now we have the following theorem.

THEOREM 1. Suppose that Assumptions 1-6 hold. Then with a; defined in
(2), there exist positive constants ¢, K1 and K2 that are independent of n, so that

(6) 7 (Bay (K160)€| X1, . .., X,,) < cexp(—Kone?)

except on a set of probability converging to zero.
The proof of Theorem 1 is given in Section 4.

2.2. Example: spline basis. In this section, we assume that Ifgis in the
Sobolev spacéV: [0, 1] = {g: | D*gllL[0,1] < oo}, Wheres is a positive integer
and|| - |l..0.17 is the essential sup norm with respect to the Lebesgue measure
on [0,1]. We will see that using the sieve prior given below, the posterior
distribution converges at the raie*/ 22 in Hellinger distance.

LEMMA 1. Suppose that log f, € W3[0, 1] as defined above and . is the
Lebesgue measure on [0, 1]. Let J = {(k,q,L):k,q and L are integers k > 0,
g>1 andL>1}.For j=(k,q,L)eJ,letm; =k+q,andfori e {1,...,m;},
let B;; be the normalized B-spline associated with the knots y;, ..., yi14 asin
Definition 4.19,page 124in Schumaker (1981),where

Vs« v s g Yg+1s - -+ > Yathks Yg+k+1s - - - » Y2q+k)
=(0,...,0,1/(A+k),....k/A+k),1,...,1).
N—— N————
g times q times

Define
®j = {9 e R™ ZQ/Jlmj =0, ||Dr |ng9’j||Loc[0,1] <L,Vre {0, 1, e q — 1}},
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wherel,, = (1,...,1) € R",10g fo,; = — () +0'B, y(8) = log fy ¢” B dx
is the normalizing constant, and B = (B, 1, ..., Bj,m;). Definen; asin (3) with

(7) A;=1928/9(2q + DY YL +1)et/?4+0.06 and C;=m; +L;

definea; asin (2). Let ; bethe Lebesgue measureon ® ;. Let 77; be the induced
prior of 7; and BdH (sn) denote the s,, Hellinger neighborhood of £, as defined
on page 3 of Schumaker (1981).Then for the prior 7 = 3~ ; a;7;, the posterior
probability 7 (Bg,(s,)“|X1, ..., X,) converges to zero in probability for some
sp ocn 8/ (1+2),

The proof of Lemma 1 is given in Section 4.
Note:

1. Log-spline models have been used in density estimation and give good

convergence rates; see Stone (1990), for example.

. The prior does not depend enbut it adapts to the smoothness parameter

3. Here we taker; to be the Lebesgue measure®n, but we may also take ;
to be some measure that has a dengjtwith respect to the Lebesgue measure
on®;. As long ag| logg; [« is uniformly bounded iry, the convergence rates
should be the same.

4. C;j =mj + L is just one possible choice. In general, if we chofSg} so
that)"; e~€/ < oo andC;, — oo no faster thams, logA,, wherej, is as in
Assumption 2, then it should be a good choice.

5. To figure outA; andm, the following lemma, from Lemma 1 by Yang and
Barron (1998), is useful.

N

LEMMA 2. Suppose that {S;:/ € A} is a countable collection of linear
function spaceson [0, 1]. Supposethat for each S; thereisabasis{B; 1, ..., Bim,}-
Suppose that there exist constants 71 and 7> suchthat for 6 = (61, ..., 6,,,) € R™,

mj
(8) > 6:Bi| < Timax|o;|
i=1 00 !
and
my mj
) D OiBi| = —= | > 67
i=1 2 VMIN;Z1 l

where || - ||2 denotesthe Lo norm with respect to the Lebesgue measure on [0, 1].
Let
my

(10) log fo,j = =¥ (0) + Y _6i By,

i=1
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where v (9) = log [y exp(X_", 6; B1.; (x)) dx isthe normalizing constant. Suppose
thatle S;forallle A, J={(,L):l € A, Lisapositiveinteger} andfor j € J,

®; C {0 e R™:|llog fo,jlloo < L}.
Then Assumption 1 holds with

T
(11) Aj=1928 (L + et +006 and m;=m;

2.3. Example: Haar basis. In this section, we assume that Igigis a contin-
uous function orf0, 1] with ||log f,llcoc < Mo, and we approximate log, using
the Haar basi$l|o 1j(x), ¥y, (x) 10 < j1,0 < k1 < 21 — 1}, wherey, ¢, (x) =
211/24* (271x — ky) andyr* (x) = 10,0.5(x) — L055.11(x). We also assume that the
coefficients of thelL, expansion of logf, for the Haar basis, denoted lay, i, ,
satisfy the following condition:

2j1-1

j 20 2 2
71>0 k1=0

for someHp > 0 anda € (0, 1). According to Barron, Birgé and Massart [(1999),
page 330], the above condition on the Haar basis coefficients corresponds to the
Besov spaceB%yz[O, 1]. The Besov spacBg’z[O, 1] is indeed the Sobolev space

W4[0, 1], so the optimal convergence ratenis®/ 172 in L,-distance. We will

see that using the sieve prior given below, the posterior distribution converges at
the raten—%/1+2%(logn)1/2 in Hellinger distance, which is close to the optimal
raten—*/(1+2%) within a (logn)Y/2 factor:

LEMMA 3. Suppose that log f, is in the space specified above and u is the
Lebesgue measureon [0, 1]. Let J = {(/,L): [ and L areintegers./ > 0, L > 1}.
Forj=(,LyeJ,letm; = 2/+1, Reindex the Haar basis in the following way:

(Vik 0= <10k <2t — 1 (B i 1<i <m;—1).

Then for 6 € R™~1, define logfs; = —v(0) + 6B, where ¥(9) =
|ng0169/3(x) dx isthe normalizing constant and B = (B; 1. ..., Bju,). Define

®;={0 € "I :1|6'Blloc < L}

and let r; bethe Lebesgue measureon ® ;. Definea; and n; accordingto (2) and
(3) with

(13) A;=19.28-2*D/2(21 4 1)l 4006 and C;=m; +L.

Let 7; be the Lebesgue measure on ®;. Let 7; be the induced prior of r;
and édH (s,,) denote the s, Hellinger neighborhood of f,, as defined on page 3
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in Schumaker (1981). Then for the prior 7 = }_;a;7;, the posterior proba-
bility ﬁ(EdH(s,,)“le,...,X,,) converges to zero in probability for some s, «
n—ot/(l—l—Zot)(logn)l/Z'

The proof of Lemma 3 is given in Section 4.
Note:

=

. For the choice of; andr;, see the note for Lemma 1.

2. To specifyA; andm;, Lemma 2 is no longer applicable singin (8) cannot

be taken as a constantin this case. We use the following lemma [from Lemma 2
by Yang and Barron (1998)] instead.

LEMMA 4. Suppose that {S;:/ € A} is a countable collection of linear
function spaces on [0, 1] and that for each [ there exists a constant K; > 0 such
that for all h € 5},

(14) hlloo < KillAl2-

Suppose that each S; is spanned by a bounded and linearly independent (under
L, norm) basis 1, By 1,..., B . For 6 € R™, define log fo,; = —¥(6) +
>, 6;B;, where ¥(0) = log fyexp(Y", 6; By ;(x))dx. Suppose that J =
{(,L):1 e A, Lisapositiveinteger} and for each j € J,

(15) ®;Cc{0eR™:|log fsllec <2L}.
Then Assumption 1 holds with
(16) A; =1928K;(2L + 1)e* +0.06 and m;=m; + 1.

In the spline density estimation result, the convergence rate is optimal and

we have full adaption. But the Haar basis result here is quite different. The
convergence rate involves an extra log factor, which comes fronKiha (16).
In the spline case there is g and A ; is approximately a constant whgn= j,
for largen (j, is the index for one of the best models at sample sijzdn this
caseA; is approximately proportional to the model dimensign when j = j,
because of the factadt;.

3. Regression.

3.1. Theorem. In this section, a Bayesian convergence rate theorem is given
in the context of regression. The setup is as described in Section 1 Zyith
(X;,Y:), whereY; = f(X;) + ¢;, X; andeg; are independentX; is distributed
according to some probability measyrg ande; is normally distributed with
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mean zero and known varianeé€. Thus the density ¢ (with respect toux x
Lebesgue measure @) is

C(y— 292
pr(x,y)= %e =f )/ (20%)

The metricd is the La(uy) metric. We also assume thhf, ||~ is bounded by
a known constan¥/.
To boundU,, andV,,, we modify the assumptions in Theorem 1 in the following
way. Let
BLoux).j(. 1) =10 € ©; 11 foj = fo.illLaue <7}
Assumption 1 is replaced with the following.

ASSUMPTION 7. For eachj, there exist constantd; and m; such that
0<A; <0.0056,m; > 1, and for any > 0, < 0.0056-, 6 € O},

A/'}"
N(BLyux),j(0,7),8,dj,00) < (T) ,

whered; (0, 1) = |l fo,; — fy.jllc forall6,n e ®;.

Also, suppose Assumption 7 holds: we specify the weights the following
way to give an upper bound fdr,:

1 0.005
(17) CUIO(GXD(-(].-%F‘FT%TU),

wherea is a normalizing constant so that; a; = 1 and

(18) n; = log(107254 ) + C; max(l L)

m
ClMa(l 4 ) Cl,M,6(1_4y)

for someC; such thaiC; > 0 andy_; e~/ < 1.
Assumptlon 2is replaced with the following assumption.

ASSUMPTIONS8. There existj, andg, € ©;, such that

N jin
(19) max(D(pfa”pfﬁn»jn)’ V(pqupfﬂnjn)) + };

for some sequencg,}, wheren;, is as defined in (18) witm;, andm;, in
Assumption 7.

<82

Assumption 3 is replaced with the following.

ASSUMPTIONO.
(20) | fo.in — f,”n||L2(M) Kod2 (0.m)  forallg,ne o,
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Assumptions 4—6 remain unchanged except that “Assumptions 1-3” should be
changed to “Assumptions 7-9.”
Now we have the following theorem.

THEOREM 2. Supposethat || fy, llco < M for all j and 6 € ® ;. Suppose that
Assumptions 7—9 and Assumptions 4—6 hold with the reference change made as
mentioned above. Then with a; defined in (17), there exists a positive constant K1
such that ﬁ(ELz(MX)(Kls,,)Cle, ..., X,) converges to zero in probability. Here

BLZ(MX)(Kle,,) denotes the K1¢, neighborhood of f,, with respect to the L(uux)
metric, as defined on page 1557.

The proof of Theorem 2 is given in Section 4.

3.2. An example. In this section, we considerf, € Wi [0,1] = {g:
ID*gllL..[0.1] < oo} and approximatef, using a spline basis. The minimax rate
for this space inL, metric, according to Stone (1982),5°%/1+2)_ We will see
that, using the sieve prior given below, the posterior distribution converges at the
optimal raten—*/(+2) in L, distance.

LEMMA 5. Supposethat f, € W5 [0, 1], || folloo < M, Where M is a known
constant. Suppose that (. x isthe Lebesgue measureon [0, 1]. Let J = {(k,q, L) :
k,q and L areintegers, k > 0,g > 1, L > 1}. For j = (k,q,L) e J, let m; =
k+q,andfori e {1,...,m;}, let B;; bethe normalized B-spline associated with
theknots y;, ..., yit+q, Where

=(©0,...,0,1/(A+k),....k/1+k),1,...,1).
——— —
q times q times

Define
O;={0 e R™:|ID" fo,jllLeio,n <L, Vre{0,1,...,g—1}and | fy,jllcc <M},
wherefor 8 = (64, ..., Om;) € R™J,

(21) =Y 08, E 0B
i=1

Define ; according to (18) with

(22) Aj=964/9(2q +1)91+006 and Cj=m;+L,

and define a; according to (17). Let r; to be the Lebesgue measure on © ;. Let
7; bethe induced prior of 7; and ELZ(,L) (s,) denote the s, L2(u) neighborhood
of f,, as defined on page 1557.Then for the prior 7 =", a;7;, the posterior

probability n(BLz(M)(s,,) |X1,...,X,) convergesto zero in probability for some
Sn ocn S/ A+
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The proof for Lemma 5 is given in Section 4.
Here is a lemma that is useful for verifying Assumption 7 to prove Lemma 5.

LEMMA 6. Supposethat {S;:j € J} isa countable collection of linear func-
tion spaces on [0, 1]. Suppose that for each S; thereisabasis{B; 1, ..., Bjm;}-
Supposethat there exist constants 73 and 7 suchthat for 6 = (61, ..., 0;) € R™/,

mj
(23) > 6iBj;| < Timax|6;|
i=1 00 !
and
mj
(24) Z 0;Bj,i Z 02,

where || - |2 denotes the L, norm with respect to the Lebesgue measure on [0, 1].
Suppose that for j € J, ®; C R™/ and fy ; is as defined in (21). Then
Assumption 7 holds with

T
(25) A; =9.64-1 +0.06.

The proof is a straightforward modification of the proof for Lemma 1 of Yang
and Barron (1998).

4. Proofs.

4.1. Proof of Theorem 1. We prove Theorem 1 by giving bounds for
U, andV,, respectively, and then combining the bounds to show thatV,
converges to zero. For finding an upper bound &g, we would like to use
the following lemma, which is a modified version of Lemma 0 by Yang and
Barron (1998).

LEMMA 7. Suppose that Assumption 1 holds and
£ 4 (46.2A‘,-m )
y .

2L > lo
m; _1—4)/

Then

1 (X
Pj[for somef € ®;, = > log f;’(; )) >
izt ol Ai

1-4
515.1exp( Vg,)

where P isthe outer measurefor P .

_VdH(va f9 /) + EJ:|
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PROOF Suppose that Assumption 1 holds. We will show that for any0
ands < 0.056-,

3A;r\"™
(26) N(Bag 0.5, d100) = (Z55)
where By, j(r) is as defined on page 1557. Then the result in Lemma 7 follows

from Lemma 0 in Yang and Barron (1998).
Below is the proof of (26). Fix > 0. Letd, € ©; be such that

du(fo, fo..j) <er+ 9ien@];_,- du(fo fo,})-

Then ford € ©;,

Er

1
du(fo, fo.j) = E(dH(fm fo..j) +du(fo, fo.))) — >

Er

E?

=

NI =

dn(fo.j» fo..j) =
so we have
By, j(r) ={0 € ©; :du(fo, fo,j) <}
c{6€®;:du(fo.j, fo. ;) < 2+e)r}
= By, (0, 2+ &)r),

where By, j(6x, (2 + ¢)r) is as defined on page 1558. Take= 1; then by
Assumption 1, for any > 0 andé < 0.056-, (26) holds, so by Lemma 0 in Yang
and Barron (1998) the proof for Lemma 7 is completel

Suppose Assumption 1 holds. Let andn; be as specified in (2) and (3) take
£j =n; + yns?/2. Then by Lemma 7 and we have

U, < (Z ajeg-f)e_y”slf

J

— qe Vi > exp(— = _84y nj) < e~ V2
J

except on a set of probability no greater than

1-4
Z15.1exp<— ng)
. 8
J
(1—4y)yns? 1-4y
st By 1)
j

<1—4y>yns3)
<151exg —————=).
- F( 16
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That s, an upper bound f@r, is given by

, 1—4 2
27) P}lo[Un > ae—}/nsf/z] <15.1ex _w)

16

To find a lower bound foWV,,, we will use Lemma 1 of Shen and Wasserman
(2001). Let

Bp(r)={g:D(flle) <. V'(folle) <r},
whereV'(fllg) = [ flog(f/g) — D(flg))?>du. Here is the lemma.

LEMMA 8. Fort¢, >0,

1., - _ 2
P}lg (Vn < E?T(BD(ln))e 2ntn> < E

Suppose that Assumptions 2-5 hold. L&, ;,(9,e,) denote thed;, -ball
centered a# with radiuss, in ®;, and define

Bp,j,(ta) ={0 € ©;, : D(foll fo.j,) <tw, V(foll fo,),) < tn}-

We will first show that
(28) ijn,jn (ﬂnv &n) C BD,jn (tn)

for somer, oc £2 and that

1 m jn
S
]( JnsJ n n) Al;:+b2K4K5

Then we will deduce a lower bound fé B (,,)) based on (28) and (29) to apply
Lemma 8.

To prove (28), note that fo# € By,  ;,(Bu, €n), Dy Assumptions 2 and 3 we
have '

V(foll fo.in) < 265 + 2K ey
and
D(foll fo.j,) < KgV (foll fo.j,) < 2Kg (L + K)er-
Therefore, (28) holds fay, = 2max1, K§)(1+ K{)e2 dzefK/sﬁ.
To prove (29), note that by Assumption 4 there e#ist . ., 64« € ®;, such that

d*
d* < (A%Kq)"" and | By, ;,(6i.60) D O,
i=1
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SO

H.n(BdAn’ n(ﬂ ,En))
njn (ijn»jn (ﬁl% en)) Z d*] n: - .
2 i=17j, (B, .j, (Ui €n))

M jn
2 b bl 9
A jj+ 2K4Ks

where the last inequality follows from Assumption 5.
Itis clear that

7(Bp(t2) = aj,7),(Bp.j,(tn))

(28
> aj,Ba;, j,(Bn, &n)

= d in\ ~ h2ho )
"\AP Kk

so by Lemma 8, we have that except on a set of probability no greater tivam)2

1
Vi = Ee_zm”ajnﬂjn(BD,jn(fn))

e—an‘n exp( <1 N 1— 4)/) ) ( 1 )m.fn
% - — I, | —————
2 8 s Al;.:+b2K4K5

1-4
(30) > % exp(—Znt,, —nj, <1+ 8 4 + b1+ b+ (Iog(K4K5))+>)

v

@) 1-4

> % eXp(—Zntn - ne,f(l + 3 v +b1+bo+ (|09(K4K5))+))

— %E—Kne,%’
whereK = 2K’ + 1+ (1 — 4y)/8+ by + by + (Iog(K4Ks)) .. Here the third
inequality follows from the fact that
nj 4 Iog<46'2Ajm) A 20.0056:>0.13y/«/—1—4y

>
mj — 1—4y y

max(1,logA))

forall j.
Now we will bound U, /V,, by combining (27) and (30). In (27) sej,Z =
4Ke?/y. Then

N , U,
7 (Bay ()€ 1X1, ..., X)) = 7" < 2exp—Kne?)

n

except on a set of probability no greater than

(1- 4y)1(n85> 2
151exg — )
F( 4 * K'ne?
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which converges to zero becau&% — o0 by Assumption 6.

4.2. Proof of Lemma 1. We will verify Assumptions 1-6 for the spline
example. To verify Assumption 1, we will apply Lemma 2. From page 143 (4.80)
in Schumaker (1981)

m;

Y 0iBji
i=1

Sincem; and B;; depend on(k, g) but not onL, we setl = (k,q), m; =m;
and B;; = B;;. Then (8) holds with7; = 1. To check (9), note that from
(4.79) and (4.86) in Schumaker (1981), we have that for eactl, .. ., m;},

16i < 2q + 1) iy — i)"Y |6 By

< maxl6; .
00 l

” Lolyi,yi+ql’

whereys, ..., y2,+« are as defined in Lemma 1 aid|[y;, y; 4] is the L, metric
with respect to the Lebesgue measurégny;,]. Sincey; 1, — yi > 1/(1+k),

mj mj
Y 07 < (29 + DDk + 1) 116:BLillZ
i=1 i=1

ayi+q]

my 2

> 6By
i=1
which implies that (9) holds with; = 1/(,/g(2q9 + 1971, By Lemma 2,
Assumption 1 holds for; andm; in (7). Also note that for theC; specified
in(7),y;e % =e?/(1—e 13 < 1as required.

To verify Assumption 2, we need to fing, and g,,. Take j, = (k,, g*, L*),
where{k,} is a sequence of positive integers such that

’

2

< (29 + D292V (k + q)q

C3n1/(1+25) <k, < cqnt/ 12 for all n
for some constants andcy, ¢* =s + 1, and
L* =min{L: L is a positive integet]. > 2° 4 «,= Mo + Mo},

where Mg = maxy<,<s [|1D" 109 f, ... To control the error madD (£, f5,,j.)-
V(foll f8,.j.)), We use the following fact.

FacT 1. Forj suchthayy > s + 1, there exist® € R™/ such that

S—r
107 (10g £, — 10g f5. ) loo < aq(m) Mo forO<r<s—1,

(31)
ID* log fg,jllec < ctgMo.



BAYESIAN ADAPTIVE ESTIMATION 1571

This fact follows from (6.50) in Schumaker (1981) and the result that for
0 = (915 LR} 9n1j) € Rm/!

V()] =

1 mj
|09/0 exp(— log fo(x) + ZQi Bj,i(x)) fo(x)dx
i=1

m;

log f, — > 6;Bj.i
i=1 o0

From the fact, there exisf, € R™i» such that

1 N
” |Og f(J - Iogfﬁnsjn ||OO = aq*M()(kn + 1) :

SinceD(foll f,.;,) andV (£, f3,,;,) are bounded by log f, —log f3,, j, lloc, WE
have

Mjn

maX(D(f(J”f,anjn)’ V(f(J”f,an/n)) +

1 2 Czkn 2
<a M < cqn =%/ A429)
- O<kn + 1) * no- !

for some constants; andc,. So Assumption (2) holds i, € ®;, and

(32) S,Zl = cln_zs/(l+zs).
To verify that g, € ®;, we need to make sure81,, = 0 and
maXp<,<¢—111D"10g fp,,,llL., < L*. For the first conditiong, 1,,, =0, we can

assume it without loss of generality, becauseflgg;, does not change whefy is
shifted by a constant. The second condition holds because of the second equation
in (31).

Now let us verify Assumptions 3-5 wilth;, = d;, -, Whered;, . is as defined
in Assumption 1. For the verification of Assumption 3, we will use the following
fact.

FACT 2. Suppose that

(33) /f0<log ;’7 f") < Kod5(n.0)  foralln.0e®;,
0,jn
for some constankg and
(34) Sup |log fo — 109 f5., ] <l0gK3
0e® Jn

for some constank’s. Then Assumption 3 holds witkj = Ko andKj = K3/2.
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The proof of the fact is a straightforward application of an equation in Lemma 1
by Barron and Sheu (1991), which gives

(35) D(foll fo.j,) < ge! 00T 700 Finlow (] 5,)

for all & € R™Jn. It is clear that (33) holds witlKg = 1 and that (34) holds with
K3 =¢%L", so by Fact 2, Assumption 3 holds.

For Assumption 4, by Theorems IV and XIV of Kolmogorov and Tikhomirov
(1961), there exists an,-net F, for ©;, with respecttai;, so that

1\ Y (@*-1)
log card Fy,) < cg+, 1+ <—>
&

n

1 1/s
= Cq*,L* (8—) <cgrpe(kn +1) <cgr pomj,.

n

Therefore, Assumption 4 holds witkiy = ¢“¢*.L* andb1 = 0.
We will check Assumption 5. For a positive integerforr = (¢4, ..., t,) € R™,
define

[tlloo = mMax [z].
1<i<m

To boundr j, (Ba,, . ju(Bn, €n)), We will show that

N
(36) {9 € R0 161, = 0,10~ ol =co ) } C Bay iy s ),

knp+1

wherecg = min(1, \/c1/2(sup, n*/ 2 (k, + 1)=*)). To prove (36), suppose that
6 € R™in and

N
O, =0 and 10— Bl = co( 7 )

We will show that

(37) djn @, Bn) < ey
and
(38) 0 e ®jn'

Inequality (37) holds since
1109 fo.j, =109 f5,.jul oo < 2116 = Balloo < 2c6csn ™) <,

wherecs = sup, (k, + 1) *n*/1+29_ Here the second inequality holds because

W (60) — ¥ (B)] = ‘ log [ &0 BBV < 0 — By .
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To prove (38), we need the following inequality:
(39) ID"('B—p'B)llL, <2 (k+1) 16 —Bllc forallO<r<s,
which is deduced from (4.54) in Schumaker (1981). Now note that for0< s,

D710 fo il = ID°0'Bls
< DB = BB+ D (BB — 109 f)lloo
107109 £ loo
(39,3 . . s—r
0 2 ey + 1716 = Balloc +aq*Mo( ) + Mo
kp,+1

1 S—r
< 2 « M Mo< L*
< <kn+1) (2" +ag«Mo) + Mo < L",

forr =0,
|09 fo.j, | oo < 110G fo.j, =100 f5,.j | oo + 1109 £5,. ) =108 fol o, + 1109 follco
<210 — Bullos + [ 109 f3,.), — 109 fo] o + Mo

S
< 2 « M M, <L*,
-(k,,+1)( t oy Mo) + Mo <

and forr =,
|D*log fo,j, ], = ID*6"BlIL,,
<ID*®'B—B,B)lL. + ID*B,BlL.

(39,3 _ .
< 2 +4apMog=<L".

Thereforep € O, 4+ 1+, S0 (38) and (36) hold. To bound;, (B4, j, (01, €,)) in
Assumption 5, note that for adl > 0 and for all;,

(40) {0 €®;:|logfo;—10Q for.jl. <} C10 €®; 110 —b1lloc < 2B},

where ﬂ;‘* is some positive constant. This result follows from Lemma 4.3 of
Ghosal, Ghosh and van der Vaart (2000), which implies that far,&f € R,

10 — O1lloo < ||109 fi6—-61), ), ||, tiMeS SOMe constant dependinggn
and from the fact that

|log fo—61).j, — (109 for.j, =100 fo.5,) || oo
=¥ (@ —61) — (Y (0) — ¥ (6D)]

_ ‘Iog / exp(6'B — y(8) — (6B — Y (61)))

< |log for,ju — 109 f5,j, | o -
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Then by (40) and by (36) we have

7y By, o Bns ) _ (co(L/(kn + 1))5)knta* -1
7, (Bay, ju 01, €0) ~  (Begn)fntd 1

6 kn+q*—1
= ( e
ﬂ;*en(l + (04\/0_1/‘571) /S)S
Forn suchthatO< ¢, <1,

7 ju (Bdj, ju Br- €n)) ( 6 )kn+q*_l
7, (Bdj, s 0L €0)) ~ \Bpuen(/en)V* + (cav/ecr/en) )

6 kn+q*—1
- (ﬂ;‘*(l+ (c4¢c—1>1/S)s) |

Without loss of generality, we can assume ti@t > 1, so it is clear that
Assumption 5 holds wittK's = 8. (1 + (ca./c1)Y*)* /ce andby = 0.

For Assumption 6, it shouldqbe clear that it holds with thespecified in (32).
Now by Theorem 1, the resultin Lemma 1 holds.

4.3. Proof of Lemma 3.  We will verify Assumptions 1-6 for the Haar basis
example. To verify Assumption 1, we will apply Lemma 4. First, by (3.7) in
Barron, Birgé and Massart (1999), (14) holds &y = 2(+D/2. Second, for
all j andd € @}, |$(0)| = |log [ e’ ?| < |16’ B, SO (15) holds. Therefore, by
Lemma 4, Assumption 1 holds fer; andm ; in (13). Note that for th€ ; specified
in (13),)°; ¢~/ < 1 as required.

To verify Assumption 2, we will first choosg, andg,,, and then show that

1 o
|log £, —10g fg,. [l » < Cl»a,meo(m—) :

(41) Jn

[1og fo — 109 f8,.)u 0o < 2¢2.5,
for some constants, 4, 7, n, andcz, s, and thatg, € ®;,. Then we will takes,
according to an upper bound for the left-hand side of (31) so that Assumption 2
holds. We will see that, converges to zero at the ratogn)/2n—%/1+2%) a5

required.
Jn» andpg,, are defined as follows. Lgt,} be a sequence of integers such that

kanl/ (14200 < ohitl < g 1/(A4+20)

whereks andk4 are positive constants. Let

Min L def

Bo+ Y. Bu.iBi.i = Bo+ BB

i=1
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be the L, projection of logf, to the space spanned by 1 aBg ;:i =1,...,
mj, — 1. LetMo = ||log follc @andcz, , = sup, [[log f, — Bo — B, Bllco- (c2,f, is
finite sincefo + B;, B converges to log, uniformly.) Define

L* =min{L: L is a positive integer anfl > 2c» s, + 3Mo}.

Setj, = (I, L*).
To prove (41), we will bound log, — Bo — B,,B andfo + ¥ (B,), respectively.
By (12) we have

Illog fo — Bo — B, Bll2 <

Hoz—a(ln-i-l) - Ho ( 1 >0t
V1i-272 T J1-2%

To boundBo + ¥ (Ba), let A = [(eforFuB=109/o — 1) £, andb = ||log f, — o —
B, Bllso- Then

Bo+ ¥ (Bu)l = ’ g [ efot#ia-9; fo‘

= |log(1+ A)]

—A
<max( A, )
1+A

< |Ale?T™Mo(sincee ™Mo < 1 4 A < PTMo)y

mj,

1 / !
< eb+2M0<1+ Eebll log f, — Bo — ﬂnBHz) llog fo — Bo — B, Bll2,

where the last inequality follows froniné Cauchy—Schwarz @guality and (3.3)
in Barron and Sheu (1991), which says that

z2 22
Ee_ max—z.0) < 2 _1_ ;< Eemw(z,O) for all z.

Therefore, the first inequality in (41) holds. The second inequality in (41) also
holds since

Illog fo — Bo — B, Blloe < 1109 fo — Bo— By Blloo + |80+ ¥ (Bn)]
=co 7 + ’ log / PP B—109 fo fol <2¢24,.

Now we have proved (41), which implies theibg f5, ., llcc < L*, SOB, € ©},.
The L, bound in (41) gives a bound for the error maX f,ll f5,,.)
V(foll fg,.jn)) SinCE

2
42) V(fol fp,.5n) =ff0(log f;—ol) < ell°9%el< | log £, — log f3,., |5
and by (35) and (41),

(43) D(f()”fﬁn’]n) S %ezcz’fgv(f()”fﬁn’jn)'
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By (41)—(43) and the definition of;,, we can find two constantg andk, which
depend only oy, f, and Hp such that

20
ni, 1 m, logm
MAD(oll i) V (Foll i)+ 2 < () kg0,
n m;i, n
Sincel,, is chosen such thagn/ 1729 < m; < kan'/ 42 we have

maX(D(foll fp,.n) V (foll for.ju)) + n,f"

k1 kaka '\ _oujt2
kokalogk o/ (+20) |
<k§“+ 2ka 94+1 2>n gn

d:efksn—za/(1+2a) logn.

Hence, Assumption 2 holds wilf = ksn~2%/1+29 jogp.
To verify Assumption 3, for all positive integersand for alls = (¢4, ..., t,) €

R™ define
m
NI
i=1

Letd;, =1 - on R™in=1 We will verify Assumption 3 using Fact 2. For
n,0 €®;,,since

V() — ¥ (6) = log f OBy

< log f (14 — )/ Be®~V'B)f,

< Iog<1+ \//((9 - n)/B)z\/f 62(9_")/Bfn2,jn>

<log(1+ 16 — nlle*)
<e*o =,

110G f. 7, =109 fa.j, |5 = (W) — ¥(©))* + I — 612
and

/fo<|°9 j:n Jn) < el9fol<|log £, ;, —log fo.;, 3

Jn

M, 2
=¢"°[ log fy., — 109 fo., 5

(33) holds withKq = eMo(1 + ¢8") and clearly, (34) holds wittk3 = eMo*2L",
Therefore, by Fact 2, Assumption 3 holds.
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For checking Assumption 4, note that
©®j, C10.€ R™n 1|0 )0 < L*),

which implies that for every > 0, there exists an-net F;; for ®;, with respect to
Il - lloo SO that

2Lx\Mjn—1
cardF;,) < <1+ ) .
&

By the fact thatj|6|| < v/m, — 1]|f|l~ for all 6 € ®;,, there exists an,-net F,
for ®;, with respect ta/;, such that

2L* S 1 mj,—1
card Fy,) < <1+ ¢) :
&n

Since

14+ L*Vm, — 1) /ey _a+ 2L*/ka/ ks)n1-5/A+2)
A - k%.506n1.50¢/(l+2a) ’
Jn

Assumption 4 holds witlK s = (1 + 2L*\/ka/ ks)/(k3>%) andby = 3.
For Assumption 5, to boundl;, (Ba, . ju(Bns €n)), WE will show that

@a)  |oe R0 - fy o < C Bu, 1 (Buren)

&n
mj, N mj, — 1}
for n such thate, < M. For 8 € R™»~1 such that||0 — Bulleo < &n/

(mj,~mj, —1),
£
160 — Bull <vVmj, — 1|0 — Brlloo < —n <eén,

Jn
so it suffices to show th@te © ;,. Forn such that, < Mo,

16" Blloo < 10'B — B, Blloc + 1Bo+ B, B — 109 folloo + |Bol + 1109 £ lloo
<m;j, 10 — Bull + 2c2, 1, Mo + 2Mo
< én + 2c2, f,Mo+ 2Mo
<2cp f,Mo+3Mo < L",

sof € ©;, and (44) holds. To boung, (Ba,,.j, (01, &n)) in Assumption 5, note
that for alle > 0 and for allj,

(45) {000 -0l <} C{0€0;:]0 —O1llc <¢}.
By (44) and (45) we have

7j,(Ba,,,j, (01, €n)) ( &n )mjn_l .
P Jno. S S m .n m ,n _ 1 n .
5, By gy Brv 1))~ e/ (g, — D) Oy = 1)
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Since
(mjnvmjn—l)m’" << my? )mf" 1
e/ < =1,
A3, (V)

Assumption 5 holds witlh, = 3 andKs =1
It is clear that Assumption 6 holds with the abayg which tends to zero at the
rate (logn)/2n—/(+2%) By Theorem 1, the result in Lemma 3 holds.

4.4. Proof of Theorem 2. We prove Theorem 2 by giving bounds for
U, andV,, and then combining the bounds to show tbiaf V,, converges to zero.

To bound U,, we will use Lemma 9, which is the regression version of
Lemma 7.

LEMMA 9. Suppose that Assumption 7 holds and y € (0, 0.25) is defined so
that

0.13 y
C2,co,MA/CLM,0c N 1- 4V .

Then for all j and for all &; such that

5. % jog107254)),
m; ~ ciumo(1—4y)

0.0056=

n

l
P}ku|: Z (Vi — fo (X)) " =3 (Y~ fa (XD)?

i=1
/5
n

for some® € ®; and = Z|£l|<co, Ze <c0i|
l =1 i=1

1— 4y
<151 exp(— ‘1.0 - ’/)5’),

£ 1¢
Y fo = folZ 0 + 2L +0.0224{;Zei

where
1—exp—M?/(206%) 1
2M?2 " 202

CLMo= min( ) and ¢ M = 2(co+ 2M).

The proof of Lemma 9 is long and is deferred to Section 4.4.1.
Now suppose that Assumption 7 holds. Take= 20 and definey as in
Lemma 9. LetC; > 0 be such thaty_;¢~¢ < 1 and definen; anda; as
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(18) and (17), respectively. We will apply Lemma 9 to prove (46), which gives
an upper bound fov/,,,

0.005672 ns?
(46) Pfa[Unfanp( . . — 202")}2 —(p1+ p2+ p3),
where
Zy = f Zsl ~N(0,1),
=P }Xn:le-|>c0 p2=P }ie-2>c2
iz l ’ ni ! °
and
cimo(l— 4y>yns3)
=151lexg —— .
ps 32(0.5 + 0.00567)
To prove (46), take
%_. _ ' + )/I’l53
7= T 405+ 0.00567)
SinceU, is
exp(l/(202) Y11 (Y; — fo(X))P)
> aj T 5-dm;(6),
(BLy(uy).0; (sn)* exp(l/(20) > /_1 (Yi — fo,;(Xi))9)

Lemma 9 gives

1 2 1 &
Uy, <) a;expl = |—yns +"§~+0.0224}— &
n X]: J (20.2( n J \/I_Z;

)

yns & 0.0112
_Zajex +ij+ 21 Ej)

; 0.0056
< Z“J ex yns + % + (22 + 5/))

0.005672 0.5+ 0.00567
=exs( ””)Z p<+ 1)

o

0.005622
— aexp( > no_ );V;SS) Ze_n/

J

ox p(o.oosazg B yns,f)
o 452
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except on a set of probability no greater than
12 12 1-—4y)§;
PLZmbahpkzgwﬂume%ﬁﬂﬂsym)
n n X
i=1 i=1 J

Note that

; exp(— C1LM,0 (18— 4y)é; )

o LMo (= 4)/))/%3) Zexp(— c1mo(l— 4)/)77‘;)
32(0.5+ 0.00567) ) & 8

J

_ 2

Sa(_qMA14WW%>
32(0.5+ 0.00560)

so now we have the following bound féf,:

0.0056Z2  yns?
Py, U,,gaexp( - 402) = 1—(p1+p2+p3).

o

The process of deriving a bound fg}, is the same as in Section 4.1 except for
the following changes:

1. Replacef, by py,, fo.;, by py, ;, @and Assumptions 2 and 3 by Assumptions
8and 9. '

2. The proof of (28) is modified as follows. First, note that in our regression
setting, for alld € ®; and for all j,

I fo — fo.il2
(47) D(Pfa”Pfg,j) = 20_2 20440

and

1o = fo.i12 000
02

1 M2 2

< ;_'_F ||fo_f9’j”L2(Mx)‘

By (47), (48) and (20), foé € By;, . ;, (Bu, €n), We have

1
V(Pfa”Pfa,j): +m/(fo_f0,j)4

(48)

”fﬂ,]n - f97jn ”%,z(ﬂx)
D(pfo ||pf9/n) = D(pfo ”pfﬂn»jn) + 20-2

/o2
< 82+ KOSn
—=©n

202

and

2M?
V(pslips,,) < (2 + 7)’3(% 1P fi.5)-
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Therefore, (28) holds for

2M? K,
(2+ )<1+ 5 02) 206l grg2,

3. The process of deriving a lower bound %9y in (30) is modified as follows:

1
Vn z 26 2m‘na/n]-[/n(BD Jn(tn))

ae i p( (1+ 1 +0.0056> )( 1 )/
—_— _ S n~n e
2 AV TN

o ) 1 0.0056
E exp(—Zntn —Nj, <1+ P +

%

>
- o
(49) + Cl(bl + by + (Iog(K4K5))+)))
(19 « 1 0.0056
> = exp( 2nt —ne < +—
2062 o

+c1(br1+ b2+ (Iog(K4K5))+)>)

> %e—Kne,f’
wherec1 = c1, .+ and
1 0.0056
K=2K'+1+-— 552 + — + c1(b1+ b2 + (I0g(K4Ks)) ).

Here we have used the fact that

0177]'2 4 Iog<10725Aj«/1—4y)
m; 1-4y y

>max(1,logA))

for all ;.
Now we will boundU,/ V,, by combining (46) and (50). In (46), set

2 2
S2 _ 8o Ké‘n .
! y
Then
~ ~ . U
7 (BLy(uy) (5n)1 X1, ... Xp) = —F
Va

2
<2 ex%%) exp(—Kne?)
o
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except on a set of probability no greater than

cimo(l— 4)/)802Kn82) 2
151exg ——= L ,
prtpzt p( 32(0.5 + 0.00567) K'ne?
where
Z ! Z N(O, 1)
= ei ~N(@O,1),
1 n
P1=P|:_Z|5i| >co}
n:
i=1
and

1 n
p2=P|:;Z£i2>cg:|.
i=1

Note thatco = 20 > max(E|s;|, E¢?), S0 p1 + p2 — 0 asn — oo. Since
200056Z/0 converges in distribution and—X"¢: converges to zero by As-
sumption 6, we have thate®00562/9 ,—Knel converges to zero in probability.
Therefore 7 (B, (sn)€1X1, ..., X,) converges to zero in probability as stated
in Theorem 2.

4.4.1. An exponentional inequality. We claim that to prove Lemma 9, it
suffices to prove Lemma 10, which has a slightly different assumption.

ASSUMPTION10. Forsomg e J,foré e ©;, || fo,jlloc < M, and there exist
constantsA > 0,m > 1 and O< p < A such that for any > 0,68 < pr, 6 € ©;,
the §-covering number

Ar\"
N(BLZ(P-X),@j(r),(S,dj,OO) < (T) ,

where BLZ(MX)’@],(}’) ={0 €0O;:fo — fo,illL,uy) < r} and forn, 6 € ©;,
djoc(n,0) =1l fy,j — Jo.jlloo-

LEMMA 10. Supposethat Assumption 10 holdswith
- 0.13 y
P> .
C2,c0,MA/C1,M,0c N 1-4y

Then for & such that
s
m

>

15-4'C2,c0,M\/ C1LMoA

’

4 |og< M)
Cl,M,a(1_4y) 14
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n

1
Z (Y; — fo(X)? S - fo i (X0)?

i=1

SIH

g

§
=yl fo— f9/”Lz(ux)+ +4|- Zf?z

i=1

1Z 1
2_ 2
for somed € © and;Zleilfco,;Ze,- <c§
i=1 i=1

- 151ex p(_ cl,M,ag3 - 4y>s)’

where

2y

15-402,00,M\/ Cl,M,a(l - 4V)

1—exp—M?/(20%) 1
2M?2 " 252

S =

CLMo= min( ) and ¢y m = 2(co+ 2M).

To see that the claim is true, note that in the proof for (2g8);an be replaced by
Lo(ux). Therefore, if Assumption 7 holds, then for @l€ J, Assumption 10 holds
with A = 3A; and p = 0.0056. Suppose that Lemma 10 is true. Then Lemma 9
follows by settingo = 0.0056 and choosing such that

B 0.13 y
B C2,c0,MA/CLM,0c N/ 1- 4)/ )

PROOF OFLEMMA 10. We follow the proof of Lemma 0 in Yang and Barron
(1998). First, divide the spa&@; into rings

Q;i={0€0;:ri—1 <Ifo— fo,jllLouyx) <7i}, i=0,1,...,

wherer; = 2i/2~/§/n for i > 0 andr_1 = 0. For each ring®; ;, we will use
a chaining argument to bound

1¢ 1g
g &' p* [n > (¥ = foXi))® = = 37 (Y = fo.j (X))

=1 i'=1

=Yl fo— f9]||L2(,J_X)+ +4‘ Zel

n

2 _ 2

for somed € ®; ; and= Z le;r| < co, = Zei, Scoi|.
/ 1 l'/:
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Then we will put all the bounds fog; together to complete the proof. So let
us focus on one; ; first. Let {§;}2, be a sequence decreasing to zero with
8o < min(pro, 8) and defing, = o fork >1 andsg = 8o/2. Then by assumption
we can find a sequence of nelg, Fi, ..., where eachF is a §; net in ;i
satisfying the cardinal number constralnt in Assumption 10. In other words, for
eachk, there exists a mapping : ©;; — F; such thatl| fz, @) ; — fo.jlloo <
forall6 € ©;;, and

- Arc\™
card Fy) < (#) )
Ok

Instead of applying the chaining argument using the #gtsve will modify the
net Fy first and then apply the chaining argument using the AgtshereF, = Fy
for k > 1 andFp is the modifiedFy. Now modify the netF; in the following way:
Consider a positive number For eactfg in Fo, find 6 in

751 (00) = (0 € ©}; : To(6) = bo)
such that

| fo = fooillZpy) < inf 1 fo = fo il 00 + €
ety (o)
Definet (fp) = 6o, and Fo = {t(0p) : 0 € Fp}. Definetg = t(7p) andtx = 7 for
k > 1. Then by the triangle inequality,f-,@),; — fo,llc <80, SOFpis a &g net
and for eachk, F; is ad; net. Now we can start the chaining argument. For each
0 e @j,,‘, define

1 18

lo==3"(Y = fo(X0))* = = 3(¥i = fro(0.;(X0))?
iz1 iz
and
12 1 5
le = » =Y (Y= fya0). (X )) . = (Yi = fr@).; (X))
i=1 i=1

fork > 1. Then

111 o0
—Z — foXD)* = 23 (Vi = foj (X)) = lo+ 3 i

i=1 k=1

Now, instead of giving bounds féf — El; as in Yang and Barron (1998), we will
give bounds fol;, — E.l;, where

2 n
Eeli =~ D e /(frk(ew — fua0).5) dix
i=1

2 2
+ 1 fo = faca@ | Loy = 1 fo = Fr@. | o0
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is the conditional expectation §f giveneq, ..., g, for k > 1. Note that
0 1 n
> Eelx= 2(‘ Z&‘t) /(fe,j — Jro), i) x
n -
k=1 i=1
2 2
+ [ fo = Fro0 ) | Loy = 1o = fo il Lo

1 n
2’; ;81'

IA

/(fe,j — fro@).j) X + ¢

5+¢,

5

i=1

80+£<4‘ Zel
i=1

S
gi < P*(BoNB)

< P*({lo > —2yrf+ % — ¢ for somes € @/J} N B)

o0
+ Y P*({lk — Ecly = i for somed € ©,,} N B)
k=1

def (1) )
+ Z q;7
k=1

if 3022, nk < yr?, where

0

3

BOZ{IO+Z(lk—Eelk)Z—3_V”fo fe,lle(MX)-i- forsomed € ©; ;
k=1

and
1 18
- mizaly el
i=1 i=1
To boundqi(l), we will use the following inequality of Chernoff (1952):

FACT 3. Suppose thak; are i.i.d. from a distribution with density, with
respect to measuge andg is a density with respect to the same measure. Then

[ ZI ggl( D)o }gex Z(dH(gl,g2)+f))

o &(Xi) T

Since

ZLZXH:I pffo(g)j( i)
prXi)

i=1
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Fact 3 implies that for ag(6),
n
(50) Pllo>1] < exp(— > (dG(P gy, P1) +1/(20 2))) :

To replace the Hellinger distan@@(py, , ;- p1,) With the L2 distance] fz,), j —
follLoux) In (50), note that

) . 2
GP sy 1) =2 [ (1_e><p(_<fm<e>,,<;; ~ /) )) o)

- 1—exp(—
- 2M

(51)

2 2 2
3 ACm) /(fro(e),j(x) — fo)?dp(x)

def 2
= como|| fro@).j — fo (-

Here the equality follows from direct calculation and the inequality follows
from the fact that(l — ¢ *)/x is decreasing withx on (0,c0) and that
Il f0),)loos Il follos < M. Now by (50) and (51), we have

n 2 2
Pllop>1] < eXp(—E(Co,M,o | fro0).5 = foll Lpuyy +1/(20 )))

C1,M,ocN 2
Sexp(— S (“ffo(@)J_f0||L2(MX)+t))’

wherecy y,o = Min(co,u,0, 1/(202)). Setr = —2yr? + 5 —&. Then for aro(9),

Plioz—2pr2+ S —e| sexp( - L (2, - 2024 S )

Therefore,

C n
ql.(l) < card Fp) exp(— 1.M,0 <

rl-z_l — 2)/}’1-2 + % — 8))

(52) ClM, o (. 5
< card Fp) exp(— > ((z + 11— 4)/); — s))

where the last inequality was verified in Yang and Barron (1998), from the end of
page 111 to the beginning of page 112.

To boundql.(i), we will use Hoeffding’s inequality.

FACT 4. Suppose thafY;}?_; are independent with mean zero and that

a; <Y; <b; foralli. Then forn > 0,

n —27)2
P Y > < =7 ).
|:z:2£ - ﬂi| = exp(Z?zl(bi - ai)2>
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For a pair(tx—1(0), % (9)),

(Y = fra@.XD)? = (Vi = fro.;(X0))°|
<2|fu_10).; Xi) = fa@).j (X))

fru_10), ) (Xi) + fr0),;(Xi)
2
< 2(8k—1+ ) (|&i| +2M) < 4(|g;i| +2M) k1.

X & + fo(Xi) —

By Hoeffding’s inequality, the conditional probability
—2n2772 )
1 64(|e;| +2M)282 4
_2,”72
ez )

Plls — Ecli = nles ..., en] < eXp(Zi

if S0 4 leil/n < coandY'_,e?/n < c3. Integrating the conditional probability
over setB, we have

P({lx — Eely > 1} N B) < ex —2n )
T Rk = MR = acco + 2m)282, )
Therefore,
—2nn?
53 @ < card F;_1) card F},) ex k )
(53) q;% <card Fy_1) card Fy) 6o+ 2M)252

Now combine (52) and (53) and let— 0. Then we have

BEAMo i 4 1y(1— 4y)§>
2 n

g: < card Fp) eXp(—

—Znn,% )

o0
+ " card Fy_1) card Fy) ex
> card Fy_1) card Fy) 64(co + 2252,

k=1
< (é;)m exp( 127 4 1A~ 45 )

O Ar \" / Ar\™ —2n 2
+Z<~ I"z) (]’1) ex nk22 )
=1 \Ok—1 Sk 64(co + 2M)=5;_,

Now choosé&g, §; so that

o g(Aro)m _ o lk+ DA 4y

Sk 4




1588 T.-M. HUANG

andn; such that
2’”71%
64(co +2M)252

2k +Deruo(L—4p)E |+ Dkerwo(1—4y)E
4 * 8 '

=imlog2+

Now the bound fog; becomes

gi < 2im/2exp(C1,M,a(]£-1_ 4)/)5) exp( 1M, 6( +1)d— 4)/)%_)

> (4 Demok(L—4y)E
+ Zexp(— 5 )

im (+Deimo(l—4y)§
< exp<? log2— 4 )
i+ Dermo (- 4y>s)
8

x (1 oy G 1)c1,Mé6(1 - 4),)&))_1.

Note that by assumption,

M 1og A _ cna =406
2 oo 8 ’

where
2y
po0 = .
15-4C2,c0,M\/ Cl,M,(r(l - 4)/)
Sincepg < p < A, we have

log 2 24 S(1—4
(54) og mlog2<—|0g— cLM (8 J/)E’

SO

g (i + Dero(1— 4y>s)

(i enf ) )
- (1+ /

) _(+Deymod— 4)/)5)
8
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and

n

1
Z (Y; — fo(X0))? Sy - fo.i(X0)?

i=1

Sk

[

£
1 fo = fo il + > +4‘ S els

i=1

for somed € ®; and =~ Z|e,|<co, Ze <c0}
i=1 i=1

A
2
<

Il
(=}

[EnN

IA

( N ff 1) ox p(_cl,M,(xi3 — 4y>s>

(1 enpf oL 4y>s>)—1

54 +(1—4
(5) 15.1exr<—c1’M’ (8 V)E).

It remains to check theb,}72 , is a decreasing sequence

o0

(55) Y ome<yrf,
k=1

and

(56) 3o < min(rop, §),

as claimed in the beginning of the proof. By (54)/61 > 1, S0 {§k};2, is
decreasing by construction. To verify (55), tet=2(co + 2M) andc1 =c1.m.0-

Then
_ ZCzA\/gexp(—Cl(l_4)/)5)\/%8'0924_ (i + er(l—4dy)E
n dm n n

54 1-4
PR oy vy exp(—cl(éliy)g)\/&’ 19,
n 11

and fork > 2,

" — e /? exp(_w)
n dm

/ im810g2 22k +1cr(1—4y)E (i + Dker(l— 4y)E
X + +

n n n
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c1k(1— 4)/)%‘)
dm

54)
(< czAE c1(1—4y) exp(—

X V22k+1) + (i + )k +2)

oS Ver T~ ) exp(—W)x/(i 15k 12

A

< czAé c1(1—4y) exp(—w)«/i +5.
n 8m

Therefore,

o0
> m
k=1

A

czAé c1(1—4y) exp(— 7“(1 _ 4)/)5)«/1' +5
n 4m
X (2\/:_3 + ! )
1—exp(—c1(1—4y)§/(8m))

oA @ o 4y) exp(—w)«/gzi
n dm

1
2V3
’ ( Ve 1-exp(—c1(1- 4)’)5/(8"1)))
p<*>f<f/>

Vi _ald- 4)/)%) 56

IA

IA

15.4c2,/cTA

= 154cp/c1A

i .

Vi _ald- 4V)S) 2

To make (55) hold, it is sufficient to require that

§

4
=~ >— log| 15.4c A
m = 11— dy) g( 2/e1

as in the assumption. Now it remains to verify (56). (56) follows from the fact that

e ca(l—4ap)e\ 6 &
60_2A\/;exp<—T) < ,00\/;—8

8 1-4 54
%0 _ 5oy p(_01( V)é)(S)ZAQSp
ro 4m 2A

The proof for Lemma 10 is completel]

V)
14

and that
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4.5. Proof of Lemma 5. We will prove Lemma 5 by verifying the assumptions
in Theorem 2. To verify Assumption 7, we will apply Lemma 6. Following the
same arguments in the verification of Assumption 1 of Lemma 1 in Section 4.2,
we have that (8) and (9) hold witlly =1 and7; = 1/(,/q9(29 + 1)97-1). By
Lemma 6, Assumption 7 holds far; andm ; in (22). Note that for the&'; specified
in(22),y° ;e ¢ =e2/(1— e 13 < 1 as required.

To verify Assumption 8, we choosg, and g, as in the verification for
Assumption 2 in the proof of Lemma 1 except for the following changes:

1. Fact 1 is replaced by Fact 5.
FACT 5. Forj suchthay > s + 1, there exist$ € R™/ such that

S—r
||D’<fo—f,s,j>||005aq( )Mo forO<r<s—1,

(57) k+1

”Dsfﬁ,j loo < quMOv
whereMo = maxp<, < | D" f, |1, -

The above fact follows from (6.50) in Schumaker (1981).
2. B, € R™in is chosen so that

1 N
(58) ||f0_fl3nsjn ”ooﬁaq*Mo<kn+l> :

By (47), (48) and (58), for the abovg andg,,

Njn _
max(D(fOHfﬂnan)’V(f0||f,3nvln))+ ’; <cin 25/(l+25)’

so Assumption (2) holds i, € ®;, and

(59) 8,21 = cln_zs/(1+2s).

To verify thatg, € ©®;,, we need to make sure mg¥<,—11D" fg,,j, lLo < L*
and| fg,, i, loo < M. The first condition follows from the second equation in (57).
The second condition holds for largéecause of (58) and the fact thigh, || < M.
Therefore, Assumption 8 holds for largdor theg,, in (59).

Assumption 9 holds witld;, (n,6) = || f;,.;, — fo.).llc fOrall n, 6 € ©;, since
(20) holds withK, = 1.

For Assumption 4, the verification is the same as the one for Assumption 4 in
the proof of Lemma 1.

To verify Assumption 5, we need to bound, (By;,, j, (B, £1)) by showing that

(60) {9 c R™in - 160 — Brlloo < CG( ) } C ijn,jn(ﬂn’ &n),

ky+1
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where cg = min(1, \/c1/(sup, n®/ A2 (k, + 1)=%)). For 6 € R™in such that

160 — Brlloo < ce(1/(ky + 1))%, we will prove (37) and (38). The inequality (37)
follows from the same arguments as in the verification for (37) in the proof of
Lemma 1, except thatlog fs, ;, — 109 f3,. ), llc IS replaced byl fo, ;, — f8,. ). lloo

and the factor 2 is dropped. To prove (38), note that fer/0< s,

ID" fo.jlloo =L* and [D*fy |, <L

where the results follow from the same arguments for the verification of (38) in the
proof of Lemma 1 except that log ;, is replaced byfy ;,, log f, is replaced by
f, and the case = 0 is combined with the case9r < s here. Also,

1 fo.ils = 10'Blso
< 0B =B.Bloo+1B.B — folloo + I folloc
L 16 — Balloo + ( )SM Il
<6 - otge 0
nlloo q ko + 1 olloo
S
< (an) (L4 ag-Mo) + || folloo < M

for largen since|| f, o < M. Thereforef € ©y, 4+ 1+ and (60) holds.

To boundr,(By,, . j, (01, €,)) In Assumption 5, note that by Lemma 4.3 of
Ghosal, Ghosh and van der Vaart (2000), there e>ﬂ§ts> 1 such that for all
¢ > 0 and for allj,

(61) {0€0;:|fo;— forjlo <€l C{O€O;:10 —b1lloo < Byee}.

Then by (61) and (60), following the arguments after the verification of (40) in the
proof of Lemma 1, Assumption 5 holds witkis = ;. (1 + (car/c1)Y*)* /e and
by =0.

For Assumption 6, it should be clear that it holds with thespecified in (59).
Apply Theorem 2 and we have the resultin Lemma 5.
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