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TESTING PREDICTOR CONTRIBUTIONS IN SUFFICIENT
DIMENSION REDUCTION

By R. DENNIS Cook?
University of Minnesota

We develop tests of the hypothesis of no effect for selected predictors
in regression, withoutssuming a model for the conditional distribution of
the response given the predictors. Predictor effects need not be limited to
the mean function and smoothing is not required. The general approach
is based on sufficient dimension reduction, the idea being to replace the
predictor vector with a lower-dimensional version without loss of information
on the regression. Methodology using sliced inverse regression is developed
in detail.

1. Introduction. In full generality, the goal of a regression s to infer about the
conditional distribution of the univariate response varidbtgven thep x 1 vector
of predictorsX: How does the conditional distribution af|X change with the
value assumed b} ? Many different statistical contexts have been developed to
address this issue. In this article we consigiicient dimension reduction (SDR),
the basic idea being to replace the predictor vector with its projection onto a
subspace of the predictor spad¢hout |oss of informationon Y | X. More formally,
we seek subspacésof the predictor space with the property that

(1) Y I X|PgX,

where 1L indicates independencé., stands for a projection operator in the

standard inner product and, for future referen@g; = 1, — P(,,. The statement

is thus thatY is independent oX given any value forPgX. Subspaces with

this property are called dimension reduction subspaces. Lektirgdim(3),

a regression inquiry can then be limited ko< p new predictors, expressed

as linear combinations of the original one&_T:X,...,v,fX, where the basis

{v1,..., vt} for & is often chosen so that the new predictors are uncorrelated.
When the intersection of all subspaces satisfying (1) also satisfies (1) it is

called thecentral subspace (CS) [Cook (1994, 1996, 1998a)] and is denoted

by 8y|x. The central subspace, which is assumed to exist throughout this article,

is a population metaparameter that can be taken as the parsimonious target of a

dimension reduction inquiry. Its dimensidn= dim(8yx) is called thestructural

dimension of the regression. There are several methods available that can be

used to estimate the CS, including sliced inverse regression (SIR) [Li (1991)],
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sliced average variance estimation (SAVE) [Cook and Weisberg (1991)], graphical
regression [Cook (1994, 1998a)], parametric inverse regression [Bura and Cook
(2001b)] and partial SIR [Chiaromonte, Cook and Li (2002)] when categorical
predictors are present. Cook and Weisberg (1999a) gave an introductory account
of studying regressions via central subspaces.

Other dimension reduction methods estimatecdrgral mean subspace [Cook
and Li (2002)], which is a subspace of the CS that captures the mean function.
These include ordinary least squares (OLS) and related methods based on convex
objective functions, principal Hessian directions [Li (1992) and Cook (1998b)],
iterative Hessian transformation [Cook and Li (2002)] and minimum average
variance estimation [Xia, Tang, Liand Zhu (2002)]. In this article we are concerned
only with the CS.

The estimation methods for the CS mentioned previously are all consistent
under reasonable conditions when the dimengiafithe CS is known. Inference
ond is often based on hypothesis testing: Starting witk: 0, test the hypothesis
d = m versusd > m. If the test is rejected, increment by 1 and test again,
stopping with the first nonsignificant result. This type of procedure is fairly
common for estimating the dimension of a subspace [see, e.g., Rao (1965),
page 472]. Once an estimatds obtained, subsequent analysis, including choice
of a first model, is typically guided by a summary plot Bfversus the new
predictorsi X, ..., 45X, wheref; € R” and{y. .... f} is the estimated basis
for 8yx. Examples of this process are dsale thoughout the SDHterature. For
recent examples, see Chen and Li (1998), Cook and Lee (1999) and Chiaromonte,
Cook and Li (2002).

The ability to test the significance of subsets of predictors is often important
in model-based regression, but is currently unavailable in SDR. In this article
we develop tests of hypotheses involving statements of the fymy|x = O,
where # is a user-selected subspace of the predictor space that specifies the
hypothesis, an@, indicates the origin irR”. PartitioningX” = (X1, X%), we
imagine a typical application to test the hypothesis thaelected predictorX;
do not contribute to the regression. Let the columns of phe d matrix »
be a basis for8y;x and partitony? = (31, 5]) according to the partition
of X. By definition of 8yx, Y 1L X|pTX. We wish a test of the hypothesis
Y1 X|;7{X1 so that thecoordinate subspace Spargn,) coincides with the origin,
Spariy,) = O,. This can be expressed in terms of the statenfepy|x = 0,
by choosing# = Spar((0, I,)7) to be the subspace &” corresponding to the
coordinatesXy in question. Because we expe#t will typically be chosen to
target selected predictors, we refer to hypotheses of the foyy|x = 0, as
coordinate hypotheses, although# need not correspond to a subset of predictors
(coordinates). We let = dim(#).

The following proposition gives a conditional independence interpretation of
the statemenPy 8y |x = O, Its proof is sketched in the Appendix.
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PROPOSITIONL. Pydyx =0, ifandonlyif Y UL Py X|Q 3 X.

Consequently, a coordinate hypothesis test can be regarded as a test of
the hypothesis that, give® X, the orthogonal partPgX of the predictor
vector contains no information about the response. With= Spar((0, 1,)7)
the hypothesisPy 8y |x = O, is equivalent to the hypothesis thatand X, are
conditionally independent giveXy, Y 1L Xo|X1.

In this article we consider three kinds of hypotheses that could be useful
depending on the application-specific requirements:

1. Marginal dimension hypotheses—d = m versusd > m;

2. Marginal coordinate hypotheses— Py 8y |x = O, VersusPy 8y x # Op;

3. Conditional coordinate hypotheses—Py48yx = O, versus Px8yx # O,
givend.

Marginal dimension hypotheses are considered extensively in the literature and are
mentioned here for completeness. The other two forms are new and tests for them
are developed in this article. Any of the dimension reduction methods mentioned
previously (e.g., SIR, SAVE or PIR) could in principle be a foundation for tests
of these hypotheses. In effect, graphical regression [Cook (1994, 1998a)] is built
on our ability to assessoordinate hypotheses in a ssiof three-dimensional
plots. In this article we use SIR to develop formal asymptotic tests of the two
new hypotheses.

Our use of SIR to develop tests of hypotheses involving coordinate restrictions
depends on rederiving it as the solution to a multivariate nonlinear least squares
problem. This is done in Section 3.1 following further discussion of preliminary
issues in Section 2. The population structure of SIR is related to the coordinate
hypotheses in Section 3.2, and general results on test statistic construction are
described in Section 4. In Sections 5 and 6 we develop the tests for the marginal
and conditional coordinate hypotheses, including asymptotic null distributions and
suggestions for implementation. Simulation results on level and power along with
an illustrative data analysis are reported in Section 7. Concluding comments are
given in Section 8, along with additional discussion of the literature and its relation
to this work. To avoid interrupting the discussion, proofs for most results are given
in the Appendix.

2. Preparations. We assume throughout this article that the d&taX;), i =
1,...,n, X e RP, are i.i.d. observations ofY, X), which has a joint distribution
with finite fourth moments an& = Var(X) > 0. In keeping with the usual SIR
protocol, we assume also that the response has been discretized by constructing
slices so that” takes values i1, 2, ..., h}. The jth value ofY is called thejth
slice. This slicing step might be unnecessary if the response is naturally discrete or
categorical.
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Let the standardized predictors be denoted by
Z=3"Y2(Xx —EX))

with sample version

~ ~—1/2 -
Zyj=X% (Xyj —X),

where subscrip‘(yj2 indicates observation in slicey, y=1,...,h, j =1,
cny,n=3 ny, X=3";Xy;/nis the sample mean of the,;’s,

. o1l . .
== D3 Xy = XXy =X

y=1j=1

is the usual sample covariance matrix and!/2 denotes the unique symmetric
positive-definite square root a1, To allow use of the usual inner product
in subsequent developments and without loss of generality, we work in the
Z scale with central subspadg|z = /28y x [Cook (1998a), Proposition 6.3],
letting the columns of the x d matrix y be an orthonormal basis fofyz.
Summationsy_,; with implicit limits (yj) are always ovey =1,...,h, j =1,
sy Ny,

In practice coordinate hypotheses will typically be formulated in the original
X scale by selecting an appropriate basisf6r A coordinate hypothesis could
then be stated ag! 5 = 0, wherex, is the user-selected basis f& expressed as
a p x r matrix of full column rank-, andy is a basis foyx. For example, to test
if a selected subset ef predictors contributes to the regression we can test if the
rows of » corresponding to the predictors in question are all zero vectors. The
matrix e, can then be chosen to select the appropriate rows of

The hypothesist!n = 0 holds if and only ife’ (2Y25) = 0, wherea =
¥ Y24, and the columns o /2y form a basis foBy|z. A coordinate hypothesis
intheX scale,Py8yx = O, with # = Sparie, ), can be restated in ttescale as
Py d8y;z = O, with # = Sparia). Thus by appropriate choice of basis, or «,
we can work in either scale.

Back to theZ scale, without loss of generality we take the columns of

(2) o= Z_l/zccx(a;Z_ltxx)_l/z

to be an orthonormal basis f&¢ in the remainder of this article. The hypothesis
Py 8y;z = O, holds if and only if8y,z is in the orthogonal complement ¢
and consequently under the hypothesis we must have — d. Otherwise the
hypothesis is certainly false.
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3. SIR.

3.1. Nonlinear least sguares formulation. The development of SIR as a
means to estimatéy,z requires the following condition:

(C1) Linearity condition—E(Z|Ps,,Z) = Ps,,Z.

This condition, which is common in SDR, is equivalent to requiring that
EZ|yTZ) be a linear function ofy”Z [Cook (1998a), Proposition 4.2]. Li's
(1991) design condition is equivalent to (C1), which applies to the marginal distri-
bution of the predictors and not to the conditional distributiof (£ as is common
in regression modeling. Consequently, we are free to use experimental design, one-
to-one predictor transformationsor reweighting [Cook and Nachtsheim (1994)]
to induce the conditio when necessary without sufieg complications when in-
ferring aboutY'|Z. Since we are not assuming a model g, these adaptation
methods need not change the fundamental issues in the regression. For example,
becausd’ |(X = x) has the same distribution &3(z (X) = 7(X)), predictor trans-
formations just change the way in which the conditional distributiory pf is
indexed. The linearity condition holds for elliptically contoured predictors. Addi-
tionally, Hall and Li (1993) showed that asincreases with/ fixed the linearity
condition holds to a reasonable approximation in many problems.

The linearity conditio implies that the conditional meansAY) lie in the CS
for all values ofY [Li (1991)]. We take this a step further and assume the following
condition:

(C2) Coveragecondition—SpanE(Z|Y = y)ly=1,...,h} =8yz,

so that the subspace spanned by the inverse conditional means coincides with the
CS. This condition is also common in regression studies based on SIR. It requires
in part thath > d + 1. For subsequent tests diwe requirek > d + 1.

For each valug of Y we can now find a vectqgs,, € R? such that

ECZIY =y)=pp,,
wherey is the basis matrix foByz defined previously. BecausegB = 0 we
must have Epy) =3, fyp, = 0, where f, = Pr(Y = y) is the probability of
slicey. This suggests that for fixetiestimates of andp,, can be constructed by
minimizing the least squares loss function

h Ny

La(B,Cy) =" Y 1Z,; —BC,|?
y=1;=1
over B in the Stiefel manifold [Muirhead (1982), page 67] of allx d semi-

orthogonal matrices and ovex, € R? subject toy", fyC, =0, wheref =n,/n
is the observed fraction of observations falling in slicelhe values o8B andC,
that minimizeL, are then taken as the estimajesindp, of y andp,, y =1,
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..., h. Although we refer toy and p, as estimates, it may be, strictly speaking,
more appropriate to think of them as solutions since they can be replaced by
yHT andHp,, whereH is any orthogonal matrix.

Minimizing L, results in the SIR estimate 6fz whend is regarded as known:

LetZ, =Y, Z,;/ny be the average of th&,; in slice y, and writeL, as

Lqs(B,Cy) =Y 11Z,; — Z,IP+ Y 1Z, - BC, |2
A yi

For fixedB the minimum is attained by
C,=B"z,, y=1,...,h

Then minimizingL4 (B, Cy) overB yields the SIR estimate dfyz. To summarize
the essential result, 168 = >y fAyZyif denote the sample covariance matrix of
the slice means, and Iétl > .0 > f\p denote the eigenvalues of. Then tAhe
columns ofy are the eigenvectors corresponding to the firsigenvalues o,
andp, =p"Z,, y=1...,h.

The minimum valueL; = Ld(f/,i;y), which we call theresidual sum of
sguares, is

h ny B 14 R
3 L= Y112y —Zy1P+n > &

y=1j=1 j=d+1
ford < p—1and

np

h
(4) Ly=3"3"12y; =2,

y=1j=1

ford = p.

The usual SIR test statistit, (m) for testingd = m versus! > m, wherem < p,
can be found by comparing the residual sum of squares under the null hypothesis
to that under the alternative,

p
(5) Tp(m)=Lny—Ly=n Y ij.

j=m+1
Assuming thatX has a multivariate normal distribution and implicitly assuming
the coverage condition, Li (1991) proved that the distribution Htfd) is
asymptotically chi-squared witlp — d)(h — d — 1) degrees of freedom. Bura
and Cook (2001a) proved thd@} (d) has the same asymptotic distribution under
the coverage and linearity conditions plus the following condition:

(C3) Constant covariance condition—Var(Z|Ps, ,Z) = Qs ,,
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whereQs, , = I, — Ps,,. This condition is equivalent to requiring that VAt
Py, ,Z) be a nonrandom matrix. Normality &f implies the linearity and constant
covariance conditions, but not the coverage condition. Bura and Cook (2001a) also
proved that in generdl, (d) is distributed as a weighted sum of independent chi-
squared random variables and showed how to construct consistent estimates of the
weights for use in practice.

In the next section we relate the coordinate hypoth&sigyz = @, to the
population structure of SIR.

3.2. Coordinate hypotheses and SIR. Let g, = \/f,, let p be thep x h
matrix with columng ,E(Z|Y =y), y =1,..., h, and construct the singular value
decomposition

©) p=rs 1o) (% g)(ig)

wherel' = (I'1, T'g) andW¥ = (¥4, ¥o) arep x p andh x h orthogonal matrices,
Ds; is a d x d diagonal matrix of positive singular values and the various
submatrices have the following dimensions:

I'i:pxd, I'o:pxp—d, With xd, Vorh xh—d.

Under the linearity and coverage conditions, Sffain = 8yz and so under these
conditions we can takg = I'y as our basis foy z.

The following two propositions relate coordinate hypotheses to the population
structure of SIR. The proofs seem straightforward and are omitted.

PrROPOSITION 2. Assume that the linearity and coverage conditions hold.
Then each of the following two conditions is equivalent to the coordinate
hypothesis P 8y|z = Op:

() Q#xT1=T1.
(iiy F¢ < SpanTy).

In addition, the coordinate hypothesisimplies the following:

(i) QTo=To(TfQsTo).

(iv) Fgp = rgQ}gro isa(p —d) x (p —d) symmetric idempotent matrix of
rank p —d —r.

(V) Gy = I(p—d) —Fs% = rgP}gro is a (p—d) x(p—4d) s/mmetric
idempotent matrix of rank r.

PrRoOPOSITION3. Assume that the linearity and coverage conditions hold. If
P38yiz = Op, then the singular value decomposition of u is the same as that

of Qe
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4. Test statistic construction. In this section we discuss results that will
facilitate construction of statistics faesting the two new hypotheses described
in Section 1. Proceeding by analogy with the nonlinear least squares derivation of
SIR described in Section 3.1, the test statistics will be constructed as the difference
between the residual sums of squares under null and alternative hypotheses. The
residual sum of squares under a dimension hypothésism can be written
using (3)—-(5) as

h Ny

7) L= 11Zyj = Z,|I> + T, (m)

y=1j=1

form=0,..., p. Here we defind},(p) = 0 so that (3) and (4) are both covered
by (7).

We will also need the residual sum of squares under a coordinate constraint
Pyd8yiz = O, and a dimension constrainf = m. BecauseX is typlcally
unknown, it will have to be estimated for use in practice. Thus weHet

-1/2
Spar{Z o).

To construct the residual sum of squares under coordinate and dimension
constraints, write

Lwm(B,Cy)=Y"11Zy; = Z,I*+ Y_ I P7(Z, —BCy)I?
Vi yi
+Y I107Z, —BC|*
Vi
BecauseB represents an orthonormal basis ¥z, we impose the constraint
P7#B =0, thus reducind., to
L, (B,Cy) = Z 12y = Z,11% +Z 1PZZ, 1%

+ Z 107#(Zy — ch)n

Vi

(8)

where the prime oiL), indicates the imposition of the coordinate constraint. For
fixed B with BY B = B 0 B = I,,, the minimum is attained b@, =B 0 3Z,,
y=1,..., h. Consequently, witm < p —r,

h Ny

min > Y 10 #(Z, — BC,)|I? —mmZnQ}g(z ~BBT052,)I?

(BC)} 1j=1
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wherei} > --- > i’ are the eigenvalues @ 7M Q 7. The last equality follows
since the last eigenvalues oD M Q 7 are all 0. Ifm > p — r, then

2 _
min, ZIIQﬂ(Z —BCy)[“=0.

Substituting intal,, (B, C,) given in (8) we obtain the residual sum of squares

9) Ly, =02y = ZyIP+ S 1 PRZy 1% + T (m),
yj

yj

whereT, (m) =n Z”_mHN and we adopt the convention tHBf(p) =
In the next two sections we use (7) and (9) to construct test statlstlcs for the new
hypotheses introduced in Section 1.

5. Marginal coordinate hypotheses. The marginal coordinate hypothesis
Py d8yiz = O, versus Py8yz # O, can be used to test the contributions
of selected predictors without requiring a statement concerning the dimension
of 8y|z. The test statistid, (#) is the difference between the residual sums of
squares under the null and alternative hypotheses:

(10) T,(H#) = L', — L, =ntrac& PzM Pz)

(11) = |v/nveda

where vec is the usual operator that maps a matrix into a vector by stacking
, . a-l2 a1 . L =
its columns,a = %/ a (@S “a,)"Y? is an orthonormal basis fo¥ and
Z, is the p x h matrix with columnsgyzy so thatM = Z,,Z,{ and Z,, LS .
The representation df,, () given by (10) is what might be expected based on
intuition: to test if Py 48y ;z = O, we consider the size of the projection bf
onto the subspace specified by the hypothesis. Before using (11) to describe the
asymptotic distribution off;, (#) we consider another form of the statistic that
might provide additional insights.

Because EZ|Y) € 4y|z,

v, =T HEX|Y =y) — EXX)) € 8y x, y=1,....h

Consequently, under the coordinate hypothesis we must&@v@: 0 for all y.

A o1 - - , :
Letting v, = X (X, — X), the test statistic can be written in terms of the
hypothesized estimated », of 0 as

h
2 AT T 1 r\-1 . Ta
T,,(H):nyvyocx(ocxi o) o, by,
i=1
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5.1. Asymptotic distributions. A little setup is needed before we can describe
the asymptotic distribution df, (#). Define the indicator variablé, = 1if Y isin
slicey and 0 otherwise, lg§, = £~ Cov(X, J,) and lete, = J, — f, — B7 (X —
E(X)) denote the population residual from the OLS fitgfon X. Let & be the
h x 1 vector with elements,, let D, be theh x i diagonal matrix withg, on the
diagonal and recall that, the population version ak, is defined by (2). Finally,
let x2(D), x2(D), ..., x2(D) denote independent chi-squared random variables,
where the degrees of freedabhand K vary with context.

THEOREM 1. Assume that the linearity condition holds. Then, under the
coordinate hypothesis Py 8y ;z = O, ﬁveq&TZn) convergesin distribution to
a normal random vector with mean 0 and covariance matrix

(12) Qs =ED,'ee’'D,;'®a’2Z"a).

Consequently, from (11),

hr
L
T,(H) > wix? (D),
i=1

where w1 > w» > - - - > wy, arethe eigenvaluesof 2 5.

This theorem requires the linearity condition but not the coverage condition. If
the coverage condition fails so SIR estimates a subsparfesy z, it provides a
test of P38 = O, but we will necessarily miss part of the CS. If the coverage
condition holds, then SIR estimates the whole CS and the theorem provides a test
of the complete hypothesi3y 8y|z = @,,. As discussed later in Section 8, the test
implied by this theorem might be useful even if the linearity condition fails.

If we have conditions C1-C3, the®y, can be simplified. Lep, = I — gg7,
whereg denotes thé x 1 vector with elementg, .

CoROLLARY 1. If thelinearity, coverage and constant covariance conditions
hold, then

(13) Qu=Qg—n"WI
and
P h—1
To(H) > Y 8 x50,
j=1

whereé; > --- > 6, =0 arethe eigenvalues of Q, — .
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5.2. Implementation. The test statistid;, (#) is the same for all versions of
the test, but the reference distribution changes depending on conditions (C1)—(C3).
In the most general case described in Theorem 1 we need to estimate the
eigenvalues of théir x hr covariance matrix2y to construct the reference
distribution. We can construct a consistent estinje of 2y by substituting
sample estimates for the unknown quantities:

(14) Q0 Z Z D> 1@,@ &Tﬁyjzg.&,
y 1;=1

wherea and Zyj are as defined previously ai®}; is ani x h diagonal matrix
with g, on the diagonal. Alsog,; is the i x 1 vector of the residuals for
observation(y;), with one residual from each of the sample linear regressions
of J, onX. Letting®; denote the eigenvalues £, a p-value for the coordinate
hypothesis can be constructed by comparing the observed valljg &% to the
percentage points (ﬁjh’lc?),xz(l) There is a substantial literature on computing
tail probabilities of the distribution ad linear combination of chi-squared random
variables. See Field (1993) for an introduction. Alternatively, tail areas can usually
be approximated adequately by using Satterthwaite’s approximation.

We can proceed similarly under conditions (C1)—(C3). Thealue can be
found by comparingT (J(’) to the percentage points of the distribution of

Y i7L8i x2(r), wheredy > - -- > §, = 0 are the eigenvalues of

(15) Qp=(0; -2'2,)® 1,

each with multiplicityr.

For ease of reference, we refer to the test using the weighted chi-squared
reference distribution constructed from (14) as feeeral test. The test using
reference distribution constructed from (15) will be called thastrained test.

Both tests use the same statistjg #¢), but the reference distribution depends on
applicable constraints, as given in Corollary 1.

6. Conditional coordinate hypotheses. The conditional coordinate hypoth-
esis Pydy;z = O, versusPy8yz # O, givend might be useful wheni is
specified as a modeling device, or when inferencel arsing 7,,(m) results in a
clear estimate. A test statistig, (#|d) can again be constructed as the difference
between the residual sum of squares under the null and alternative hypotheses:

T,(H|d) =L, — Ly

(16) =T, (#) — (T,(d) — T, (d))

d d
a7 :nZ):j—nZ):/-,
j=1 j=1
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where T,(d) = n¥0_, 1 ¥, and T,(d) = nX5_, 1 }; are as defined in
(5) and (9). Form (17) gives one way to compute the statistic and shows that it
depends on the largest eigenvalues on}?I\A/I Q7 and M for the null and al-
ternative hypotheses. In contrast, the usual SIR statfti:) depends on the
smallestp — m eigenvalues oM. Form (16) will be easier to work with when de-
veloping the asymptotic distribution @f, (#|d) because it allows us to use some
known results. To develop the asymptotic distributionTpt#|d) we consider
first the asymptotic distributions df, (d) and 7, (d) — T, (d) because these are
components off,, (#|d) and may be of interest in their own right. For instance,
T/(m)=1L/, — i;, and thus it can be viewed as a test statistic for a dimension
hypothesis given a coordinate constraint.

6.1. Asymptotic distribution of 7,(d). The asymptotic distribution of, (d)
can be found by using results of Bura and Cook (2001a). Define
Uy, = /nTq (Zy — p)¥o = +/nT§Z, ¥o.

Bura and Cook [(2001a), equations (8)—(13) and associated discussion] first used
the general results of Eaton and Tyler (1994) on the asymptotic distribution of
singular values of a random matrix to conclude that the asymptotic distribution of
T, (d) is the same as that ef|U,,||2. They then established that

JnvedZ, — ) S Npy(0, A)
and thus that

L
(18) JnvedU,) = Np—ayn—a)(0, (¥ @ THA (W ® To)),

where thehp x hp matrix A is as defined by Bura and Cook (2001a). It can be
represented as anx i array ofp x p matricesAg, =1, fs + (1 — 2f) Xz, and
Ay =88y —Xzi — Xz5), WhereXz, =Var(Z|Y =s),s,t=1,...,h. Thus

(p—d)(h—d)

Td)S Y i,
i=1

wherew; > w2 > -+ > wp—a)(—a) are the eigenvalues of the covariance matrix
in the asymptotic distribution of/n veqU,,) given in (18).
The asymptotic distribution df, (d) can be found similarly. Define

VU, = nT Q770 — Q3en)¥o
= /T8 (0 77Z,) %o,

where the second equality follows becays¥o = 0 from the singular value
decomposition (6). It follows from Eaton and Tyler (1994) thgt(d) and
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nl| veo(U;l)||2 are asymptotically equivalent because, from Propositiop and
0 s 1 have the same singular value decomposition. Now,

JnvedU,) = (I—q ® T} 0 7)v/nvedZ, o).

Since ve€Z,¥q) 2 0, it follows that\/nvedZ,¥o) converges in distribution.
BecauseQ 7 converges in probability t@ 4, it follows from Slutsky’s theorem
that we can replacéf with # in /nveqU!) without affecting its asymptotic
distribution. Consequently/n veqU))) is asymptotically equivalent to

(In—d ® T§ Qpe)/nvedZ,Wo) = v/nveaT) Q 5, ¥o)
= /nvedF 4T} Z,¥o)
= (In—a ® Fg)v/nveaUy,),
where the second equality follows from parts (iii) and (iv) of Proposition 2.
Consequently, the asymptotic distributionZfid) is the same as that of| (/;,—; ®

Fs)vedU,)|2, which can be determined from the asymptotic distribution
of «/nvedqU,) given in (18). This enables us to conclude the following.

PROPOSITION4.

L =d)h—a)
TS Y wixP),
i=1

where w1 > wp > - -+ > w(p—a)(h—q) are the eigenvalues of

Q=W @F#TE)AWo® ToF).

Additionally, the following corollary follows from Bura and Cook [(2001a),
Theorem 2] and the fact thdty is a symmetric idempotent matrix of rank
p —d — r [Proposition 2(iv)].

COROLLARY 2. Assumethat the linearity, coverage and constant covariance
conditions hold. Then 7, (d) is distributed asymptotically as a chi-squared random
variablewith (p —d — r)(h — d — 1) degrees of freedom.

Given that Px4y;z = O, pr’ and Qxuu’ Q5 have the same rank.
Consequently, we might expet(d) — 7, (d) to reflect little more than random
variation. Consider the orthogonal decomposition

nllvedU) 1% = n|(In—qg ® Fz) vedU)|12 + nl|(In—a ® G) veaU,)|?,

whereG y is as defined in Proposition 2(v). As discussed previously in this section,
the left-hand side is asymptotically equivalentfigld) and the first term on the
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right-hand side is asymptotically equivalentTj)(d). Thus, the second term is
asymptotically equivalent t@, (d) — T,,(d):
(19) Tu(d) — T,)(d) = n||(In—a ® Gz) vedU,)[|? + 0, (1).

The next corollary gives the asymptotic distribution Bf(d) — T, (d) under
conditions C1-C3. Its proof parallels that of Corollary 2 and is omitted.

COROLLARY 3. Assumethat the linearity, coverage and constant covariance
conditionshold. Then 7, (d) — T, (d) is distributed asymptotically asa chi-squared
random variablewith r(h — d — 1) degrees of freedom.

6.2. Asymptotic distribution of T7,(#|d). The asymptotic distribution
of 7, (#|d) can be found under the coordinate hypothesis by using the follow-
ing proposition. The proof given in the Appendix relies on (19).

PROPOSITIONDS.
T, (#|d) = | (¥] ® I)v/nvedd” Z,)|* + 0, (1)

Using this proposition in combinationith Theorem 1 gives the following
theorem.

THEOREM 2. Assume that the linearity and coverage conditions hold.
Then, under the coordinate hypothesis Py 8y ;z = O, (\Il{ & I,)ﬁveq&TZn)
convergesin distribution to a normal random vector with mean 0 and covariance
matrix

Qy1a=EW]D,'ee’ D, W1 @ 0" 22" a).

Consequently,

dr
£L
T, (#|d) = Y wixF(D),
i=1

wherewy > wp > - - - > wy, arethe eigenvalues of L 5,.
It may be useful when reading this theorem to recall that p — d for a

meaningful coordinate hypothesis. In particuRyp |, is not defined whed = p.
As in Section 5, if conditions (C1)—(C3) hold, th&y,; can be simplified:

COROLLARY 4. If thelinearity, coverage and constant covariance conditions
hold then

Qg =Us—Dy) ® I,
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and

d
T, (H#|d) 5 31— ap)x2(),
j=1

wherei; > --- > A4 > O arethe nonzero eigenvaluesof uu” and D, isa diagonal
matrix with diagonal elements1;, j =1,...,d.

The generalized inverse & 4, in Corollary 4 could be used to construct a
Wald test statistic with an asymptotic chi-squared distribution under the coordinate
hypothesis of Theorem 2. A similar comment applies to (13) under the coordinate
hypothesis of Theorem 1.

6.3. Implementation. The results of Theorem 2 can be implemented in a
manner similar to the implementation of Theorem 1 described in Section 5.2.
A consistent estimatar; of ¥, can be constructed from the singular value
decomposition o, just as¥1 is obtained from the singular value decomposition
of u given in (6). A consistent estimate &z, can then be constructed as

~ AT ~ A
(20) Qiya=VW L)Rx(V1Q1,),

whereQy is as given in (14). Similarly, the asymptotic reference distribution of
Corollary 4 can be estimated by substituting the largesitgenvalues.s, ..., A4
of M for A4, ..., A4, Which amounts to estimatir@ s, by using

(21) Qg =Us—Dy) ® I,

whereD; is a diagonal matrix with diagonal elements j=1,...,d.

Following the terminology for tests of marginal coordinate hypotheses, we
refer to the test using reference distribution constructed from (20) agetieeal
test. Theconstrained test uses the weighted chi-squared reference distribution
based on (21). These two tests use the same stalisti¢|d); only the reference
distribution changes.

7. Simulation resultsand data analysis. Simulation studies were conducted
to insure that the asymptotic tests behave as expected and to provide a little insight
about their operating characteristics. Each study was based on one of the following
two models:

(22) Y=X1+¢,
Y = X1 +5
054+ (X2+152

The number of observations the number and distribution of the predictots

and the distributions of the erroesand § depend on the simulation. To avoid
inadvertent tuning by choice of the number of slices, every simulation run used
h =5 slices. Test results were tabulated over 1000 replications for each sampling
configuration.

(23)
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7.1. Estimated versus nominal levels. In this section we report some repre-
sentative results to compare estimated and nominal levels. The estimates were
obtained by counting the number gfvalues that were less than or equal to
a nominal level in the 1000 replications for each sample configuration. These
p-values were obtained by applying the tests to a predictor not represented in the
mean function of the model, so= 1.

Estimated levels of all seven statistics described here are shown in Table 1
for simulations from model (22) with five i.i.d. standard normal predictors, an

TABLE 1
Estimated level of nominal 1, 5, 10 and 15%tests based
on various statistics and reference distributions for
model (22) with p = 5 independent standard
normal predictorsand e = 0.2N (0, 1)

Nominal level (%)

n 1 5 10 15
(A) T, (F) with £ (14)

50 28 91 169 217
100 11 6.1 115 188
200 10 53 114 167

(B) Ty, (J¢) with £ 5 (15)

50 21 81 152 201
100 10 56 109 17
200 Q9 53 103 163

(C) Tu(3Id) with R3¢ (20)

50 42 102 164 23
100 24 7.3 123 185
200 17 53 104 149

(D) Ty (H|d) with €714 (21)

50 30 85 147 206
100 19 6.3 122 17.6
200 16 52 9.9 146

E)T(d) ~ x2(12)

50 04 4.6 11 172
100 Q9 4.1 9.1 147
200 14 4.9 9.7 141

(F) T, (d) ~ x%(9)

50 05 4.8 103 154
100 Q7 4.2 9.2 148
200 10 4.8 9.3 151

(G) Tn(d) — T (d) ~ x2(3)

50 15 53 122 179

100 Q9 4.5 9.1 152

200 Q9 4.9 100 160
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independent normal error and various sample sizes. For instance, the estimated
levels shown in subtable A are for the test statig}ic#) with its general reference
distribution. Thep-values were computed by comparifig #) to the quantiles of

the weighted chi-squared distribution constructed by using the covariance matrix
in (14). The results seem quite good for= 100 and 200. Tests based on an
estimated weighted chi-squared distribution (subtables A-D) tend to be liberal.
This conclusion held up throughout all the simulations of test level conducted.
The performance of the chi-squared statistics (subtables E-G), which tended to be
conservative, was similar to that reported by Bura and Cook (2001%) f@y. The
statisticsT,, (d) andT,(d) — T, (d) were included in Table 1 to provide numerical
support for the asymptotic calculations described previously. An investigation
of possible roles for them in data analysis is outside the scope of this report.
Discussion in the remainder of this section is confined to tests of the marginal
and conditional coordinate hypotheses.

A substantial increase in the number of predictors typically required that the
sample size be increased to achieve consistent agreement between the estimated
and nominal levels. Shown in Table 2 are estimated levels for the two general
and two constrained tests based on model (23) with 10 independent standard
normal predictors. The agreement between the estimated and nominal levels for
n =400 and 800 seems quite good. Comparing the resultg,fak) with those
for T,,(#|d) atn = 50, 100 suggests that tests basedlfh#|d) need somewhat
larger sample sizes to achieve similar agreement. This might be because use
of 7,,(#|d) requires an estimate df; that is not required to usg, (#) [see (20)].

The two general tests, one for marginal coordinate hypotheses and one for
conditional coordinate hypotheses, will probably be the most useful in practice
since they require the fewest assumptions. In comparison, the corresponding
constrained tests achieved similar agreement between the estimated and nominal
levels with somewhat smaller sample sizes.

The results in Table 3 are intended to give some idea about the impact of the
predictor distribution on the actual level of the two general tests. The subtables are
designated as A and C to correspond to their designations in Tables 1 and 2. The
simulation setup leading to Table 3 was repeated with other predictor distributions,
including ther distribution with five degrees of freedom and the unifai#2, 2)
distribution. The results for these predictor distributions were quite similar to the
results in Table 3.

Over the range of simulations represented in this study it was observed that the
estimated level of a nominal 1% test was nearly always between 1 and 5% and
the estimated level of a nominal 5% test was nearly always between 5 and 10%.
No simulations were conducted with more than 12 predictors or more than
800 observations.

7.2. Power. Inthis section we report results from a power study to gain insight
into the operating characteristics of the proposed tests. It is not difficult to find



TESTING PREDICTORS 1079

TABLE 2
Estimated levels frommodel (23) with p = 10
independent N (0O, 1) predictors and
§=0.2N(0,1)

Nominal level (%)

n 1 5 10 15
(A) T, (3¢) with £ (14)

50 33 116 228 319
100 18 7.8 160 211
200 22 7.0 130 181
400 13 48 9.8 151
800 14 5.8 103 149

(B) Tp, (3¢) with 40 (15)
50 29 9.8 192 295

100 13 7.2 142 199
200 19 6.9 122 177
400 12 4.8 100 144
800 14 5.9 101 148

(C) Tn (#]d) with R 514 (20)
50 72 17.7 263 311

100 41 9.2 155 208

200 20 8.0 144 197

400 Q8 51 105 150

800 Q8 46 105 145
(D) T (J¢d) with 254 (21)

50 57 153 239 302
100 32 8.2 149 200
200 16 7.6 140 191
400 Q9 44 102 146
800 Qa8 49 104 145

examples where the power is near 1, the nominal level or anywhere between these
extremes. To provide a benchmark for interpretation, the standard linear model
t-test was included in the study.

The results reported in Table 4 are from model (22) with five independent
standard normal predictors,= 200 and three different erroes For each model
configuration, the power of the standartst for the hypothesis that the coefficient
of X, equals 0, and the power of the general marginal coordinate teXt favere
estimated by computing the fraction of rejections in 1000 replications. The first
column of Table 4 indicates the test. The second column indicates the nature of the
error and will be described shortly. The third and fourth columns give the estimated
power PR) at the nominal 1 and 5% levels. The differences between the estimated
and nominal levels for all tests in Table 4 were found to be roughly as those of
Table 1.
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TABLE 3
Estimated test levels from model (23) with 10
independent x2(4) predictors and
§=0.2N(0,1)

Nominal level (%)
n 1 5 10 15

(A) T, (3) with Qg (14)
100 25 8.2 134 193
200 11 5.4 110 157
400 12 6.3 115 17.2
800 13 53 104 154
(C) T (#d) with R4 (20)
100 16 7.2 127 187
200 16 7.3 125 189
400 Q7 32 79 129
800 10 5.6 100 16.0

To provide some information about estimation in addition to that for testing, we
also computed the absolute sample correlationstweenX; and the fitted values
from the OLS fit ofY on X, including an intercept, and betwea&n and the first
SIR predictor. The 0.05, 0.5 and 0.95 quantilgss, co.s andcg g of the empirical
distributions of these absolute correlations are given in columns 5—7 of Table 4.

TABLE 4
Power results based on model (22) with three different errors e

Test PR@0.01 PR@0.05 cgps5 Co5 Co.95
(A) e=0oN(0,1)
' o=1 1 1 Q977 Q992 Q998
Ty (30) 1 1 0970 0990 Q998
' c=64 0.359 0583 Q346 Q765 Q951
Ty (F) 0.175 0364 Q095 0583 Q772
(B) £ = 6.4(x2(D) — D)/~2D
t D =10 0374 0609 Q308 0768 0949
Ty (F) 0.220 0465 Q120 0698 0948
t D=2 0.348 0594 Q284 Q774 Q951
Ty (30) 0.797 0928 Q605 0895 Q976
(C)e= ("N (O, 1)
' 1=075 1 1 0959 0987 Q997
Ty (F) 1 1 0954 0985 Q997
t r=15 0.508 0630 Q177 Q817 Q980

T, () 1 1 0938 Q977 0995
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Table 4(A), e = o N(0,1). Foro < 2 the two procedures were observed to
yield essentially identical results. Both tests rejected in all 1000 replications, and
the absolute correlations were all quite high. The resultsofes 1 are shown
in the first two rows. The-test was observed to be the clear winnerdor 3;
the results folo = 6.4 are shown in the third and fourth rows of this table. The
gualitative nature of these results should perhaps not be surprising sinctette
has the home field advantage with a homoscedastic normal error. The estimated
powers at 1 and 5% of the general conditional coordinate7t€$t|d = 1) were
observed to be 0.275 and 0.469 tor= 6.4. Comparing these results with the
corresponding results in the table suggests that a substantial part of the power
differences between the and 7, (#)-tests can be attributed to the differential
information on dimension.

Table 4(B), e = 6.4(x%(D) — D)/~/2D. The scaling of this chi-squared error
was chosen so that it has the same first two moments as the case wif¥ in
Table 4(A). As expected, the results for lalBenere essentially the same as those
for o = 6.4 in Table 4(A). Results fob = 10 are shown in the first two rows. The
corresponding estimated powers at 1 and 5% of the general conditional coordinate
testT (J#f|d = 1) were observed to be 0.348 and 0.538. As illustrated in the third
and fourth rows of this table, the performance of the marginal coordinate test is
much better that thetest whenD is small. The corresponding estimated powers
at 1 and 5% of the conditional coordinate t&st#|d = 1) were observed to be
0.85 and 0.929. The results for theand T, (#)-tests were found to be similar
for D around 5 or 6.

Table 4(C), ¢ = (¢"™*1)N(0,1). For r near 0 this model is essentially the
same as that fos = 1 in Table 4(A), and the two tests were observed to be
equivalent. However, with larger values ofthe r-test begins to lose ground and
for sufficiently large values the performance of the coordinate test is again much
better than the-test. Results for = 0.75 and 1.5 are shown.

The results of this section suggest that, while the coordinate tests might not
perform as well as tests optimized for particular models, they perform reasonably
across a wide range of regressions, particularly since they do not require a model
for Y|X.

7.3. Choice of d. As illustrated in the power study of Section 7Z,(#|d)
can be expected to have greater power tligfy¢), and consequently there are
potential gains from inferring abodtprior to testing predictors. On the other hand,
misspecification ot/ can lead to conclusions different from those based on the
true value. In this section we describe qualitative results from a simulation study
to investigate this behavior. Conclusions are based on the general m&jgiadl
and conditionall;, (#|d) coordinate test of each of the individual predictors.
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Considen = 200 observations from a regression with five independent standard
normal predictors( ; and responsg = (X1, X2) + ¢, where the standard normal
errore IL X. Whenu = X1 + ¢X2, the marginal dimension tes# (m) resulted
in the correct conclusion that = 2, and the five conditional test, (#|d = 2)
correctly concluded that onl¥1 and X» are relevant to the regression. The five
marginal testd}, (#) reached the same conclusion. Witlunderspecified as 1, the
five tests based of, (#|d = 1) also resulted in the correct conclusion that only
X, and X, are relevant. Underspecification did not affect the conclusions in this
case because the first SIR direction was close to @aney), wheree; denotes
the 5x 1 vector with a 1 in theth position and 0 otherwise. In other words,
both X; and X, were manifested in the first SIR direction, andBg#|d = 1)
was able to detect contributions from both predictors. Witbverspecified as 3,

T, (#|d = 3) resulted in the conclusion that;, X» and X4 are significant, thus
giving an upper bound on the set of relevant predictors.

Whenu = X1 — Xo + ¢X17X2) | the marginal dimension tests again resulted in
the correct conclusion that = 2, andT,(#|d = 2) and T,,(#) again correctly
concluded that onlyX; and X» are relevant to the regression. However, this time
with d underspecified as 1, the teBf(#|d = 1) incorrectly concluded that only
X1 is relevant. Underspecification affected the conclusions in this case because
X> was not captured by the first SIR direction, which was close to @anVith
d overspecified as 37, (#|d = 3) again indicated three significant predictors,
including X; and X».

Results of this study, including results not reported here, suggest that misspec-
ification of d need not be a worrisome issue when the marginal dimension tests
result in a clear estimate and that estimate is us@d i#|d). When the value of
is not clear, it is still safe to base inference on the marginal coordinatg, te&?).

7.4. Lean body mass regression. We revisit the lean body mass regression
[Cook and Weisberg (1999b)] to illustrate practical aspects of the previous de-
velopment. Lean body mass (LBM) is regressed on the logarithms of height (Ht),
weight (Wt), sum of skin folds (SSF) and the logarithms of the five hematological
variables red cell count (RCC), white cell count (WCC), plasma ferritin concentra-
tion (PFC), hematocrit (Hc) and hemoglobin (Hg) for 202 athletes at the Australian
Institute of Sport. Logarithms of the eight predictors were used to help insure the
linearity condition. Both females and males are represented in the data in approx-
imately equal proportions. However, for this illustration we neglect gender in the
regression.

The SIR chi-squareg-values for the marginal dimension hypotheses
m,m=0,1, 2,3, are about0, 0, 0.13 and 0.46. Consequently, we initially inferred
that d = 2, keeping in mind that = 3 is also a possibility. The first two SIR
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TABLE 5
Results from the lean body mass regression with all eight predictors

Fit p-values

X 1 2 T, () Tn(5€ld =2) Ty (|d =3)
log[SSF] —0.158(0.06) —0.076(0.45 0 0 0
log[Wt] 0.971(0.22 —0.023(1.6) 0 0 0
log[Hg] 0.140(0.69) 0.347(5.3) 0.830 0.199 0.369
log[Ht] 0.088(0.65) —0.332(5.0) 0.344 0.270 0.537
log[WCC]  —0.007(0.08 —0.015(0.59) 0.794 0.650 0.899
log[RCC] 0011(0.49 0.502(3.8) 0.090 0.014 0.032
log[Hc] —0.073(0.85 —0.715(6.5) 0.221 0.021 0.098
log[PFC] Q0003(0.03) 0.004(0.25) 0.040 0.820 0.192

directionsy, and, are shown in the second and third columns of Table 5. The
numbers in parentheses are the approximate standard errors proposed by Chen
and Li [(1998), page 297]. A scatterplot of LBM versus the first SIR predictor
ﬁ{x is shown in Figure 1(a). The mean function in this plot is noticeably curved.
Letting e denote the residuals from the OLS fit of LBM oft, X, 73 X), the need
for a second direction is evident in a 3D ploteofersus(iji X, ij2 X), which has a
clear saddle shape. A scatterplokofersusfygx is shown in Figure 1(b).

In the context of SDR there are now at least three options to aid in assessing
the significance of the individual predictors to the regression. We might develop a
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Fic. 1. Two scatterplots representing the SR “fit” of the lean body mass regression: (a) LBM
Versus ﬁ{x; (b) residuals versus ﬁgx.
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model for LBM|X, guided by a 3D summary plot of LBM versuis X, 75 X).
Predictors could then be tested in the context of the resulting model. This
type of procedure has produced useful results in the past, but there could be
a worrisome possibility that the modeling process would effectively invalidate
nominal characteristics of subsequent tests. Another possibility is to follow the
case study by Chen and Li [(1998), Section 5.2] and use the approximate standard
errors to guide variable selection. The assessment here is based on the general
versions of the marginal and conditional coordinate tests.

The last three columns of Table 5 give thevalues from the marginal
T, (#)-test and the conditional tesi (#|d = 2) and T,,(#|d = 3) applied to
each predictor in turn. We see from all three sets of tests that SSF and Wt contribute
significantly to the regression, and probably RCC as well. The correlation between
the first SIR predicton?lTX based on the full data and the first SIR predictor
from the regression of LBM on Ig&§SH, log(Wt) is about 0.9995, so these two
identified predictors largely account for the shape of the plot in Figure 1(a).
The correlation between the second SIR predictors from the same regressions
is about 0.83. Evidently, SSF and Wt contribute significantly to the first two
directions, while other predictors contribute mostly to the second direction. As
in linear regression, two correlated predictors might both have relatively large
p-values, while deleting either causes thealue for the remaining predictor to
decrease substantially. Usiffg(#) to test simultaneously the effects of the last
six predictors in Table 5 yields p-value of about @34, suggesting that some of
those predictors also contribute to the regression. TheTgé&#$|d) withd = 2, 3
produced the same conclusion with simifavalues.

The results so far can be partially summarized in terms of the hypothesis
Y UL X2|X1, whereX” = (X], XZ). The tests gave firm indications that hypothe-
ses with X2 = log(SSB and X2 = log(Wt) are false. There was no notable
information to reject hypotheses witk, set to any combination of Iqgit),
log(Hg) and logWCC). Conclusions regarding the remaining three predictors
were relatively ambiguous, depending on a dimension specification. One of the
advantages of this type of analysis may be the ability to see which conclusions are
firmly supported by the data without prespecifying a dimensiosfgx and which
depend on specification of a dimension and perhaps eventually a model. Neverthe-
less, to focus the analysis we deleted the three predictors that were judged to be
unimportant and started over. The SIR chi-squagredilues from this regression
for the hypothesed =m, m =0, 1, 2, 3, were about 0, 0, 0.010 and 0.31. Conse-
quently, we now inferred that = 3, a conclusion that remained stable for the rest
of the analysis. This situation is consistent with the known propensity of the mar-
ginal dimension test to lose power when irrelevant predictors are added to the
regression. Additionally, there was no notable evidence in this five-predictor re-
gression to indicate that Iggc) is relevant, leaving us with the reduced regression
of LBM on the remaining four predictors (SSF, Wt, RCC, PFC).
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TABLE 6
Results from the lean body mass regression with four predictors

Fit p-values
X 1 2 UK Tu(9€) Tp(H|d=2) Tu(d|d=23)
log[PFC] Q010 Q199 Q0556 0.043 0.390 0.013
loglRCC] 0023 0556 -0.714 0.004 0.039 0.001
log[SSF] —0.356 —0.592 —0.395 0 0 0
log[Wt] 0.934 —0549 Q159 0 0 0

Additional results for the reduced regression are given in Table 6. The sample
correlations between the first, second and third SIR predictors from the full
regression and the corresponding predictors from the reduced regression are
0.9997, 0.93 and 0.98, suggesting that the two regressions are giving essentially
the same information abowt|X. The p-values in Table 6 now give a consistent
message for all predictors except PFC, which is judged nonsignificant when
the dimension is underspecified as 2. This result could be anticipated from the
discussion of underspecification in Section 7.3, if substantial information on
PFC is furnished by the third direction. This interpretation is supported by the
coefficients in Table 6, which were computed after marginally standardizing the
predictors to have a sample standard deviation of 1. Additionally, the absolute
sample correlations between [&®FO and the three SIR predictors of Table 6 are
about 0.32, 0.21 and 0.63.

In analogy with linear regression, we could have proceeded more straightfor-
wardly by using backward elimination based on marginal or conditional tests to
arrive at a reduced set of predictors. Starting with the marginal test in column 4,
Table 5, and sequentially removing predictors whpsealues are larger than@b
yields the results given in the fifth column of Table 6. The same procedure based
on the conditional test witld = 3 yields the results in the last column of Table 6.
The conditional test witlhl = 2 ends in with the same predictors, except PFC is
excluded becausgis underspecified.

8. Discussion. The theory of sufficient dimension reduction grew from a
body of literature on how to graphically represent a regression in low dimensions
without loss of information or¥ |X. Much of the development was inspired by
the idea of linear sufficient statistics developed from a parametric view by Peters,
Redner and Decell (1978) and Li's (1991) development of SIR. The primary
motivation for the regression graphics ideas in Cook (1998a) stemmed from a
desire to see how far graphics could be pushed in the analysis of regression data.
The central subspace (CS) proved to be a key tool in that inquiry. The CS is
intended to play a role similar to Li's (1991) EDR subspace, but it is a distinct
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population parameter constructed to insure that any nested sequence of dimension
reduction subspaces always leads to the same population subspace. The methods
developed here would not be possible using the EDR subspace because, in part,
the fundamental equivalence of Proposition 1 would fail.

Data analytic techniques (e.g., SIR, SAVE, PIR) for pursuing sufficient
dimension reduction have mostly lived in a world apart from mainstream
methodology, although there are threads leading to other ideas and methods
[see Chen and Li (1998) for a discussion]. By outlining a general context for
testing predictors and developing a specific implementation using SIR, this article
moves the inferential capabilities of SDR a step closer to mainstream regression
methodology. The connection with tradition is also strengthened by casting SIR in
terms of nonlinear least squares.

SIR has generated considerable interest since it was introduced. Hsing and
Carroll (1992) develop a version of SIR in which each slice contains two
observations so that the number of slices grows with the sample size. This two-slice
method was extended by Zhu and Ng (1995) to allow for slices with more than two
observations. The version in this article uses fixed slicing in which the number of
observations per slice grows with the sample size. Zhu and Fang (1996) bypass the
slicing step and use kernel smoothing instead. Schott (1994) investigated inference
methods ford when the predictors follow an elliptically contoured distribution.
Elliptically contoured distributions ameot required for the general methods in this
article.

Cook and Critchley (2000) showed that SDR methods can be useful for
identifying outliers and regression mixtures. Assumih@o be known, Gather,
Hilker and Becker (2001) developed a robust version of SIR by replacing its
components (e.gX, andM) with robust estimates. The nonlinear least squares
formulation of SIR described in Section 3 allows for alternative robust versions of
SIR that involve using a loss function other than least squares.

The linearity condition (C1) and the coverage condition (C2) are the only two
population conditions necessary for the theoretical justification of SIR. The con-
stant covariance condition (C3) is used only to simplify the asymptotic distribu-
tion of the test statistic under the null hypothesis. Lettihg= Var(E(Z|Y)), the
role of the linearity and coverage conditions is to insure that @par= 8y 7.
Without these two conditions, the asymptotic distributions given in Theorems
1 and 2 remain valid i8y|z is replaced by SpaM), but we may lose the equal-
ity SpanM) = 8y|z that provides an informative link with the population. As
argued previously, the linearity condition need not be worrisome in practice, partic-
ularly if we use the adaptation methods discussed in Section 3.1. Li (1997) studied
what can happen when the linearity condition fails, and Chen and Li (1998) de-
veloped an interpretation of SIR that might be helpful in some applications when

SparM) # 8y|z.
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APPENDIX: JUSTIFICATIONS

A.l. Proposition 1. Letthe columns of the matrix be a basis foyx. Then
YA X[pTX ifand only if ¥ 1L (P X, Q5X) (0T PzeX + 77 Q %X). Now,

Pudyx =0, = Y IL(PyX,QsX)n" QX
— Y I PpX|OxX.
For the reverse implicationy 1L P3X|Q X implies Y 1L (PgX, Q 7X)| Qg X
and consequently Spéfl %) is a dimension reduction subspace. Since the central
subspace is assumed to exist, any dimension reduction subspace must contain

the central subspace, which therefore must be in 8pan. It follows that
P](/SY\X = @p.

A.2. Theorem1. Theyth columny/n(a’Z,), of \/na" Z, can be expressed
as

. . " a—l/2-
@'z, =vn@lE a2l 37,

Recalling that/y, = 1 if Y is in slice y and O otherwise, and thaf, =
1 CowX, Jy), it seems straightforward to verify thAt = £, X ~Y2E(Z]Y = y)
with OLS estimator

~ A o—1/2=
(24) B,= AL Z,.

The linearity condition implies thag, € $yx and thus under the coordinate

hypothesis:zfﬂy =0. Consequentlyﬁagﬁy converges in distribution and we
have

~ o—1  _1/0aA_ ~
V@ Zy)y = nel T ) 28 el B
= V@l T a) e el B+ 0,7,

Li, Cook and Chiaromonte (2003) provided a general expansion for OLS
estimators that is applicable to (24). Using this we get

n
\/ﬁaf(ﬂy By = ”_1/2“){2_1/2221'8}4 + Op(n_l/z),
i=1

where
eyi = Jyi — fy — B (Xi — E(X))

is the population residual from the OLS regressioypbn X. Thus, substituting
we get

n
V@' z,), =n"Y2g e Y Ziey + 0, (7P,
i=1
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wherea = £ Y2q, (a =7 1a,)~Y/2 as defined in (2).
Next define thep x A matrix

n n
W, =Y (Zievi,.... Zien) = »_Zie] ,
i=1 i=1

wheree; is theh x 1 vector with elements,;, y =1, ..., h. Define also the x &
matrix

Vy=o'W,D;%
Then we have shown that
Jnveaa'zZ,) =n"Y2veqV,) + 0,(n"Y?)
=D, ®@a")n~Y2vedW,) + 0,(n /3
n
=D,'®@a" )Y e;®Z;+ 0, ).
i=1
Becauses contains OLS residuals, it is uncorrelated with any linear function
of X; in particular, Cove, Z) = 0. It follows that Ee ® Z) = 0 and therefore, by
the multivariate central limit theorems,~/2veqW,,) converges in distribution
to a normal random vector with mean 0 and covariance matrixe\V@rZ).

Consequently; ~2veqV,,) converges in distribution to a normal random vector
with mean 0 and covariance matrix

Q5 = (D, ®a’)Vare ®Z)(D,* ® )
=ED,'ee'D;'®a’ 22" a),
which is the desired conclusion.

A.3. Corallary 1.

A.3.1. Equation (13). Under the linearity conditiong is a measurable

function of Y andI'7z, and
Qs =E[D,'ee’ D' ®@a’ E(ZZT|(Y,T]Z))a].
The linearity and coverage conditions imply thaZZ” |y, T'1z) = EZz" |11 Z)
and thus
-1 -1
Qy =E[D,'ee' D' ®a'EZZ"|T{Z)a].
The linearity and constant covariance conditions imply that
Ezz"ir1z)=varziriz) + EZITT2)E(ZIT]Z)"
= QJ)/\Z + PJY\ZZZTPJY\Z'
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Consequently,
«'EZZT T 2)a=a’ Qg0+ Py, ,ZZ" Py,
= aT QJY‘Za
T

=o' a=1,

where we have used the facts that under the coordinate hypothgsie = 0 and
J = Sparje) € SparI'p) (see Proposition 2). Thus, in summary to this point,

(25) Qs =ED,'ee'D;H® I,

To simplify E(Dg—leeTD;l), let J andf = E(J) denote ther x 1 vectors with
elements/, and fy, and write the residual vector as

e=J—f—(uDy)Z.
In anticipation of expanding@e’) we have
EQ-HA - =EQI") — T =D —ffT,
EZWJ-HT)=E(EZ|Y)I") = uD,.
Then
E(ee’)=(Dy —ff") — 2D u” uDy + Dop” uD,
= (Dy —ff") —Dyu” Dy,
E(D,"ee’' D, =1 —gg" —n'n
=0, —n'p.
A.3.2. Asymptotic distribution.  Since VarzZ) = I,,, we have
I, =EVar(Z|Y)) + Var(E(Z|Y))
=E(VarZ|Y) + pp'

and consequently, — pp” > 0, which implies that the eigenvalues pfu”

are between 0 and 1. The nonzero eigenvaluegpf are the same as the
nonzero eigenvalues gi” u and thusl, — u”u > 0. Combining this with the
identity pQ, = p we haveQ, — u’'p = Q. (I, — n" p)Q, > 0. It follows that
the eigenvalues 00, — u! p are nonnegative. The convergence in distribution
follows immediately becaus® > --- > §, = 0, each with multiplicityr, are the
eigenvalues of2 5.
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A.4. Corollary 2. It follows from Bura and Cook [(2001a), Theorem 2 and its
justification; see also Cook (1998a), page 213] that, under the linearity, coverage
and constant covariance conditions,

(W RTHAW @ To) =W 0, ¥R 1, 4.
Thus,
L=V 0,¥o®Fy.

The matrix Fg is a symmetric idempotent matrix of rank— d — » [Propo-
sition 2(iv)] and, from the discussion following Corollary m,gQg\po is a
symmetric idempotent matrix of rartk— d — 1. Consequently2/; is a symmetric
idempotent matrix of rankh —d — 1)(p — d — r) and the conclusion follows.

A.5. Proposition 5. To find the limiting distribution ofT;, (#|d) under the
coordinate hypothesis, we first use (19) and (16) to write

(26) T (H|d) = T,,(#) — nl|(Ih—a ® Ge) vedU,) |1? + op(1)
and, because ¥’ = 1,
h np B
> S IP#Zy 2 = ntrac& PRZ, ¥ Z! Py
y=1j=1

= ntrace P77, ¥1¥1 71 P7)
+ntraceT” P5Z, oWl ZI P7T).
The second term in this expression K #¢) can be represented using
VTl P27, W0 0
\/ﬁFng{?Zn\Ilo) B <\/EGJ€ran‘I’O> +op().

The conclusion for the first coordinate relies on the fact thal'; converges to 0

in probability under the hypothesis andn vedZ, ¥o) converges in distribution.
The conclusion for the second coordinate follows by an argument similar to that
used in Section 6.1. Recalling that = I'{ Z,¥o, we have

\/ZI'TPJ?Z,,‘I’OZ<

ntraceT’ P37, WoW 2l P7T) = ntraceG U, Ul G ) + 0,(1)
=n|(Ih—a) ® Gye) vedU,)|? + 0, (D).
Combining this result with (26) we have
T, (#|d) = ntrac& PzZ,¥1¥] Z] P%) + 0,(1)
(27) = ntracga’ Z,¥ 191 27 &) +0,(1)
= (] ® I,)V/nveda” Z,)|? + 0, (1).
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A.6. Corollary 4. Under the linearity, coverage and constant covariance
conditions, the covariance matrix of the asymptotic normal distributio(riltif@

I)ﬁveq&TZn) can be found by using Corollary 1:

Qg = (V1 @ 1)y (¥1® 1)
=W RL)((Q—n'wL)(¥1Q 1)
= (W] Q;¥1-D)® I,
=Ua—D)®I,

whereD; = Df is thed x d matrix of the nonzero eigenvalues pf w. The third
equality follovs because

p'w=¥D,TTrD,W!
and thus
D, = \II{MTM\Pl = DSZ.

The final guality follows becausgQ, =  and thusl'1D,¥! Q, = T'1D,¥7,
which implies that¢? 0, = w1

The eigenvalues oy, are 1— A; with multiplicity r, j =1,...,d.
Consequently,

d
T, (#|d) 5 3 (L= 1) x20).
j=1
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