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TESTING PREDICTOR CONTRIBUTIONS IN SUFFICIENT
DIMENSION REDUCTION

BY R. DENNIS COOK1

University of Minnesota

We develop tests of the hypothesis of no effect for selected predictors
in regression, without assuming a model for the conditional distribution of
the response given the predictors. Predictor effects need not be limited to
the mean function and smoothing is not required. The general approach
is based on sufficient dimension reduction, the idea being to replace the
predictor vector with a lower-dimensional version without loss of information
on the regression. Methodology using sliced inverse regression is developed
in detail.

1. Introduction. In full generality, the goal of a regression is to infer about the
conditional distribution of the univariate response variableY given thep×1 vector
of predictorsX: How does the conditional distribution ofY |X change with the
value assumed byX? Many different statistical contexts have been developed to
address this issue. In this article we considersufficient dimension reduction (SDR),
the basic idea being to replace the predictor vector with its projection onto a
subspace of the predictor spacewithout loss of information onY |X. More formally,
we seek subspacesS of the predictor space with the property that

Y |= X|PSX,(1)

where |= indicates independence,P(·) stands for a projection operator in the
standard inner product and, for future reference,Q(·) = Ip − P(·). The statement
is thus thatY is independent ofX given any value forPSX. Subspaces with
this property are called dimension reduction subspaces. Lettingk = dim(S),
a regression inquiry can then be limited tok ≤ p new predictors, expressed
as linear combinations of the original ones:vT

1 X, . . . ,vT
k X, where the basis

{v1, . . . ,vk} for S is often chosen so that the new predictors are uncorrelated.
When the intersection of all subspaces satisfying (1) also satisfies (1) it is

called thecentral subspace (CS) [Cook (1994, 1996, 1998a)] and is denoted
by SY |X. The central subspace, which is assumed to exist throughout this article,
is a population metaparameter that can be taken as the parsimonious target of a
dimension reduction inquiry. Its dimensiond = dim(SY |X) is called thestructural
dimension of the regression. There are several methods available that can be
used to estimate the CS, including sliced inverse regression (SIR) [Li (1991)],
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sliced average variance estimation (SAVE) [Cook and Weisberg (1991)], graphical
regression [Cook (1994, 1998a)], parametric inverse regression [Bura and Cook
(2001b)] and partial SIR [Chiaromonte, Cook and Li (2002)] when categorical
predictors are present. Cook and Weisberg (1999a) gave an introductory account
of studying regressions via central subspaces.

Other dimension reduction methods estimate thecentral mean subspace [Cook
and Li (2002)], which is a subspace of the CS that captures the mean function.
These include ordinary least squares (OLS) and related methods based on convex
objective functions, principal Hessian directions [Li (1992) and Cook (1998b)],
iterative Hessian transformation [Cook and Li (2002)] and minimum average
variance estimation [Xia, Tang, Li and Zhu (2002)]. In this article we are concerned
only with the CS.

The estimation methods for the CS mentioned previously are all consistent
under reasonable conditions when the dimensiond of the CS is known. Inference
on d is often based on hypothesis testing: Starting withm = 0, test the hypothesis
d = m versusd > m. If the test is rejected, incrementm by 1 and test again,
stopping with the first nonsignificant result. This type of procedure is fairly
common for estimating the dimension of a subspace [see, e.g., Rao (1965),
page 472]. Once an estimated̂ is obtained, subsequent analysis, including choice
of a first model, is typically guided by a summary plot ofY versus the new
predictorsη̂T

1 X, . . . , η̂T

d̂
X, whereη̂j ∈ R

p and{η̂1, . . . , η̂d̂
} is the estimated basis

for SY |X. Examples of this process are available throughout the SDRliterature. For
recent examples, see Chen and Li (1998), Cook and Lee (1999) and Chiaromonte,
Cook and Li (2002).

The ability to test the significance of subsets of predictors is often important
in model-based regression, but is currently unavailable in SDR. In this article
we develop tests of hypotheses involving statements of the formPHSY |X = Op,
where H is a user-selected subspace of the predictor space that specifies the
hypothesis, andOp indicates the origin inRp. PartitioningXT = (XT

1 ,XT
2 ), we

imagine a typical application to test the hypothesis thatr selected predictorsX2
do not contribute to the regression. Let the columns of thep × d matrix η
be a basis forSY |X and partition ηT = (ηT

1 ,ηT
2 ) according to the partition

of X. By definition of SY |X, Y |= X|ηT X. We wish a test of the hypothesis
Y |= X|ηT

1 X1 so that thecoordinate subspace Span(η2) coincides with the origin,
Span(η2) = Or . This can be expressed in terms of the statementPHSY |X = Op

by choosingH = Span((0, Ir)
T ) to be the subspace ofR

p corresponding to the
coordinatesX2 in question. Because we expectH will typically be chosen to
target selected predictors, we refer to hypotheses of the formPHSY |X = Op as
coordinate hypotheses, althoughH need not correspond to a subset of predictors
(coordinates). We letr = dim(H).

The following proposition gives a conditional independence interpretation of
the statementPHSY |X = Op. Its proof is sketched in the Appendix.
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PROPOSITION1. PHSY |X = Op if and only if Y |= PHX|QHX.

Consequently, a coordinate hypothesis test can be regarded as a test of
the hypothesis that, givenQHX, the orthogonal partPHX of the predictor
vector contains no information about the response. WithH = Span((0, Ir)

T )

the hypothesisPHSY |X = Op is equivalent to the hypothesis thatY andX2 are
conditionally independent givenX1, Y |= X2|X1.

In this article we consider three kinds of hypotheses that could be useful
depending on the application-specific requirements:

1. Marginal dimension hypotheses—d = m versusd > m;
2. Marginal coordinate hypotheses—PHSY |X = Op versusPHSY |X �= Op;
3. Conditional coordinate hypotheses—PHSY |X = Op versusPHSY |X �= Op

givend .

Marginal dimension hypotheses are considered extensively in the literature and are
mentioned here for completeness. The other two forms are new and tests for them
are developed in this article. Any of the dimension reduction methods mentioned
previously (e.g., SIR, SAVE or PIR) could in principle be a foundation for tests
of these hypotheses. In effect, graphical regression [Cook (1994, 1998a)] is built
on our ability to assesscoordinate hypotheses in a series of three-dimensional
plots. In this article we use SIR to develop formal asymptotic tests of the two
new hypotheses.

Our use of SIR to develop tests of hypotheses involving coordinate restrictions
depends on rederiving it as the solution to a multivariate nonlinear least squares
problem. This is done in Section 3.1 following further discussion of preliminary
issues in Section 2. The population structure of SIR is related to the coordinate
hypotheses in Section 3.2, and general results on test statistic construction are
described in Section 4. In Sections 5 and 6 we develop the tests for the marginal
and conditional coordinate hypotheses, including asymptotic null distributions and
suggestions for implementation. Simulation results on level and power along with
an illustrative data analysis are reported in Section 7. Concluding comments are
given in Section 8, along with additional discussion of the literature and its relation
to this work. To avoid interrupting the discussion, proofs for most results are given
in the Appendix.

2. Preparations. We assume throughout this article that the data(Yi,Xi ), i =
1, . . . , n, X ∈ R

p, are i.i.d. observations on(Y,X), which has a joint distribution
with finite fourth moments and� ≡ Var(X) > 0. In keeping with the usual SIR
protocol, we assume also that the response has been discretized by constructingh

slices so thatY takes values in{1,2, . . . , h}. Thej th value ofY is called thej th
slice. This slicing step might be unnecessary if the response is naturally discrete or
categorical.
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Let the standardized predictors be denoted by

Z = �−1/2(X − E(X)
)

with sample version

Ẑyj = �̂
−1/2

(Xyj − X̄),

where subscript(yj) indicates observationj in slice y, y = 1, . . . , h, j = 1,

. . . , ny , n = ∑
y ny , X̄ = ∑

yj Xyj/n is the sample mean of theXyj ’s,

�̂ = 1

n

h∑
y=1

ny∑
j=1

(Xyj − X̄)(Xyj − X̄)T

is the usual sample covariance matrix and�−1/2 denotes the unique symmetric
positive-definite square root of�−1. To allow use of the usual inner product
in subsequent developments and without loss of generality, we work in the
Z scale with central subspaceSY |Z = �1/2SY |X [Cook (1998a), Proposition 6.3],
letting the columns of thep × d matrix γ be an orthonormal basis forSY |Z.
Summations

∑
yj with implicit limits (yj) are always overy = 1, . . . , h, j = 1,

. . . , ny .
In practice coordinate hypotheses will typically be formulated in the original

X scale by selecting an appropriate basis forH . A coordinate hypothesis could
then be stated asαT

x η = 0, whereαx is the user-selected basis forH expressed as
ap × r matrix of full column rankr , andη is a basis forSY |X. For example, to test
if a selected subset ofr predictors contributes to the regression we can test if the
rows of η corresponding to ther predictors in question are all zero vectors. The
matrix αx can then be chosen to select the appropriate rows ofη.

The hypothesisαT
x η = 0 holds if and only ifαT (�1/2η) = 0, whereα =

�−1/2αx and the columns of�1/2η form a basis forSY |Z. A coordinate hypothesis
in theX scale,PHSY |X = Op with H = Span(αx), can be restated in theZ scale as
PHSY |Z = Op with H = Span(α). Thus by appropriate choice of basis,αx or α,
we can work in either scale.

Back to theZ scale, without loss of generality we take the columns of

α = �−1/2αx(α
T
x �−1αx)

−1/2(2)

to be an orthonormal basis forH in the remainder of this article. The hypothesis
PHSY |Z = Op holds if and only ifSY |Z is in the orthogonal complement ofH
and consequently under the hypothesis we must haver ≤ p − d . Otherwise the
hypothesis is certainly false.
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3. SIR.

3.1. Nonlinear least squares formulation. The development of SIR as a
means to estimateSY |Z requires the following condition:

(C1) Linearity condition—E(Z|PSY |ZZ) = PSY |ZZ.

This condition, which is common in SDR, is equivalent to requiring that
E(Z|γ T Z) be a linear function ofγ T Z [Cook (1998a), Proposition 4.2]. Li’s
(1991) design condition is equivalent to (C1), which applies to the marginal distri-
bution of the predictors and not to the conditional distribution ofY |Z as is common
in regression modeling. Consequently, we are free to use experimental design, one-
to-one predictor transformationsτ or reweighting [Cook and Nachtsheim (1994)]
to induce the condition when necessary without suffering complications when in-
ferring aboutY |Z. Since we are not assuming a model forY |X, these adaptation
methods need not change the fundamental issues in the regression. For example,
becauseY |(X = x) has the same distribution asY |(τ (X) = τ (x)), predictor trans-
formations just change the way in which the conditional distribution ofY |X is
indexed. The linearity condition holds for elliptically contoured predictors. Addi-
tionally, Hall and Li (1993) showed that asp increases withd fixed the linearity
condition holds to a reasonable approximation in many problems.

The linearity condition implies that the conditional means E(Z|Y ) lie in the CS
for all values ofY [Li (1991)]. We take this a step further and assume the following
condition:

(C2) Coverage condition—Span{E(Z|Y = y)|y = 1, . . . , h} = SY |Z,

so that the subspace spanned by the inverse conditional means coincides with the
CS. This condition is also common in regression studies based on SIR. It requires
in part thath ≥ d + 1. For subsequent tests ond we requireh > d + 1.

For each valuey of Y we can now find a vectorρy ∈ R
d such that

E(Z|Y = y) = γ ρy,

whereγ is the basis matrix forSY |Z defined previously. Because E(Z) = 0 we
must have E(ρY ) = ∑

y fyρy = 0, wherefy = Pr(Y = y) is the probability of
slicey. This suggests that for fixedd estimates ofγ andρy can be constructed by
minimizing the least squares loss function

Ld(B,Cy) ≡
h∑

y=1

ny∑
j=1

‖Ẑyj − BCy‖2

over B in the Stiefel manifold [Muirhead (1982), page 67] of allp × d semi-
orthogonal matrices and overCy ∈ R

d subject to
∑

y f̂yCy = 0, wheref̂ = ny/n

is the observed fraction of observations falling in slicey. The values ofB andCy

that minimizeLd are then taken as the estimatesγ̂ and ρ̂y of γ andρy , y = 1,
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. . . , h. Although we refer toγ̂ and ρ̂y as estimates, it may be, strictly speaking,
more appropriate to think of them as solutions since they can be replaced by
γ̂ HT andHρ̂y , whereH is any orthogonal matrix.

Minimizing Ld results in the SIR estimate ofSY |Z whend is regarded as known:
Let Z̄y = ∑

j Ẑyj/ny be the average of thêZyj in slicey, and writeLd as

Ld(B,Cy) = ∑
y j

‖Ẑyj − Z̄y‖2 + ∑
y j

‖Z̄y − BCy‖2.

For fixedB the minimum is attained by

C̄y = BT Z̄y, y = 1, . . . , h.

Then minimizingLd(B, C̄y) overB yields the SIR estimate ofSY |Z. To summarize
the essential result, let̂M = ∑

y f̂yZ̄yZ̄T
y denote the sample covariance matrix of

the slice means, and letλ̂1 ≥ · · · ≥ λ̂p denote the eigenvalues of̂M. Then the
columns ofγ̂ are the eigenvectors corresponding to the firstd eigenvalues of̂M,
andρ̂y = γ̂ T Z̄y , y = 1, . . . , h.

The minimum valueL̂d ≡ Ld(γ̂ , ρ̂y), which we call theresidual sum of
squares, is

L̂d =
h∑

y=1

nh∑
j=1

‖Ẑyj − Z̄y‖2 + n

p∑
j=d+1

λ̂j(3)

for d ≤ p − 1 and

L̂p =
h∑

y=1

nh∑
j=1

‖Ẑyj − Z̄y‖2(4)

for d = p.
The usual SIR test statisticTn(m) for testingd = m versusd > m, wherem < p,

can be found by comparing the residual sum of squares under the null hypothesis
to that under the alternative,

Tn(m) = L̂m − L̂p = n

p∑
j=m+1

λ̂j .(5)

Assuming thatX has a multivariate normal distribution and implicitly assuming
the coverage condition, Li (1991) proved that the distribution ofTn(d) is
asymptotically chi-squared with(p − d)(h − d − 1) degrees of freedom. Bura
and Cook (2001a) proved thatTn(d) has the same asymptotic distribution under
the coverage and linearity conditions plus the following condition:

(C3) Constant covariance condition—Var(Z|PSY |ZZ) = QSY |Z,
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whereQSY |Z = Ip − PSY |Z. This condition is equivalent to requiring that Var(Z|
PSY |ZZ) be a nonrandom matrix. Normality ofX implies the linearity and constant
covariance conditions, but not the coverage condition. Bura and Cook (2001a) also
proved that in generalTn(d) is distributed as a weighted sum of independent chi-
squared random variables and showed how to construct consistent estimates of the
weights for use in practice.

In the next section we relate the coordinate hypothesisPHSY |Z = Op to the
population structure of SIR.

3.2. Coordinate hypotheses and SIR. Let gy = √
fy , let µ be thep × h

matrix with columnsgyE(Z|Y = y), y = 1, . . . , h, and construct the singular value
decomposition

µ = (�1 �0 )

(
Ds 0
0 0

)(
�T

1

�T
0

)
,(6)

where� = (�1,�0) and� = (�1,�0) arep × p andh × h orthogonal matrices,
Ds is a d × d diagonal matrix of positive singular values and the various
submatrices have the following dimensions:

�1 :p × d, �0 :p × p − d, �1 :h × d, �0 :h × h − d.

Under the linearity and coverage conditions, Span(�1) = SY |Z and so under these
conditions we can takeγ = �1 as our basis forSY |Z.

The following two propositions relate coordinate hypotheses to the population
structure of SIR. The proofs seem straightforward and are omitted.

PROPOSITION 2. Assume that the linearity and coverage conditions hold.
Then each of the following two conditions is equivalent to the coordinate
hypothesis PHSY |Z = Op:

(i) QH�1 = �1.
(ii) H ⊆ Span(�0).

In addition, the coordinate hypothesis implies the following:

(iii) QH�0 = �0(�
T
0 QH�0).

(iv) FH ≡ �T
0 QH�0 is a (p − d) × (p − d) symmetric idempotent matrix of

rank p − d − r .
(v) GH ≡ I(p−d) − FH = �T

0 PH�0 is a (p − d) × (p − d) symmetric
idempotent matrix of rank r .

PROPOSITION 3. Assume that the linearity and coverage conditions hold. If
PHSY |Z = Op, then the singular value decomposition of µ is the same as that
of QHµ.
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4. Test statistic construction. In this section we discuss results that will
facilitate construction of statistics fortesting the two new hypotheses described
in Section 1. Proceeding by analogy with the nonlinear least squares derivation of
SIR described in Section 3.1, the test statistics will be constructed as the difference
between the residual sums of squares under null and alternative hypotheses. The
residual sum of squares under a dimension hypothesisd = m can be written
using (3)–(5) as

L̂m =
h∑

y=1

ny∑
j=1

‖Ẑyj − Z̄y‖2 + Tn(m)(7)

for m = 0, . . . , p. Here we defineTn(p) = 0 so that (3) and (4) are both covered
by (7).

We will also need the residual sum of squares under a coordinate constraint
PHSY |Z = Op and a dimension constraintd = m. Because� is typically
unknown, it will have to be estimated for use in practice. Thus we letĤ =
Span(�̂

−1/2
αx).

To construct the residual sum of squares under coordinate and dimension
constraints, write

Lm(B,Cy) = ∑
yj

‖Ẑyj − Z̄y‖2 + ∑
yj

‖PĤ (Z̄y − BCy)‖2

+ ∑
yj

‖QĤ (Z̄y − BCy)‖2.

BecauseB represents an orthonormal basis forSY |Z, we impose the constraint
PĤB = 0, thus reducingLm to

L′
m(B,Cy) = ∑

yj

‖Ẑyj − Z̄y‖2 + ∑
yj

‖PĤ Z̄y‖2

+ ∑
yj

‖QĤ (Z̄y − BCy)‖2,
(8)

where the prime onL′
m indicates the imposition of the coordinate constraint. For

fixed B with BT B = BT QĤB = Im, the minimum is attained bȳCy = BT QĤ Z̄y ,
y = 1, . . . , h. Consequently, withm < p − r ,

min
(B,Cy)

h∑
y=1

ny∑
j=1

‖QĤ (Z̄y − BCy)‖2 = min
B

∑
y j

‖QĤ (Z̄y − BBT QĤ Z̄y)‖2

= n

p∑
j=m+1

λ̂′
j = n

p−r∑
j=m+1

λ̂′
j ,
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whereλ̂′
1 ≥ · · · ≥ λ̂′

p are the eigenvalues ofQĤM̂QĤ . The last equality follows
since the lastr eigenvalues ofQĤM̂QĤ are all 0. Ifm ≥ p − r , then

min
(B,Cy)

∑
y j

‖QĤ (Z̄y − BCy)‖2 = 0.

Substituting intoL′
m(B,Cy) given in (8) we obtain the residual sum of squares

L̂′
m = ∑

yj

‖Ẑyj − Z̄y‖2 + ∑
yj

‖PĤ Z̄y‖2 + T ′
n(m),(9)

whereT ′
n(m) = n

∑p
j=m+1 λ̂′

j and we adopt the convention thatT ′
n(p) = 0.

In the next two sections we use (7) and (9) to construct test statistics for the new
hypotheses introduced in Section 1.

5. Marginal coordinate hypotheses. The marginal coordinate hypothesis
PHSY |Z = Op versus PHSY |Z �= Op can be used to test the contributions
of selected predictors without requiring a statement concerning the dimension
of SY |Z. The test statisticTn(H) is the difference between the residual sums of
squares under the null and alternative hypotheses:

Tn(H) = L̂′
p − L̂p = n trace(PĤM̂PĤ )(10)

= ∥∥√nvec(α̂T
Zn)

∥∥2
,(11)

where vec is the usual operator that maps a matrix into a vector by stacking

its columns,α̂ = �̂
−1/2

αx(α
T
x �̂

−1
αx)

−1/2 is an orthonormal basis for̂H and

Zn is the p × h matrix with columnsĝyZ̄y so thatM̂ = ZnZ
T
n and Zn

p→ µ.
The representation ofTn(H) given by (10) is what might be expected based on
intuition: to test if PHSY |Z = Op we consider the size of the projection of̂M
onto the subspace specified by the hypothesis. Before using (11) to describe the
asymptotic distribution ofTn(H) we consider another form of the statistic that
might provide additional insights.

Because E(Z|Y ) ∈ SY |Z,

νy ≡ �−1(E(X|Y = y) − E(X)
) ∈ SY |X, y = 1, . . . , h.

Consequently, under the coordinate hypothesis we must haveαT
x νy = 0 for all y.

Letting ν̂y = �̂
−1

(X̄y − X̄), the test statistic can be written in terms of the
hypothesized estimatesαT

x ν̂y of 0 as

Tn(H) =
h∑

i=1

f̂y ν̂
T
y αx(α

T
x �̂

−1
αT

x )−1αT
x ν̂y.
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5.1. Asymptotic distributions. A little setup is needed before we can describe
the asymptotic distribution ofTn(H). Define the indicator variableJy = 1 if Y is in
slicey and 0 otherwise, letβy = �−1 Cov(X, Jy) and letεy = Jy − fy − βT

y (X −
E(X)) denote the population residual from the OLS fit ofJy on X. Let ε be the
h × 1 vector with elementsεy , let Dg be theh × h diagonal matrix withgy on the
diagonal and recall thatα, the population version of̂α, is defined by (2). Finally,
let χ2

1(D),χ2
2(D), . . . , χ2

K(D) denote independent chi-squared random variables,
where the degrees of freedomD andK vary with context.

THEOREM 1. Assume that the linearity condition holds. Then, under the
coordinate hypothesis PHSY |Z = Op,

√
nvec(α̂T

Zn) converges in distribution to
a normal random vector with mean 0 and covariance matrix

�H = E(D−1
g εεT D−1

g ⊗ αT ZZT α).(12)

Consequently, from (11),

Tn(H)
L→

hr∑
i=1

ωiχ
2
i (1),

where ω1 ≥ ω2 ≥ · · · ≥ ωhr are the eigenvalues of �H .

This theorem requires the linearity condition but not the coverage condition. If
the coverage condition fails so SIR estimates a subspaceS of SY |Z, it provides a
test ofPHS = Op, but we will necessarily miss part of the CS. If the coverage
condition holds, then SIR estimates the whole CS and the theorem provides a test
of the complete hypothesisPHSY |Z = Op. As discussed later in Section 8, the test
implied by this theorem might be useful even if the linearity condition fails.

If we have conditions C1–C3, then�H can be simplified. LetQg = I − ggT ,
whereg denotes theh × 1 vector with elementsgy .

COROLLARY 1. If the linearity, coverage and constant covariance conditions
hold, then

�H = (Qg − µT µ) ⊗ Ir(13)

and

Tn(H)
L→

h−1∑
j=1

δjχ
2
j (r),

where δ1 ≥ · · · ≥ δh = 0 are the eigenvalues of Qg − µT µ.
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5.2. Implementation. The test statisticTn(H) is the same for all versions of
the test, but the reference distribution changes depending on conditions (C1)–(C3).
In the most general case described in Theorem 1 we need to estimate the
eigenvalues of thehr × hr covariance matrix�H to construct the reference
distribution. We can construct a consistent estimate�̂H of �H by substituting
sample estimates for the unknown quantities:

�̂H = 1

n

h∑
y=1

ny∑
j=1

D−1
ĝ

ε̂yj ε̂
T
yj D−1

ĝ
⊗ α̂T Ẑyj ẐT

yj α̂,(14)

whereα̂ and Ẑyj are as defined previously andDĝ is anh × h diagonal matrix
with ĝy on the diagonal. Also,̂εyj is the h × 1 vector of the residuals for
observation(yj), with one residual from each of the sample linear regressions
of Jy on X. Letting ω̂i denote the eigenvalues of̂�H , ap-value for the coordinate
hypothesis can be constructed by comparing the observed value ofTn(H) to the
percentage points of

∑hr
i=1 ω̂iχ

2
i (1). There is a substantial literature on computing

tail probabilities of the distribution ofa linear combination of chi-squared random
variables. See Field (1993) for an introduction. Alternatively, tail areas can usually
be approximated adequately by using Satterthwaite’s approximation.

We can proceed similarly under conditions (C1)–(C3). Thep-value can be
found by comparingTn(H) to the percentage points of the distribution of∑h−1

i=1 δ̂iχ
2
i (r), whereδ̂1 ≥ · · · ≥ δ̂h = 0 are the eigenvalues of

�̃H = (Qĝ − Z
T
n Zn) ⊗ Ir ,(15)

each with multiplicityr .
For ease of reference, we refer to the test using the weighted chi-squared

reference distribution constructed from (14) as thegeneral test. The test using
reference distribution constructed from (15) will be called theconstrained test.
Both tests use the same statisticTn(H), but the reference distribution depends on
applicable constraints, as given in Corollary 1.

6. Conditional coordinate hypotheses. The conditional coordinate hypoth-
esis PHSY |Z = Op versusPHSY |Z �= Op given d might be useful whend is
specified as a modeling device, or when inference ond usingTn(m) results in a
clear estimate. A test statisticTn(H |d) can again be constructed as the difference
between the residual sum of squares under the null and alternative hypotheses:

Tn(H |d) = L̂′
d − L̂d

= Tn(H) − (
Tn(d) − T ′

n(d)
)

(16)

= n

d∑
j=1

λ̂j − n

d∑
j=1

λ̂′
j ,(17)
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where T ′
n(d) = n

∑p
j=d+1 λ̂′

j and Tn(d) = n
∑p

j=d+1 λ̂j are as defined in
(5) and (9). Form (17) gives one way to compute the statistic and shows that it
depends on the largestd eigenvalues ofQĤM̂QĤ and M̂ for the null and al-
ternative hypotheses. In contrast, the usual SIR statisticTn(m) depends on the
smallestp − m eigenvalues of̂M. Form (16) will be easier to work with when de-
veloping the asymptotic distribution ofTn(H |d) because it allows us to use some
known results. To develop the asymptotic distribution ofTn(H |d) we consider
first the asymptotic distributions ofT ′

n(d) andTn(d) − T ′
n(d) because these are

components ofTn(H |d) and may be of interest in their own right. For instance,
T ′

n(m) = L̂′
m − L̂′

p and thus it can be viewed as a test statistic for a dimension
hypothesis given a coordinate constraint.

6.1. Asymptotic distribution of T ′
n(d). The asymptotic distribution ofT ′

n(d)

can be found by using results of Bura and Cook (2001a). Define
√

nUn ≡ √
n�T

0 (Zn − µ)�0 = √
n�T

0 Zn�0.

Bura and Cook [(2001a), equations (8)–(13) and associated discussion] first used
the general results of Eaton and Tyler (1994) on the asymptotic distribution of
singular values of a random matrix to conclude that the asymptotic distribution of
Tn(d) is the same as that ofn‖Un‖2. They then established that

√
nvec(Zn − µ)

L→ Nph(0,
)

and thus that
√

nvec(Un)
L→ N(p−d)(h−d)

(
0, (�T

0 ⊗ �T
0 )
(�0 ⊗ �0)

)
,(18)

where thehp × hp matrix 
 is as defined by Bura and Cook (2001a). It can be
represented as anh × h array ofp × p matrices
ss = Ipfs + (1− 2fs)�Z|s and

ts = gtgs(Ip − �Z|t − �Z|s), where�Z|s = Var(Z|Y = s), s, t = 1, . . . , h. Thus

Tn(d)
L→

(p−d)(h−d)∑
i=1

ωiχ
2
i (1),

whereω1 ≥ ω2 ≥ · · · ≥ ω(p−d)(h−d) are the eigenvalues of the covariance matrix
in the asymptotic distribution of

√
nvec(Un) given in (18).

The asymptotic distribution ofT ′
n(d) can be found similarly. Define

√
nU′

n = √
n�T

0 (QĤZn − QHµ)�0

= √
n�T

0 (QĤZn)�0,

where the second equality follows becauseµ�0 = 0 from the singular value
decomposition (6). It follows from Eaton and Tyler (1994) thatT ′

n(d) and
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n‖vec(U′
n)‖2 are asymptotically equivalent because, from Proposition 3,µ and

QHµ have the same singular value decomposition. Now,
√

nvec(U′
n) = (Ih−d ⊗ �T

0 QĤ )
√

nvec(Zn�0).

Since vec(Zn�0)
p→ 0, it follows that

√
nvec(Zn�0) converges in distribution.

BecauseQĤ converges in probability toQH , it follows from Slutsky’s theorem
that we can replacêH with H in

√
nvec(U′

n) without affecting its asymptotic
distribution. Consequently,

√
nvec(U′

n) is asymptotically equivalent to

(Ih−d ⊗ �T
0 QH )

√
nvec(Zn�0) = √

nvec(�T
0 QHZn�0)

= √
nvec(FH�T

0 Zn�0)

= (Ih−d ⊗ FH )
√

nvec(Un),

where the second equality follows from parts (iii) and (iv) of Proposition 2.
Consequently, the asymptotic distribution ofT ′

n(d) is the same as that ofn‖(Ih−d ⊗
FH )vec(Un)‖2, which can be determined from the asymptotic distribution
of

√
nvec(Un) given in (18). This enables us to conclude the following.

PROPOSITION4.

T ′
n(d)

L→
(p−d)(h−d)∑

i=1

ωiχ
2
i (1),

where ω1 ≥ ω2 ≥ · · · ≥ ω(p−d)(h−d) are the eigenvalues of

�′
d = (�T

0 ⊗ FH�T
0 )
(�0 ⊗ �0FH ).

Additionally, the following corollary follows from Bura and Cook [(2001a),
Theorem 2] and the fact thatFH is a symmetric idempotent matrix of rank
p − d − r [Proposition 2(iv)].

COROLLARY 2. Assume that the linearity, coverage and constant covariance
conditions hold. Then T ′

n(d) is distributed asymptotically as a chi-squared random
variable with (p − d − r)(h − d − 1) degrees of freedom.

Given that PHSY |Z = Op, µµT and QHµµT QH have the same rankd .
Consequently, we might expectTn(d) − T ′

n(d) to reflect little more than random
variation. Consider the orthogonal decomposition

n‖vec(Un)‖2 = n‖(Ih−d ⊗ FH )vec(Un)‖2 + n‖(Ih−d ⊗ GH )vec(Un)‖2,

whereGH is as defined in Proposition 2(v). As discussed previously in this section,
the left-hand side is asymptotically equivalent toTn(d) and the first term on the
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right-hand side is asymptotically equivalent toT ′
n(d). Thus, the second term is

asymptotically equivalent toTn(d) − T ′
n(d):

Tn(d) − T ′
n(d) = n‖(Ih−d ⊗ GH )vec(Un)‖2 + op(1).(19)

The next corollary gives the asymptotic distribution ofTn(d) − T ′
n(d) under

conditions C1–C3. Its proof parallels that of Corollary 2 and is omitted.

COROLLARY 3. Assume that the linearity, coverage and constant covariance
conditions hold. Then Tn(d)−T ′

n(d) is distributed asymptotically as a chi-squared
random variable with r(h − d − 1) degrees of freedom.

6.2. Asymptotic distribution of Tn(H |d). The asymptotic distribution
of Tn(H |d) can be found under the coordinate hypothesis by using the follow-
ing proposition. The proof given in the Appendix relies on (19).

PROPOSITION5.

Tn(H |d) = ∥∥(�T
1 ⊗ Ir )

√
nvec(α̂T

Zn)
∥∥2 + op(1).

Using this proposition in combination with Theorem 1 gives the following
theorem.

THEOREM 2. Assume that the linearity and coverage conditions hold.
Then, under the coordinate hypothesis PHSY |Z = Op, (�T

1 ⊗ Ir )
√

nvec(α̂T
Zn)

converges in distribution to a normal random vector with mean 0 and covariance
matrix

�H |d = E(�T
1 D−1

g εεT D−1
g �1 ⊗ αT ZZT α).

Consequently,

Tn(H |d)
L→

dr∑
i=1

ωiχ
2
i (1),

where ω1 ≥ ω2 ≥ · · · ≥ ωdr are the eigenvalues of �H |d .

It may be useful when reading this theorem to recall thatr ≤ p − d for a
meaningful coordinate hypothesis. In particular,�H |d is not defined whend = p.

As in Section 5, if conditions (C1)–(C3) hold, then�H |d can be simplified:

COROLLARY 4. If the linearity, coverage and constant covariance conditions
hold then

�H |d = (Id − Dλ) ⊗ Ir
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and

Tn(H |d)
L→

d∑
j=1

(1− λj )χ
2
j (r),

where λ1 ≥ · · · ≥ λd > 0 are the nonzero eigenvalues of µµT and Dλ is a diagonal
matrix with diagonal elements λj , j = 1, . . . , d .

The generalized inverse of�H |d in Corollary 4 could be used to construct a
Wald test statistic with an asymptotic chi-squared distribution under the coordinate
hypothesis of Theorem 2. A similar comment applies to (13) under the coordinate
hypothesis of Theorem 1.

6.3. Implementation. The results of Theorem 2 can be implemented in a
manner similar to the implementation of Theorem 1 described in Section 5.2.
A consistent estimatê�1 of �1 can be constructed from the singular value
decomposition ofZn just as�1 is obtained from the singular value decomposition
of µ given in (6). A consistent estimate of�H |d can then be constructed as

�̂H |d = (�̂
T

1 ⊗ Ir )�̂H (�̂1 ⊗ Ir ),(20)

where�̂H is as given in (14). Similarly, the asymptotic reference distribution of
Corollary 4 can be estimated by substituting the largestd eigenvalueŝλ1, . . . , λ̂d

of M̂ for λ1, . . . , λd , which amounts to estimating�H |d by using

�̃H |d = (Id − D
λ̂
) ⊗ Ir ,(21)

whereD
λ̂

is a diagonal matrix with diagonal elementsλ̂j , j = 1, . . . , d .
Following the terminology for tests of marginal coordinate hypotheses, we

refer to the test using reference distribution constructed from (20) as thegeneral
test. Theconstrained test uses the weighted chi-squared reference distribution
based on (21). These two tests use the same statisticTn(H |d); only the reference
distribution changes.

7. Simulation results and data analysis. Simulation studies were conducted
to insure that the asymptotic tests behave as expected and to provide a little insight
about their operating characteristics. Each study was based on one of the following
two models:

Y = X1 + ε,(22)

Y = X1

0.5+ (X2 + 1.5)2
+ δ.(23)

The number of observationsn, the number and distribution of the predictorsX
and the distributions of the errorsε and δ depend on the simulation. To avoid
inadvertent tuning by choice of the number of slices, every simulation run used
h = 5 slices. Test results were tabulated over 1000 replications for each sampling
configuration.
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7.1. Estimated versus nominal levels. In this section we report some repre-
sentative results to compare estimated and nominal levels. The estimates were
obtained by counting the number ofp-values that were less than or equal to
a nominal level in the 1000 replications for each sample configuration. These
p-values were obtained by applying the tests to a predictor not represented in the
mean function of the model, sor = 1.

Estimated levels of all seven statistics described here are shown in Table 1
for simulations from model (22) with five i.i.d. standard normal predictors, an

TABLE 1
Estimated level of nominal 1,5,10 and 15% tests based

on various statistics and reference distributions for
model (22) with p = 5 independent standard

normal predictors and ε = 0.2N(0,1)

Nominal level (%)

n 1 5 10 15

(A) Tn(H) with �̂H (14)
50 2.8 9.1 16.9 21.7

100 1.1 6.1 11.5 18.8
200 1.0 5.3 11.4 16.7

(B) Tn(H) with �̃H (15)
50 2.1 8.1 15.2 20.1

100 1.0 5.6 10.9 17
200 0.9 5.3 10.3 16.3

(C) Tn(H |d) with �̂H |d (20)
50 4.2 10.2 16.4 23

100 2.4 7.3 12.3 18.5
200 1.7 5.3 10.4 14.9

(D) Tn(H |d) with �̃H |d (21)
50 3.0 8.5 14.7 20.6

100 1.9 6.3 12.2 17.6
200 1.6 5.2 9.9 14.6

(E)Tn(d) ∼ χ2(12)
50 0.4 4.6 11 17.2

100 0.9 4.1 9.1 14.7
200 1.4 4.9 9.7 14.1

(F) T ′
n(d) ∼ χ2(9)

50 0.5 4.8 10.3 15.4
100 0.7 4.2 9.2 14.8
200 1.0 4.8 9.3 15.1

(G) Tn(d) − T ′
n(d) ∼ χ2(3)

50 1.5 5.3 12.2 17.9
100 0.9 4.5 9.1 15.2
200 0.9 4.9 10.0 16.0
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independent normal error and various sample sizes. For instance, the estimated
levels shown in subtable A are for the test statisticTn(H) with its general reference
distribution. Thep-values were computed by comparingTn(H) to the quantiles of
the weighted chi-squared distribution constructed by using the covariance matrix
in (14). The results seem quite good forn = 100 and 200. Tests based on an
estimated weighted chi-squared distribution (subtables A–D) tend to be liberal.
This conclusion held up throughout all the simulations of test level conducted.
The performance of the chi-squared statistics (subtables E–G), which tended to be
conservative, was similar to that reported by Bura and Cook (2001a) forTn(d). The
statisticsT ′

n(d) andTn(d) − T ′
n(d) were included in Table 1 to provide numerical

support for the asymptotic calculations described previously. An investigation
of possible roles for them in data analysis is outside the scope of this report.
Discussion in the remainder of this section is confined to tests of the marginal
and conditional coordinate hypotheses.

A substantial increase in the number of predictors typically required that the
sample size be increased to achieve consistent agreement between the estimated
and nominal levels. Shown in Table 2 are estimated levels for the two general
and two constrained tests based on model (23) withp = 10 independent standard
normal predictors. The agreement between the estimated and nominal levels for
n = 400 and 800 seems quite good. Comparing the results forTn(H) with those
for Tn(H |d) at n = 50,100 suggests that tests based onTn(H |d) need somewhat
larger sample sizes to achieve similar agreement. This might be because use
of Tn(H |d) requires an estimate of�1 that is not required to useTn(H) [see (20)].

The two general tests, one for marginal coordinate hypotheses and one for
conditional coordinate hypotheses, will probably be the most useful in practice
since they require the fewest assumptions. In comparison, the corresponding
constrained tests achieved similar agreement between the estimated and nominal
levels with somewhat smaller sample sizes.

The results in Table 3 are intended to give some idea about the impact of the
predictor distribution on the actual level of the two general tests. The subtables are
designated as A and C to correspond to their designations in Tables 1 and 2. The
simulation setup leading to Table 3 was repeated with other predictor distributions,
including thet distribution with five degrees of freedom and the uniform(−2,2)

distribution. The results for these predictor distributions were quite similar to the
results in Table 3.

Over the range of simulations represented in this study it was observed that the
estimated level of a nominal 1% test was nearly always between 1 and 5% and
the estimated level of a nominal 5% test was nearly always between 5 and 10%.
No simulations were conducted with more than 12 predictors or more than
800 observations.

7.2. Power. In this section we report results from a power study to gain insight
into the operating characteristics of the proposed tests. It is not difficult to find
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TABLE 2
Estimated levels from model (23) with p = 10

independent N(0,1) predictors and
δ = 0.2N(0,1)

Nominal level (%)

n 1 5 10 15

(A) Tn(H) with �̂H (14)
50 3.3 11.6 22.8 31.9

100 1.8 7.8 16.0 21.1
200 2.2 7.0 13.0 18.1
400 1.3 4.8 9.8 15.1
800 1.4 5.8 10.3 14.9

(B) Tn(H) with �̃H (15)
50 2.9 9.8 19.2 29.5

100 1.3 7.2 14.2 19.9
200 1.9 6.9 12.2 17.7
400 1.2 4.8 10.0 14.4
800 1.4 5.9 10.1 14.8

(C) Tn(H |d) with �̂H |d (20)
50 7.2 17.7 26.3 31.1

100 4.1 9.2 15.5 20.8
200 2.0 8.0 14.4 19.7
400 0.8 5.1 10.5 15.0
800 0.8 4.6 10.5 14.5

(D) Tn(H |d) with �̃H |d (21)
50 5.7 15.3 23.9 30.2

100 3.2 8.2 14.9 20.0
200 1.6 7.6 14.0 19.1
400 0.9 4.4 10.2 14.6
800 0.8 4.9 10.4 14.5

examples where the power is near 1, the nominal level or anywhere between these
extremes. To provide a benchmark for interpretation, the standard linear model
t-test was included in the study.

The results reported in Table 4 are from model (22) with five independent
standard normal predictors,n = 200 and three different errorsε. For each model
configuration, the power of the standardt-test for the hypothesis that the coefficient
of X1 equals 0, and the power of the general marginal coordinate test forX1, were
estimated by computing the fraction of rejections in 1000 replications. The first
column of Table 4 indicates the test. The second column indicates the nature of the
error and will be described shortly. The third and fourth columns give the estimated
power (PR) at the nominal 1 and 5% levels. The differences between the estimated
and nominal levels for all tests in Table 4 were found to be roughly as those of
Table 1.
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TABLE 3
Estimated test levels from model (23) with 10

independent χ2(4) predictors and
δ = 0.2N(0,1)

Nominal level (%)

n 1 5 10 15

(A) Tn(H) with �̂H (14)
100 2.5 8.2 13.4 19.3
200 1.1 5.4 11.0 15.7
400 1.2 6.3 11.5 17.2
800 1.3 5.3 10.4 15.4

(C) Tn(H |d) with �̂H |d (20)
100 1.6 7.2 12.7 18.7
200 1.6 7.3 12.5 18.9
400 0.7 3.2 7.9 12.9
800 1.0 5.6 10.0 16.0

To provide some information about estimation in addition to that for testing, we
also computed the absolute sample correlationsc betweenX1 and the fitted values
from the OLS fit ofY on X, including an intercept, and betweenX1 and the first
SIR predictor. The 0.05, 0.5 and 0.95 quantilesc0.05, c0.5 andc0.9 of the empirical
distributions of these absolute correlations are given in columns 5–7 of Table 4.

TABLE 4
Power results based on model (22) with three different errors ε

Test PR@0.01 PR@0.05 c0.05 c0.5 c0.95

(A) ε = σN(0,1)

t σ = 1 1 1 0.977 0.992 0.998
Tn(H) 1 1 0.970 0.990 0.998

t σ = 6.4 0.359 0.583 0.346 0.765 0.951
Tn(H) 0.175 0.364 0.095 0.583 0.772

(B) ε = 6.4(χ2(D) − D)/
√

2D

t D = 10 0.374 0.609 0.308 0.768 0.949
Tn(H) 0.220 0.465 0.120 0.698 0.948

t D = 2 0.348 0.594 0.284 0.774 0.951
Tn(H) 0.797 0.928 0.605 0.895 0.976

(C) ε = (eτX1)N(0,1)

t τ = 0.75 1 1 0.959 0.987 0.997
Tn(H) 1 1 0.954 0.985 0.997

t τ = 1.5 0.508 0.630 0.177 0.817 0.980
Tn(H) 1 1 0.938 0.977 0.995
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Table 4(A), ε = σN(0,1). For σ ≤ 2 the two procedures were observed to
yield essentially identical results. Both tests rejected in all 1000 replications, and
the absolute correlations were all quite high. The results forσ = 1 are shown
in the first two rows. Thet-test was observed to be the clear winner forσ ≥ 3;
the results forσ = 6.4 are shown in the third and fourth rows of this table. The
qualitative nature of these results should perhaps not be surprising since thet-test
has the home field advantage with a homoscedastic normal error. The estimated
powers at 1 and 5% of the general conditional coordinate testT (H |d = 1) were
observed to be 0.275 and 0.469 forσ = 6.4. Comparing these results with the
corresponding results in the table suggests that a substantial part of the power
differences between thet- and Tn(H)-tests can be attributed to the differential
information on dimension.

Table 4(B), ε = 6.4(χ2(D) − D)/
√

2D. The scaling of this chi-squared error
was chosen so that it has the same first two moments as the case withσ = 6.4 in
Table 4(A). As expected, the results for largeD were essentially the same as those
for σ = 6.4 in Table 4(A). Results forD = 10 are shown in the first two rows. The
corresponding estimated powers at 1 and 5% of the general conditional coordinate
testT (H |d = 1) were observed to be 0.348 and 0.538. As illustrated in the third
and fourth rows of this table, the performance of the marginal coordinate test is
much better that thet-test whenD is small. The corresponding estimated powers
at 1 and 5% of the conditional coordinate testT (H |d = 1) were observed to be
0.85 and 0.929. The results for thet- andTn(H)-tests were found to be similar
for D around 5 or 6.

Table 4(C), ε = (eτX1)N(0,1). For τ near 0 this model is essentially the
same as that forσ = 1 in Table 4(A), and the two tests were observed to be
equivalent. However, with larger values ofτ the t-test begins to lose ground and
for sufficiently large values the performance of the coordinate test is again much
better than thet-test. Results forτ = 0.75 and 1.5 are shown.

The results of this section suggest that, while the coordinate tests might not
perform as well as tests optimized for particular models, they perform reasonably
across a wide range of regressions, particularly since they do not require a model
for Y |X.

7.3. Choice of d . As illustrated in the power study of Section 7.2,Tn(H |d)

can be expected to have greater power thanTn(H), and consequently there are
potential gains from inferring aboutd prior to testing predictors. On the other hand,
misspecification ofd can lead to conclusions different from those based on the
true value. In this section we describe qualitative results from a simulation study
to investigate this behavior. Conclusions are based on the general marginalTn(H)

and conditionalTn(H |d) coordinate test of each of the individual predictors.
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Considern = 200 observations from a regression with five independent standard
normal predictorsXj and responseY = µ(X1,X2)+ε, where the standard normal
error ε |= X. Whenµ = X1 + eX2, the marginal dimension testsTn(m) resulted
in the correct conclusion thatd = 2, and the five conditional testsTn(H |d = 2)

correctly concluded that onlyX1 andX2 are relevant to the regression. The five
marginal testsTn(H) reached the same conclusion. Withd underspecified as 1, the
five tests based onTn(H |d = 1) also resulted in the correct conclusion that only
X1 andX2 are relevant. Underspecification did not affect the conclusions in this
case because the first SIR direction was close to Span(e1 + e2), whereei denotes
the 5× 1 vector with a 1 in theith position and 0 otherwise. In other words,
both X1 andX2 were manifested in the first SIR direction, and soTn(H |d = 1)

was able to detect contributions from both predictors. Withd overspecified as 3,
Tn(H |d = 3) resulted in the conclusion thatX1, X2 andX4 are significant, thus
giving an upper bound on the set of relevant predictors.

Whenµ = X1 − X2 + e(X1+X2), the marginal dimension tests again resulted in
the correct conclusion thatd = 2, andTn(H |d = 2) andTn(H) again correctly
concluded that onlyX1 andX2 are relevant to the regression. However, this time
with d underspecified as 1, the testTn(H |d = 1) incorrectly concluded that only
X1 is relevant. Underspecification affected the conclusions in this case because
X2 was not captured by the first SIR direction, which was close to Span(e1). With
d overspecified as 3,Tn(H |d = 3) again indicated three significant predictors,
includingX1 andX2.

Results of this study, including results not reported here, suggest that misspec-
ification of d need not be a worrisome issue when the marginal dimension tests
result in a clear estimate and that estimate is used inT (H |d). When the value ofd
is not clear, it is still safe to base inference on the marginal coordinate testTn(H).

7.4. Lean body mass regression. We revisit the lean body mass regression
[Cook and Weisberg (1999b)] to illustrate practical aspects of the previous de-
velopment. Lean body mass (LBM) is regressed on the logarithms of height (Ht),
weight (Wt), sum of skin folds (SSF) and the logarithms of the five hematological
variables red cell count (RCC), white cell count (WCC), plasma ferritin concentra-
tion (PFC), hematocrit (Hc) and hemoglobin (Hg) for 202 athletes at the Australian
Institute of Sport. Logarithms of the eight predictors were used to help insure the
linearity condition. Both females and males are represented in the data in approx-
imately equal proportions. However, for this illustration we neglect gender in the
regression.

The SIR chi-squaredp-values for the marginal dimension hypothesesd =
m,m = 0,1,2,3, are about 0, 0, 0.13 and 0.46. Consequently, we initially inferred
that d = 2, keeping in mind thatd = 3 is also a possibility. The first two SIR
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TABLE 5
Results from the lean body mass regression with all eight predictors

Fit p-values

X η̂1 η̂2 Tn(H) Tn(H|d = 2) Tn(H|d = 3)

log[SSF] −0.158(0.06) −0.076(0.45) 0 0 0
log[Wt] 0.971(0.22) −0.023(1.6) 0 0 0
log[Hg] 0.140(0.69) 0.347(5.3) 0.830 0.199 0.369
log[Ht] 0.088(0.65) −0.332(5.0) 0.344 0.270 0.537
log[WCC] −0.007(0.08) −0.015(0.59) 0.794 0.650 0.899
log[RCC] 0.011(0.49) 0.502(3.8) 0.090 0.014 0.032
log[Hc] −0.073(0.85) −0.715(6.5) 0.221 0.021 0.098
log[PFC] 0.003(0.03) 0.004(0.25) 0.040 0.820 0.192

directionsη̂1 and η̂2 are shown in the second and third columns of Table 5. The
numbers in parentheses are the approximate standard errors proposed by Chen
and Li [(1998), page 297]. A scatterplot of LBM versus the first SIR predictor
η̂T

1 X is shown in Figure 1(a). The mean function in this plot is noticeably curved.
Letting e denote the residuals from the OLS fit of LBM on(η̂T

1 X, η̂T
2 X), the need

for a second direction is evident in a 3D plot ofe versus(η̂T
1 X, η̂T

2 X), which has a
clear saddle shape. A scatterplot ofe versusη̂T

2 X is shown in Figure 1(b).
In the context of SDR there are now at least three options to aid in assessing

the significance of the individual predictors to the regression. We might develop a

(a) (b)

FIG. 1. Two scatterplots representing the SIR “fit” of the lean body mass regression: (a) LBM
versus η̂T

1 X; (b) residuals versus η̂T
2 X.
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model for LBM|X, guided by a 3D summary plot of LBM versus(η̂T
1 X, η̂T

2 X).
Predictors could then be tested in the context of the resulting model. This
type of procedure has produced useful results in the past, but there could be
a worrisome possibility that the modeling process would effectively invalidate
nominal characteristics of subsequent tests. Another possibility is to follow the
case study by Chen and Li [(1998), Section 5.2] and use the approximate standard
errors to guide variable selection. The assessment here is based on the general
versions of the marginal and conditional coordinate tests.

The last three columns of Table 5 give thep-values from the marginal
Tn(H)-test and the conditional testsTn(H |d = 2) andTn(H |d = 3) applied to
each predictor in turn. We see from all three sets of tests that SSF and Wt contribute
significantly to the regression, and probably RCC as well. The correlation between
the first SIR predictor̂ηT

1 X based on the full data and the first SIR predictor
from the regression of LBM on log(SSF), log(Wt) is about 0.9995, so these two
identified predictors largely account for the shape of the plot in Figure 1(a).
The correlation between the second SIR predictors from the same regressions
is about 0.83. Evidently, SSF and Wt contribute significantly to the first two
directions, while other predictors contribute mostly to the second direction. As
in linear regression, two correlated predictors might both have relatively large
p-values, while deleting either causes thep-value for the remaining predictor to
decrease substantially. UsingTn(H) to test simultaneously the effects of the last
six predictors in Table 5 yields ap-value of about 0.034, suggesting that some of
those predictors also contribute to the regression. The testsTn(H |d) with d = 2,3
produced the same conclusion with similarp-values.

The results so far can be partially summarized in terms of the hypothesis
Y |= X2|X1, whereXT = (XT

1 ,XT
2 ). The tests gave firm indications that hypothe-

ses with X2 = log(SSF) and X2 = log(Wt) are false. There was no notable
information to reject hypotheses withX2 set to any combination of log(Ht),
log(Hg) and log(WCC). Conclusions regarding the remaining three predictors
were relatively ambiguous, depending on a dimension specification. One of the
advantages of this type of analysis may be the ability to see which conclusions are
firmly supported by the data without prespecifying a dimension forSY |X and which
depend on specification of a dimension and perhaps eventually a model. Neverthe-
less, to focus the analysis we deleted the three predictors that were judged to be
unimportant and started over. The SIR chi-squaredp-values from this regression
for the hypothesesd = m, m = 0,1,2,3, were about 0, 0, 0.010 and 0.31. Conse-
quently, we now inferred thatd = 3, a conclusion that remained stable for the rest
of the analysis. This situation is consistent with the known propensity of the mar-
ginal dimension test to lose power when irrelevant predictors are added to the
regression. Additionally, there was no notable evidence in this five-predictor re-
gression to indicate that log(Hc) is relevant, leaving us with the reduced regression
of LBM on the remaining four predictors (SSF, Wt, RCC, PFC).
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TABLE 6
Results from the lean body mass regression with four predictors

Fit p-values

X η̂1 η̂2 η̂3 Tn(H) Tn(H|d = 2) Tn(H|d = 3)

log[PFC] 0.010 0.199 0.556 0.043 0.390 0.013
log[RCC] 0.023 0.556 −0.714 0.004 0.039 0.001
log[SSF] −0.356 −0.592 −0.395 0 0 0
log[Wt] 0.934 −0.549 0.159 0 0 0

Additional results for the reduced regression are given in Table 6. The sample
correlations between the first, second and third SIR predictors from the full
regression and the corresponding predictors from the reduced regression are
0.9997, 0.93 and 0.98, suggesting that the two regressions are giving essentially
the same information aboutY |X. Thep-values in Table 6 now give a consistent
message for all predictors except PFC, which is judged nonsignificant when
the dimension is underspecified as 2. This result could be anticipated from the
discussion of underspecification in Section 7.3, if substantial information on
PFC is furnished by the third direction. This interpretation is supported by the
coefficients in Table 6, which were computed after marginally standardizing the
predictors to have a sample standard deviation of 1. Additionally, the absolute
sample correlations between log(PFC) and the three SIR predictors of Table 6 are
about 0.32, 0.21 and 0.63.

In analogy with linear regression, we could have proceeded more straightfor-
wardly by using backward elimination based on marginal or conditional tests to
arrive at a reduced set of predictors. Starting with the marginal test in column 4,
Table 5, and sequentially removing predictors whosep-values are larger than 0.05
yields the results given in the fifth column of Table 6. The same procedure based
on the conditional test withd = 3 yields the results in the last column of Table 6.
The conditional test withd = 2 ends in with the same predictors, except PFC is
excluded becaused is underspecified.

8. Discussion. The theory of sufficient dimension reduction grew from a
body of literature on how to graphically represent a regression in low dimensions
without loss of information onY |X. Much of the development was inspired by
the idea of linear sufficient statistics developed from a parametric view by Peters,
Redner and Decell (1978) and Li’s (1991) development of SIR. The primary
motivation for the regression graphics ideas in Cook (1998a) stemmed from a
desire to see how far graphics could be pushed in the analysis of regression data.
The central subspace (CS) proved to be a key tool in that inquiry. The CS is
intended to play a role similar to Li’s (1991) EDR subspace, but it is a distinct
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population parameter constructed to insure that any nested sequence of dimension
reduction subspaces always leads to the same population subspace. The methods
developed here would not be possible using the EDR subspace because, in part,
the fundamental equivalence of Proposition 1 would fail.

Data analytic techniques (e.g., SIR, SAVE, PIR) for pursuing sufficient
dimension reduction have mostly lived in a world apart from mainstream
methodology, although there are threads leading to other ideas and methods
[see Chen and Li (1998) for a discussion]. By outlining a general context for
testing predictors and developing a specific implementation using SIR, this article
moves the inferential capabilities of SDR a step closer to mainstream regression
methodology. The connection with tradition is also strengthened by casting SIR in
terms of nonlinear least squares.

SIR has generated considerable interest since it was introduced. Hsing and
Carroll (1992) develop a version of SIR in which each slice contains two
observations so that the number of slices grows with the sample size. This two-slice
method was extended by Zhu and Ng (1995) to allow for slices with more than two
observations. The version in this article uses fixed slicing in which the number of
observations per slice grows with the sample size. Zhu and Fang (1996) bypass the
slicing step and use kernel smoothing instead. Schott (1994) investigated inference
methods ford when the predictors follow an elliptically contoured distribution.
Elliptically contoured distributions arenot required for the general methods in this
article.

Cook and Critchley (2000) showed that SDR methods can be useful for
identifying outliers and regression mixtures. Assumingd to be known, Gather,
Hilker and Becker (2001) developed a robust version of SIR by replacing its
components (e.g.,̄X, �̂ andM̂) with robust estimates. The nonlinear least squares
formulation of SIR described in Section 3 allows for alternative robust versions of
SIR that involve using a loss function other than least squares.

The linearity condition (C1) and the coverage condition (C2) are the only two
population conditions necessary for the theoretical justification of SIR. The con-
stant covariance condition (C3) is used only to simplify the asymptotic distribu-
tion of the test statistic under the null hypothesis. LettingM = Var(E(Z|Y )), the
role of the linearity and coverage conditions is to insure that Span(M) = SY |Z.
Without these two conditions, the asymptotic distributions given in Theorems
1 and 2 remain valid ifSY |Z is replaced by Span(M), but we may lose the equal-
ity Span(M) = SY |Z that provides an informative link with the population. As
argued previously, the linearity condition need not be worrisome in practice, partic-
ularly if we use the adaptation methods discussed in Section 3.1. Li (1997) studied
what can happen when the linearity condition fails, and Chen and Li (1998) de-
veloped an interpretation of SIR that might be helpful in some applications when
Span(M) �= SY |Z.
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APPENDIX: JUSTIFICATIONS

A.1. Proposition 1. Let the columns of the matrixη be a basis forSY |X. Then
Y |= X|ηT X if and only if Y |= (PHX,QHX)|(ηT PHX + ηT QH X). Now,

PHSY |X = Op 
⇒ Y |= (PHX,QHX)|ηT QHX


⇒ Y |= PHX|QHX.

For the reverse implication,Y |= PHX|QHX implies Y |= (PHX,QHX)|QH X
and consequently Span(QH ) is a dimension reduction subspace. Since the central
subspace is assumed to exist, any dimension reduction subspace must contain
the central subspace, which therefore must be in Span(QH ). It follows that
PHSY |X = Op.

A.2. Theorem 1. Theyth column
√

n(α̂T
Zn)y of

√
nα̂T

Zn can be expressed
as

√
n(α̂T

Zn)y = √
n(αT

x �̂
−1

αx)
−1/2αT

x ĝy�̂
−1/2

Z̄y.

Recalling thatJy = 1 if Y is in slice y and 0 otherwise, and thatβy =
�−1 Cov(X, Jy), it seems straightforward to verify thatβy = fy�

−1/2E(Z|Y = y)

with OLS estimator

β̂y = f̂y�̂
−1/2

Z̄y.(24)

The linearity condition implies thatβy ∈ SY |X and thus under the coordinate

hypothesisαT
x βy = 0. Consequently,

√
nαT

x β̂y converges in distribution and we
have

√
n(α̂T

Zn)y = √
n(αT

x �̂
−1

αx)
−1/2ĝ−1

y αT
x β̂y

= √
n(αT

x �−1αx)
−1/2g−1

y αT
x β̂y + Op(n−1/2).

Li, Cook and Chiaromonte (2003) provided a general expansion for OLS
estimators that is applicable to (24). Using this we get

√
nαT

x (β̂y − βy) = n−1/2αT
x �−1/2

n∑
i=1

Ziεyi + Op(n−1/2),

where

εyi = Jyi − fy − βT
y

(
Xi − E(X)

)
is the population residual from the OLS regression ofJy on X. Thus, substituting
we get

√
n(α̂T

Zn)y = n−1/2g−1
y αT

n∑
i=1

Ziεyi + Op(n−1/2),
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whereα = �−1/2αx(α
T
x �−1αx)

−1/2 as defined in (2).
Next define thep × h matrix

Wn =
n∑

i=1

(Ziε1i, . . . ,Ziεhi) =
n∑

i=1

Ziε
T
i ,

whereεi is theh× 1 vector with elementsεyi , y = 1, . . . , h. Define also ther × h

matrix

Vn = αT WnD−1
g .

Then we have shown that
√

nvec(α̂T
Zn) = n−1/2 vec(Vn) + Op(n−1/2)

= (D−1
g ⊗ αT )n−1/2 vec(Wn) + Op(n−1/2)

= (D−1
g ⊗ αT )n−1/2

n∑
i=1

εi ⊗ Zi + Op(n−1/2).

Becauseε contains OLS residuals, it is uncorrelated with any linear function
of X; in particular, Cov(ε,Z) = 0. It follows that E(ε ⊗ Z) = 0 and therefore, by
the multivariate central limit theorem,n−1/2 vec(Wn) converges in distribution
to a normal random vector with mean 0 and covariance matrix Var(ε ⊗ Z).
Consequently,n−1/2 vec(Vn) converges in distribution to a normal random vector
with mean 0 and covariance matrix

�H = (D−1
g ⊗ αT )Var(ε ⊗ Z)(D−1

g ⊗ α)

= E(D−1
g εεT D−1

g ⊗ αT ZZT α),

which is the desired conclusion.

A.3. Corollary 1.

A.3.1. Equation (13). Under the linearity condition,ε is a measurable
function ofY and�T

1 Z, and

�H = E
[
D−1

g εεT D−1
g ⊗ αT E

(
ZZT |(Y,�T

1 Z)
)
α

]
.

The linearity and coverage conditions imply that E(ZZT |Y,�T
1 Z) = E(ZZT |�T

1 Z)

and thus

�H = E
[
D−1

g εεT D−1
g ⊗ αT E(ZZT |�T

1 Z)α
]
.

The linearity and constant covariance conditions imply that

E(ZZT |�T
1 Z) = Var(Z|�T

1 Z) + E(Z|�T
1 Z)E(Z|�T

1 Z)T

= QSY |Z + PSY |ZZZT PSY |Z.
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Consequently,

αT E(ZZT |�T
1 Z)α = αT QSY |Zα + αT PSY |ZZZT PSY |Zα

= αT QSY |Zα

= αT α = Ir,

where we have used the facts that under the coordinate hypothesisPSY |Zα = 0 and
H = Span(α) ⊆ Span(�0) (see Proposition 2). Thus, in summary to this point,

�H = E(D−1
g εεT D−1

g ) ⊗ Ir .(25)

To simplify E(D−1
g εεT D−1

g ), let J andf = E(J) denote theh × 1 vectors with
elementsJy andfy , and write the residual vector as

ε = J − f − (µDg)
T Z.

In anticipation of expanding E(εεT ) we have

E(J − f)(J − f)T = E(JJT ) − ffT = Df − ffT ,

E
(
Z(J − f)T

) = E
(
E(Z|Y )JT

) = µDg.

Then

E(εεT ) = (Df − ffT ) − 2Dgµ
T µDg + Dgµ

T µDg

= (Df − ffT ) − Dgµ
T µDg,

E(D−1
g εεT D−1

g ) = Ir − ggT − µT µ

= Qg − µT µ.

A.3.2. Asymptotic distribution. Since Var(Z) = Ip, we have

Ip = E(Var(Z|Y )) + Var(E(Z|Y ))

= E(Var(Z|Y )) + µµT

and consequentlyIp − µµT ≥ 0, which implies that the eigenvalues ofµµT

are between 0 and 1. The nonzero eigenvalues ofµµT are the same as the
nonzero eigenvalues ofµT µ and thusIh − µT µ ≥ 0. Combining this with the
identity µQg = µ we haveQg − µT µ = Qg(Ih − µT µ)Qg ≥ 0. It follows that
the eigenvalues ofQg − µT µ are nonnegative. The convergence in distribution
follows immediately becauseδ1 ≥ · · · ≥ δh = 0, each with multiplicityr , are the
eigenvalues of�H .
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A.4. Corollary 2. It follows from Bura and Cook [(2001a), Theorem 2 and its
justification; see also Cook (1998a), page 213] that, under the linearity, coverage
and constant covariance conditions,

(�T
0 ⊗ �T

0 )
(�0 ⊗ �0) = �T
0 Qg�0 ⊗ Ip−d .

Thus,

�′
d = �T

0 Qg�0 ⊗ FH .

The matrix FH is a symmetric idempotent matrix of rankp − d − r [Propo-
sition 2(iv)] and, from the discussion following Corollary 1,�T

0 Qg�0 is a
symmetric idempotent matrix of rankh− d − 1. Consequently,�′

d is a symmetric
idempotent matrix of rank(h − d − 1)(p − d − r) and the conclusion follows.

A.5. Proposition 5. To find the limiting distribution ofTn(H |d) under the
coordinate hypothesis, we first use (19) and (16) to write

Tn(H |d) = Tn(H) − n‖(Ih−d ⊗ GH )vec(Un)‖2 + op(1)(26)

and, because��T = Ih,

h∑
y=1

nh∑
j=1

‖PĤ Z̄y‖2 = n trace(PĤZn��T
Z

T
n PĤ )

= n trace(PĤZn�1�
T
1 Z

T
n PĤ )

+ n trace(�T PĤZn�0�
T
0 Z

T
n PĤ�).

The second term in this expression forTn(H) can be represented using

√
n�T PĤZn�0 =

(√
n�T

1 PĤZn�0√
n�T

0 PĤZn�0

)
=

(
0√

nGH�T
0 Zn�0

)
+ op(1).

The conclusion for the first coordinate relies on the fact thatPĤ�1 converges to 0
in probabilityunder the hypothesis and

√
nvec(Zn�0) converges in distribution.

The conclusion for the second coordinate follows by an argument similar to that
used in Section 6.1. Recalling thatUn = �T

0 Zn�0, we have

n trace(�T PĤZn�0�
T
0 Z

T
n PĤ�) = n trace(GHUnUT

n GH ) + op(1)

= n
∥∥(

I(h−d) ⊗ GH
)
vec(Un)

∥∥2 + op(1).

Combining this result with (26) we have

Tn(H |d) = n trace(PĤZn�1�
T
1 Z

T
n PĤ ) + op(1)

= n trace(α̂T
Zn�1�

T
1 Z

T
n α̂) + op(1)

= ∥∥(�T
1 ⊗ Ir)

√
nvec(α̂T

Zn)
∥∥2 + op(1).

(27)
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A.6. Corollary 4. Under the linearity, coverage and constant covariance
conditions, the covariance matrix of the asymptotic normal distribution of(�T

1 ⊗
I )

√
nvec(α̂T

Zn) can be found by using Corollary 1:

�H |d = (�T
1 ⊗ Ir )�H (�1 ⊗ Ir )

= (�T
1 ⊗ Ir )

(
(Qg − µT µ) ⊗ Ir

)
(�1 ⊗ Ir )

= (�T
1 Qg�1 − Dλ) ⊗ Ir

= (Id − Dλ) ⊗ Ir ,

whereDλ = D2
s is thed × d matrix of the nonzero eigenvalues ofµT µ. The third

equality follows because

µT µ = �1Ds�
T
1 �1Ds�

T
1

and thus

Dλ = �T
1 µT µ�1 = D2

s .

The final equality follows becauseµQg = µ and thus�1Ds�
T
1 Qg = �1Ds�

T
1 ,

which implies that�T
1 Qg = �T

1 .
The eigenvalues of�H |d are 1− λj with multiplicity r , j = 1, . . . , d .

Consequently,

Tn(H |d)
L→

d∑
j=1

(1− λj )χ
2
j (r).
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