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MEAN SQUARED ERROR OF EMPIRICAL PREDICTOR

BY KALYAN DAS,! JMING JANGZ AND J. N. K. Rao?
Calcutta University, University of California, Davis and Carleton University

The term “empirical predictor” refers to a two-stage predictor of a linear
combination of fixed and random effects. In the first stage, a predictor is
obtained but it involves unknown parameters; thus, in the second stage,
the unknown parameters are replaced by their estimators. In this paper, we
consider mean squared errors (MSE) of empirical predictors under a general
setup, where ML or REML estimators are used for the second stage. We
obtain second-order approximation to the MSE as well as an estimator of
the MSE correct to the same order. The general results are applied to mixed
linear models to obtain a second-order approximation to the MSE of the
empirical best linear unbiased predictor (EBLUP) of a linear mixed effect
and an estimator of the MSE of EBLUP whose bias is correct to second order.
The general mixed linear model includes the mixed ANOVA model and the
longitudinal model as special cases.

1. Introduction. We consider a general linear mixed model of the form
(1.1 y=XB+Zv+e,

where y is ann x 1 vector of sample observationX, and Z are known

matrices,$ is a p x 1 vector of unknown parameters (fixed effects) andnd

e are distributed independently with means 0 and covariance matiicasd R,

respectively, depending on some unknown vector of paramet&i&e assume that

p is fixed andX is of full rank p (< n). Note thatcoyy) =X =R+ ZGZ'.
Problems involving multiple sources of random variation are often modeled as

special cases of (1.1). For example, in the well-known ANOVA model we partition

ZasZ=(Zy,...,Zy) andv = (v’l,...,v;)’, whereZ; isn xr;,v;isr; x 1,i =

1,...,q,andvy, ..., v, are mutually independent withy ~ N (0, 0;1,;) ande ~

N (O, ool,,). (For notational convenience we usgerather than the customara;g2

to denote theth variance component.) Note that the ANOVA model is a special

case of (1.1) wWitR = ool,, G = diago11,, ..., 041r,) ando = (oo, 01, . . -, oq).

The (dispersion) parameter space under the ANOVA modél is {0 :0; > 0,

i=0,1,...,¢q}. The well-known “longitudinal” random effects model [Laird and

Ware (1982)] is also a special case of (1.1). In this gase(y1, ..., y,)’ with

1.2 yvi=XiB+ Zjvi +e;, i=1,...,1,
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wherey; is n; x 1, X; isn; x p and Z; is n; x r;. It is assumed that the
y;’s are independent, cow;) = G;, cove;) = R;, where G; and R; depend
ono, andv; ande; are independent. It follows th& = diag(Xy, ..., X;) with
Y =coWy;) = X; = R; + Z;G;Z. [Note that the longitudinal model (1.2)
is not a special case of the ANOVA model and vice versa.] The well-known
Fay—Herriot (1979) model widely used in small area estimation is a special case
of the longitudinal model. The (dispersion) parameter space under the longitudinal
model is® = {o : ; is nonnegative definité,= 1, ..., t}.

Estimation of linear combinations ¢f and realizedv from (1.1), sayu =
I'B + m'v, for specified vectors of constantsandm is of considerable interest
in many practical applications, for example, the estimation of quality index,
longitudinal studies, the selection index in quantitative genetics, plant varietal trials
and small area estimation [Robinson (1991)]. Henderson (1975) obtained the best
linear unbiased predictor (BLUP) of under model (1.1) as

(o) =1t(0,y)

(13) 15 / ~ ! / 3
=I'B+m'v=1IB+s(0)(y—Xp),

where

B=h0)=Xz1x)X'=7 1y
is the generalized least squares estimator, or best linear unbiased estimator
(BLUE), of 8,7 =17(0)=GZ'S Xy — XB) ands(0) = X 1ZGm.

The BLUP estimator (1.3) is unbiased in the sense piidy) — u] =0
under (1.1). The mean squared error (MSE)(@f) is given by

(1.4) MSE[t(0)] = E[t(0) — u]* = g1(0) + g2(0),
where
g1(0)=m'(G - GZ'272G)m
and
g2(0) =[l = X's@)X'=71X) 711 — X's(o)];

see Henderson (1975). Results (1.3) and (1.4) do not require normality of random
effectsv ande.

The BLUP estimator (o) depends on the dispersion parameterswhich
are unknown in practice. It is therefore necessary to reptady a consistent
estimators to obtain a two-stage estimator or empirical BLUP (EBLUP) given
by (6). Methods of estimating include maximum likelihood (ML) and restricted
maximum likelihood (REML) under normality, the method of fitting-of-constants
and minimum norm quadratic unbiased estimation (MINQUE) without the
normality assumption; see Searle, Casalia McCulloch (1992). The resulting
estimatorss are even and translation invariant, thatdgy) = 6(—y) for all y
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ando (y + XB) =6 (y) for all y andg. Jiang (1996) proved that ML and REML
estimatorss obtained under normality remairoesistent without the normality
assumption.

Kackar and Harville (1981) showed that the EBLW@ ) remains unbiased if
¢ is even and translation invariant. This result holds provided tha68] is finite
andv ande are symmetrically distributed (not necessarily normal). In particular,
the two-stage estimatgr= 4(&) is unbiased fop.

Kenward and Roger (1997) studied inference for the fixed eff@gctander a
general Gaussian linear mixed model N (X3, ) with a structured covariance
matrix ¥ = X (o) depending on some parameter They used the REML esti-
mator of 8, namely the two-stage estimatfr= 8(6), whereé is the REML
estimator ofo. A naive estimator of cays) that ignores the variability i is
given by[ X' ~1(6)X]1. Kenward and Roger (1997) derived a bias-adjusted es-
timator of coW8) and used it to derive a scaled Wald statistic, together with an
F approximation to its distribution. The F approximation performed well in simu-
lations under a range of small sample settings. Kenward and Roger (1997) did not
study the precise order of the bias of the adjusted estimator.

Kackar and Harville (1981) studied approximation to the MSE of EBL:UB),
assuming normality of the random effeet@nd errors in the model (1.1). They
showed that

(1.5) MSE[1 ()] = MSE[1(0)] + E[1 (&) — 1(0)]?

for any even and translation invariant estimaéyr provided that MSE (6)]

is finite. It should be pointed out that, under very mild conditionf,(&)]
and MSH: ()] are, in fact, finite [see Jiang (2000)]. It is customary among
practitioners to ignore the variability associated withnd use the following naive
estimator of MSI (6)]:

(1.6) msey[t(6)] = g1(6) + g2(6).

However, it follows from (1.4) and (1.5) that (1.6) can lead to significant
underestimation. Therefore, it is practically important to obtain approximately
unbiased estimators of MSE that reflect the true variability associated with the
EBLUP estimators. This becomes particularly important when large sums of funds
are involved. For example, over $7 billion dollars of funds are allocated annually
on the basis of EBLUP estimators of school-age children in poverty at the county
and school district levels [National Research Council (2000)].

Kackar and Harville (1984) gave an approximation to Ni%&)] under the
general model (1.1), taking account of the variability an and proposed an
estimator of MSK (6)] based on this approximation. However, the approximation
is somewhat heuristic, and the accuracy of the approximation and the associated
estimator of MSE (6)] was not studied. Prasad and Rao (1990) studied the
accuracy of a second-order approximation to N¥$&)] for two important special
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cases of the longitudinal model (1.2): (i) the well-known Fay—Herriot model (2.15)
studied in Section 2.3 and (ii) the nested error linear regression model given
by (1.2) with Z; = 1,,, a scalarv; with var(v;) = o1 and cove;) = ooly;,

i =1,...,¢. In the context of small area estimatiera is the sample size in

the ith area and is the number of small areas. The nested error model may
also be regarded as a special case of the ANOVA model with a single source of
variation ¢ = 1), G = 011, andR = opl,,. Using the method of fitting-of-constants
estimators, Prasad and Rao (1990) showed that, for large

(1.7) E[1(8) — 1(0)]* = g3(0) + 0t~ Y,
wheregs(o) depends on cdd). This leads to a second-order approximation
(1.8) MSEq[#(6)] = g1(0) + 82(0) + g3(0).

The approximation is accurate to termg 1), that is, the neglected terms
areo(r~1). Thegs(o) term is computationally simpler compared to an asymptoti-
cally equivalent term obtained from Kackar and Harville’s approximation. Prasad
and Rao (1990) also obtained an estimator of M&E)] given by

(1.9 MseR(?(6)] = g1(6) + g2(6) + 283(6).

The estimator (1.9) is approximately unbiased in the sense that its higs 9.
Kackar and Harville (1984) proposed an alternative estimator given by

(1.10) Mse&H [1(6)] = g1(6) + g2(6) + g3(6)

for any even and translation invariant estimatorThe bias of (1.10) i (r~Y);
that is, it is not approximately unbiased to terais1).

Harville and Jeske (1992tudied various MSE estimators under the ANOVA
model with a single source of random variatign=£ 1) and the REML estimator
of o, including an estimator of the form (1.9). They referred to the latter estimator
as the Prasad-Rao (P-R) estimator. They appealed to Prasad—Rao’s asymptotic
results for its justification, but the latter results have been justified only for the
special cases (i) and (ii). They also conducted a limited simulation study based
on the simple one-way random effects modgl,= g +v; +e¢;j, j=1,...,n;,
i=1...,¢t, using a small balanced design=£ 9, n; = 2 for all i), a small
unbalanced design €9, ny =--- =ng =1, ng = 10) and a large unbalanced
design ( =21,n1=--- =no0 =1, n21 = 50). The objective was to estimate the
meanu = B + v1. Simulation results indicated that the P—R estimator performs
well wheny = o1/0¢ is not small, but it can lead to substantial overestimation for
small values o/ closer to the lower bound of 0, especially for smal= 9). Two
partially Bayes estimators perform better than the P—R estimator whelose
to 0.

Datta and Lahiri (2000) extended Prasad and Rao’s (1990) results to the
general longitudinal model (1.2) with covariance matrifesndG; having linear
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structures of the formk; = >9_qo,R;;R;; and G; = 39_,0,;G;;G;;, where
oo=1,R; andG;; (i =1,...,t; j=0,1,...,9) are known matrices with
uniformly bounded elements such th&t and G; are positive definite matrices
fori =1,...,t. They studied ML and REML estimators of = (o1, ...,0,)’

and showed that an estimator of M@& )] of the form (1.9) is approximately
unbiased when the REML estimator®fs used but not when the ML estimator is
used. In the latter case an additional term involving the bias of the ML estidator
is needed for getting an approximately unbiased MSE estimator. Datta and Labhiri
(2000) also gave explicit formulas under ML and REML for the two special cases
() and (i) studied by Prasad and Rao (1990). The underlying proof of Datta and
Lahiri (2000), however, is not rigorous.

The main purpose of our paper is to study the general linear mixed model (1.1)
that covers the ANOVA model as well as the longitudinal model and derive
a second-order approximation to MSE of EBLURs) under REML and
ML estimation of the variance components parametersWe also derive
approximately unbiased estimators of M&& )] and specify the precise order
of the neglected terms. For ANOVA models with multiple sources of random
variation, the components of may have different convergence rates [Miller
(1977) and Jiang (1996)]. As a result, rigorous proofs are quite technical and long.
We have therefore only sketched the technical details in Section 5 of our paper, but
the detailed proofs are available at the web site address given in Section 5.

The remaining sections of the paper are organized as follows. In Section 2, we
first present a general asymptotic representatioé ef o, whereé is obtained
as a solution of “score” equations of the foto)/00 = 0, ando represents
the true value of parameter vector. Normality assumption is not needed for this
asymptotic representation. We then verify that the conditions underlying this
representation are satisfied by solutions to the ML and REML score equations
belonging to a parameter spa@eunder the ANOVA model and normality. As
another example, we show that the conditions are satisfied by the ML and REML
estimators under the Fay—Herriot model and normality. In Section 3 we obtain
a second-order approximation to MBE5)] under normality. The second-order
approximation is then spelled out under the ANOVA model using ML and REML
estimatorss. We also verify the underlying key conditions for the special cases
of the balanced ANOVA model and two special cases of the longitudinal model:
the Fay—Herriot model and the nested error regression model. Section 4 gives an
estimator of MSEt (6)] correct to second order. The MSE estimator is then spelled
out under the ANOVA model and the longitudinal model using ML and REML
estimatorsy. Technical details are sketched in Section 5.

2. Asymptotic representation of ¢ —o. Throughout the rest of this paper,
o represents the true parameter vector in places where there is no confusion;
expressions such @$(¢)/do mean derivative with respect toevaluated af ; in
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expressions such ag®l(c)/do2], the expectation is taken at the trmeand the
function inside E.) is also evaluated at the true We first obtain an asymptotic
representation af — o, whereg is obtained as a solution to “score” equations of
the form

dl(o) B
do
and then apply the general theory to the ANOVA model with REML and
ML estimation of 0. In Section 5.1 we sketch the proof of the asymptotic
representation. Heré(o) may correspond to the logarithm of the restricted

likelihood Ir(c), or the profile loglikelihoodlp(o) under model (1.1) and
normality ofv ande.

2.1) 0

THEOREMZ2.1. Supposethat:

() (o) =1(0o,y) is three times continuously differentiable with respect to
o=(01,...,05),wherey = (y1, ..., yn)’;
(i) thetrueo € ®°, theinterior of O;

(iii)
(2.2) —00 < limsupimax(DtAD™1) <0,

n—oo

where Amax means the largest eigenvalue, A = E[92%1(0)/d02] and D = diag(dy,
...,dg) withd; > 0, 1<i <s, suchthat d, = mini<;<;d; — oo asn — oo; and
(iv) the gth moments of the following are bounded (g > 0):

1 1 |9%(0) E[aZI(a)]
d,‘ ’ ,/d,‘d‘/‘ 30,' 80“/'

3l (o)

aU,'

dy
© o didjdy

M;j(y),

80‘,‘ acrj
1<i,j,k=<s,

where M;jx(y) = SURscs,(0) 1831(6)/d0; doj doy| with Ss(o) = {6 :|6; — 0;| <
ddy/d;, 1 <i < s} for some § > 0. Then (1) a 6 exists such that for any 0 <
p < lthereis a set B satisfying for largen and on B8, 6 € ®, 3l(6)/do =0,
ID(6 — o)| <d¥” and

(2.3) 6=0—A"ta+r,

where a = dl(0)/d0 and |r| < d*_z’)u* with E(u$) bounded, and (2) P(8¢) <
cdy "¢, wheret = (1/4) A (1 — p) and ¢ isa constant.

Note that Theorem 2.1 states that the solution to (&.1Exists and lies in the
parameter space with probability tending to 1 and gives the convergence fate of
to o as well as the asymptotic representation (2.3), assuming that the trueaector
belongs to the interior of the parameter spéce
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2.1. REML estimation under the ANOVA model. The ANOVA model is given
by

q
(2.4) y:Xﬁ—i—ZZivi—l—e.

i=1
The restricted loglikelihood under the ANOVA model with normalitywénde
has the form

(2.5) Ir(0) = ¢ — (1/2[log(IT"ET|) + y' Py,

whereo = (09, 01, ...,04)’, c is a constant, 7’ X T| is the determinant of ‘X T,
T is anyn x (n — p) matrix such thatran’) =n — p and7’'X =0,

P=T(T'sT) 1’
2.6
( ) =2_1—2_1X(X/E_1X)_1X/2_1,
andx =37 ;o0;V; with Vo =1, andV; = Z; Z/, i > 1 [e.g., Searle, Casella and
McCulloch (1992), page 451]. The REML estimatorofis a solution to (2.1)
with (o) = Ir(0). Section 5.2 sketches the proof that shows the conditions of
Theorem 2.1 are satisfied, provided that the same conditions under which REML
estimators are consistent are satisfied [Jiang (1996)]. The actual proof is somewhat
lengthy and uses results on moments of quadratic forms in normal variables
andd; = | Z/PZ;|> for the ANOVA model, where||B|l2 = [tr(B'B)]Y/? for a
matrix B. A quadratic form iny or u = y — Xp appears in the formulas for the
first derivatives ofR,

dr(c) 1

=Z[y'PV;Py —tr(PV;
30, 2[y y—tr(PVy)]

2.7) L
=§[M/PVI'PM—W(PVI')], 0<i=<gq.

Note thatu ~ N(0O, X). Similarly, the second and third derivatives involve
quadratic forms in; see Section 5.2.

2.2. ML estimation under the ANOVAmodel. The (unrestricted) loglikelihood
has the form

(2.8) 1(B,0)=c—[log(IZ]) + (y — XB)'= "Ly — XB)],
wherec is a constant. We have

(2.9) al(f’ 9 _x'sly - x's-lxp.

210) 2L Lo xgysyzi - xp) -zl

80,- 2

O0<i=yg.
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Solving 3l(B, o) /3p = 0 for B, we obtain from (2.98(c) = (X'T~1x)~1x’ x
¥ 1y, SubstitutingB(c) for B in (2.8), and using (2.6), we obtain the profile
loglikelihood

(2.12) lp(a) = ¢ — 3[log(I]) + y'Py].
It now follows that the MLE ofv is the solution of the equation
al
(2.12) P@) _p
foled

Note thatlp(o) is not a loglikelihood function, but Theorem 2.1 does not require
(o) to be a loglikelihood function, so we can take) = Ip(o) in Theorem 2.1.
Section 5.3 sketches the proof that shows the conditions of Theorem 2.1 are
satisfied with the samé&, as in the REML case and the same set of conditions,
providedp, the dimension of, is bounded as increases. Again, quadratic forms
appear in the formulas for the first derivativedgd):

dp(o) 1

G =V PViPy —tr(Z7TV)]
l

(2.13)

1
= 5lu'PV;Pu —tr(z7v)],  0<i=<g.

Similarly, the second and third derivatives involve quadratic forms:;irsee
Section 5.3.

2.3. The Fay—Herriot model. In Sections 2.1 and 2.2 we considered ML and
REML estimations under the ANOVA model. Now we consider a different case,
the Fay—Herriot model [Fay and Herriot (1979)]. This model has been considered
by many authors; see Ghosh and Rao (1994) for a review and extensions.

Suppose tha; is a scalar random variable such that

(2.14) yi=x/B+v +ei, i=1...,1,

where they;’s are i.i.d.~ N (0, o), ¢;'s are independent such that~ N (0, ¢;)
with known ¢;, and v;’s are independent of;'s. Furthermore,x; is a known
p x 1 vector of covariates, anélis an unknown vector of regression coefficients.
In the context of small area estimatioy}, denotes a survey estimate of thé
area mearn; ande; denotes the sampling error with known sampling variance,
var(e;) = ¢;. Furthermorey,; is modelled ag; = x/ + v; with model errorsy;.

Note that model (2.14) is not a special case of the ANOVA model. In fact, it may
be considered as a special case of the longitudinal model introduced in Section 1.
Model (2.14) may be written in matrix form as

(2.15) y=XB+v+e,

where y = (y1,...,y), v = (v1,...,v) ~ N(QO,0l;), e = (e1,...,e;) ~
N (0, ®) with ® =diag(¢1, ..., ¢;), X ist x p with ith rowx/, andv, e are inde-
pendent.
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Now consider REML and ML estimations under the Fay—Herriot model (2.15).
In Section 5.6 we sketch the proofs that show the conditions of Theorem 2.1 are
satisfied if REML or ML estimators of are used, provided thatis positive and
the ¢;’s are bounded.

3. MSE approximation. We now obtain a second-order approximation to the
MSE of EBLUP¢(6). Under normality the MSE of(o) satisfies (1.5), that is,
(3.1) MSE[(6)] = MSE[t(0)] + E[1(6) — (0)]%,

where MSHz (0)] is obtained from (1.4). It remains to approximate the last term
on the right-hand side of (3.1).

THEOREM 3.1. Suppose that the conditions of Theorem 2.1 are satisfied.
Furthermore, supposethat ¢ (o) can be expressed as

K
(3.2) 1) =Y (@) Wi(y),

k=1
where K = 0(dY) for some « > 0, and the following terms are bounded for some
b>2andé§ > 0:

() max E[Wi(»’,
(il ,max supli (o)),
K
a)uk(O’)
ii
(iii) ]; el
K 2 ~
. 9204.(5)
(iv) sup ,
,;|&—o|55 do2

where || B|| = [Amax(B’'B)]Y/2 is the spectral norm of a matrix B. If g > 8(1 +
a)(1—2/b)~1, then

(3.3) Elt(6) —1(0))?> = E(W A Ya)? + 0(d[?),
whereh = 9t (0)/d0, A =E[82l(0)/d0], and a = 8l(0) do.

A sketch of the proof of Theorem 3.1 is given in Section 5.4. Note that normality
is not required in Theorem 3.1. On the other hand, Theorem 3.1 requires that
the predictor (o) have the form (3.2). In the next two subsections we show that
this condition holds for balanced ANOVA models as well as for two longitudinal
models. It is possible to replace (3.2) by some moment conditiomgoorand its
first and second derivatives, provided that one considers instead a truncated version
of 6, which is defined a8 if |6| < L,, and isc* otherwise witho* being a known
vector in® andL,, a positive number such that, — oo asn — oco. The details of
the latter approach are available at the web site given at the beginning of Section 5.
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3.1. ANOVA model. We first spell out Bx’A~1a)? for the ANOVA model
with normality of v and e. We assume that the elements of the coefficient
vectors! andm definingu =’ + m’v are bounded, angn| = O(1). In fact,
m typically consists of only a finite number of elements equal to 1 and the rest
equal to 0. For the balanced caée= (X’ X))~ 1X’y does not depend oB. In this
caseh(o) = dt(0)/d0 = [Vs(o)] (I — PX)u = [Vs(o)]'u + lower order terms,
whereu = Zv + e, Vs(o) = 3s(0) /00’ and Py = X (X'X)~1X'. For the general
unbalanced casg depends onE but the same expression still holds, that is,
0t(0)/d0 = [Vs(o)]'u + lower order terms. Using Lemma 3.1 below on higher
moments of normal variables, we get

E(h'A™Ya)2 =tr {[Vs(0)] Z[Vs(0)]ATY} + o(d?)
(3.4 2
=g3(0) +o(d. "),
when a is taken asdlr(c)/do corresponding to REML. Note thaj‘i2 is the
diagonal element of the information matrix associated wijtland represents the
“effective sample size” for estimating.

LEMMA 3.1. Let A1 and A bek x k symmetric matrices, and u ~ N (0, X),
where ¥ isk x k and positive definite. Then the following hold:

() Elu{’Aju —EWAju)lu'1=2XA;%, j=1,2.
(i) E[{u’Aqu — E('Aqu)}{u' Aou — E(u' Aou)}] = 2tr(A1 X A2Y).
(i) E[u{u’Au — E(' Aru)}{u'Aou — E(u'Aru)}u'] = 2tr(A1ZA22)X +
4 A1X A2 +4X A A1 2.
(iv) Write w; = 2 ;u, W; = u'Aju, j=1,...,s, where 1; and A; are
nonstochastic of order k x 1 and k x k, respectively. Then, for w = (w1, ..., wy)’
and W = (Wq, ..., W),

E[w (W — EW)]?
N N
=tr(ZuIw)+4) Y M Z(A;TA 4+ ATA)TA,
j=1i=1
where X, and Ty denote the covariance matrices of w and W, respectively.
The proofs of (i)—(iv) are immediate from Lemmas A.1 and A.2 of Prasad and
Rao (1990).

It can be shown that (3.4) is also valid whenis taken asdlp(c)/do
corresponding to ML. Thus, using (1.4), (3.1), (3.3) and (3.4), we get

(3.5) MSE[1(6)] = 1(0) + g2(0) + g3(0) + 0(d; 2,
valid for both the REML estimator and the ML estimatoroaf
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Next, we show that the key condition (3.2) of) is satisfied for all balanced
ANOVA models. Note that, based on the expression given by Proposition 3.1
below, all the other conditions of Theorem 3.1 are either trivial or known to be
satisfied in the balanced case with normality [see Jiang (1996)]. Of course, the
verification of (3.2) does not require normality.

A balancedw-factor linear mixed ANOVA model may be expressed as

(3.6) y:X/3+ZZ,-v,-+e,

ieS
where X and Z;'s have the following expressions [e.g., Searle, Casella and
McCulloch (1992), Rao and Kleffe (1988)k = @ 13 with (s, ..., su+1) €
Swi1 = {0, 1"+, Z; = @M1 with (i1,...,iw41) € S C Swi1, Where®
denotes the operation of a Kronecker produgt,s the number of levels for
factor!, 1, represents the-dimensional vector of 1’312 =7, and 1,% =1,. The
(w + 1)st factor corresponds to “repetition within cells,” and thys; = 1 and
iwr1=11i € S. We use O for the elemei®, ...,0) in S,,1 and letS = {0} U S.
The covariance matrix of then has the form

L =ooly+ Y 0iZZ]

ieS
(3.7) w+l
= 2 M

iESw+1 =1

whereJ, represents the x n matrix of 1's,J9 = I, andJ} = J,; 1, = o; if i € S,
andx; =0ifi ¢ S.
Searle and Henderson (1979) showed tat has the same form,

w+1l
(3.8) >7h= Y @,
i€Syp1  I=1

where the coefficients; in (3.8) are computed by an algorithm. From a
computational point of view, the Searle-Henderson algorithm is easy to operate.
However, with such a form it may not be so easy to investigate theoretical
properties of£ ~1, which are important to the current paper. Jiang (2004) gives an
alternative derivation of (3.8) with explicit expressions for tfig; see Lemma 3.2.
First, note that under the balanced model we have[]; _on;, i € S. This allows

us to extend the definition of to all i € Sy41. In particular,p =ry = [[,,—om,
andn =rg = ]_[;”;ilnl. We shall use the abbreviatiorfs; = 1} and so on for
subsets of. = {1, ..., w + 1}. For example, ik, u € Sy,+1, then{k; =1, u; =0}
means{/ € L :k; =1,u; = 0}. Also, fori, j € Sy41, j <i meansj; <i;, 1< <

w + 1. Finally, | B| denotes the cardinality of sBt
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LEMMA 3.2. For any balanced w-factor mixed ANOVA model (3.8) holds
with

; —pHa=Li=0q . _,
(3.9) 13=(£){ y U=0) i € St
n

j€Suws1 00 + 2 kes ok (n/ri)Lk<j) ’

Using Lemma 3.2, the following proposition can be proved. A sketch of the
proof is given in Section 5.5.

ProPOSITION3.1. For any balanced mixed ANOVA model, the BLUP ¢ (o)
given by (1.3) can be expressed as (3.2) with K < 1+ |S|2**1 [hence K = O(1)
and the terms below (3.2) bounded].

It is known that (3.2) also holds for some unbalanced ANOVA models. For
example, see the nested error regression model discussed in the next subsection,
which is also a special case of the longitudinal model.

3.2. The longitudinal model. For longitudinal models the spelled-out expres-
sion for Eh’A~1a)? in (3.3) [up to a ternv(d;?)] is given in Datta and Lahiri
(2000). In the following we show that the key condition (3.2) in Theorem 3.1 is
satisfied for two special (and important) classes of longitudinal models: the Fay—
Herriot model and the nested error regression model.

First consider the Fay—Herriot model (see Section 2.3). It is easy to show the
following:

t
(3.10) 'B=3 ai@)y
i=1
t
m/ﬁ = Zm,-ﬁ,-
i=1

t t
(3.11) = bi(©)yi— Y bir(@)y.
i=1

ik=1
where

'oxix! - X;
ai(a):l/(za—i—;ﬁ-) a—i-l¢"

i=1

bi(a)zmi((fi@)’

o o xXkx) o
b =m; ; .
k= <0+¢i)xl(k§:la+¢k> <0+¢k)

We have the following result. The proof is straightforward.
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PrROPOSITION3.2. For the Fay—Herriot model (2.14),the BLUP 7 (o) given
by (1.3) can be expressed as (3.2) with K = (r + 1)2 — 1 [and the terms below
(3.2) bounded], provided that (i) the ¢;'s are bounded from above and away
from 0; (i) |x;|, 1<i <1, are bounded, and so are |/| and > !_; |m;|, and
(iii) liminf Amm(t—lzﬁzlxix;) > 0.

Next we consider the nested error regression model. Suppose that
(312) yij:ﬂo+x{jﬂ+vi+e,-j, j=1....n;;i=1,...,¢,

wheref = (Bu)1<u<p—1 andp,, 0 <u < p — 1, are unknown regression coeffi-
cients;x;;'s are known vectors of covariates;s are independent random effects
with distribution N (0, 01); ¢;;'s are independent errors with distributian(0, oo),
andv ande are independent. W.l.0.g. let > 1. For the nested error regression
model (3.12)'8 andm’? can, again, be expressed as (3.10) and (3.11), where

t -1
a,-(a):l/(ZX;zi—lx,) X/

i=1

o1\ .,
bio)=mi( 2)1,.
() =m (ki) "

1

‘ -1
bix(o) =m; (%)1;,1,& ( Z X,’CE,:le> X,’czk_l.
k=1
We have the following result. A sketch of the proof is given in Section 5.7.

PROPOSITION3.3. For the nested error regression model (3.12) the BLUP
1 (o) given by (1.3)can be expressed as (3.2)with K = O (%) [and the terms below
(3.2) bounded], provided that (i) oo > O; (i) p, n;, Ix;j|,1<i <t,1<j <n;, are
bounded, and so are |/| and Y"%_; |m; |, and (iii) liminf Amin(z7%S,) > 0,a =1,2,
where Sy = 37/ _qn; Y20 (i — %) (eij — %)y S2= Y01 D0 g Dohmq Dg (ij —

nj

xkp) (xij — xp)" and x; = nl-_l 2 Xij-
Note that in both cases considered abdyean be chosen agr.

4. Estimation of MSE. We now turn to the estimation of M$EGs)].
We obtain an estimator mgés)] correct to second order in the sense of
E{msdz(5)]} = MSE[z(6)] +o(d;2). That is, the bias of m$g5)] in estimating
MSE[z(6)] is o(d?).

First, we have from (3.1) and (3.3),

MSE[#(6)] = MSE[t (o)1 + E(W A™Ya)? + 0(d; ?)
(4.1) L
=n(o)+o(d, "), say.
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We now define an estimatgrof (o) having the following property:
(4.2) E(®) = (o) + o(d; ).

It follows from (4.1) and (4.2) that the bias @f in estimating MSE (6)] is
o(d;z). In addition toa andA defined in Section 2 (Theorem 2.1), let= 9n(o)/
do = (b)); B =3%n(0)/30% = (bij); F = 3%(0)/d0?, H; = (831(0)/d0; d5?)
andC = (a’A~1h;)1<;<s, Wheres is the dimension of . Also, letQ = D~1AD~!
and W = 071 = (w;;). Let D~Ya = (;), D~Y2(F — A)D~Y? = (3;;) and
D™1H;D™! = (J;jx). We define the following vector, matrix and arrays; =
(i), Ur= (uir), Uz = (ujg) andUsz = ( jkimn), Whereu; = E(A;), uiy = E(A;Ap),
ujk =EQjkA) andu jgimn = E(A jrmAiAn). Note that all of these are functions of
o [e.9.,A = A(o)]. The norm of arnv-way array ¢ > 3) U, denoted by||U |, is
defined as the maximum of the absolute values of its elements. (The norm of a
matrix is defined in Theorem 3.1.) Define

(4.3) Ao(o) = —2b' A~ 1E(a),

(4.4) A1(o) =b ATEE(FA a),

(4.5) Ax(o) = 3EW@ATTBA 0,

(4.6) A3(0) = —3b'ATTE(C A a).

Finally, we define

(4.7) n=n()— X:Aj(&),
iz

provided that|fj| < cod’; otherwise, letj = n(c*), whereco and A are known
positive constants ang* is a given point in®.

THEOREM 4.1. The estimator 5 given above satisfies the property (4.2)
provided that

() n(-) is three times continuously differentiable and the following are
bounded: 5 (o), |b], || B|| and

93n(5)

sup |————
80‘,‘ acrj a(Ik

oeSs(o)

) 1§l7 j7k§S7

where § isa positive number and S5 (o) = {6 :|6; — 0;| <8dy/d;, L <i <s}.

(ii) The conditions of Theorem 2.1 hold with g > 8 + 41 and /(o) four times
continuously differentiable with respectto o.

(i) The gth moments of the following are bounded:

1 ‘ 331(0) [ 331(o) ]‘ 1 ‘ 331(0) ‘
—E ,
Vdjdi|00; 00 doy do; doj doy djdy|00; 00 doy
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and
d? 3%1(6)

*

_— |, 1<i, j,k,I<s.
didjdkdl G€Ss(o) 80'1' 80’j30’k 30’[

(V) SUpscs;0) 12(6) — Q(0)Il = 0 and sUpscg;0) 1Uj(6) — Uj(o) || — 0,
j=123,as8§ — Ouniformlyinn.

(v) |E(a)| is bounded and sup;cg, (s |E(@)lo=s — E(@)| — 0 as § — 0
uniformly in n.

A sketch of the proof is given in Section 5.8.

COROLLARY 4.1. If condition (v) of Theorem4.1is strengthened to
(4.8) E(a) =0,

then (4.2) holds, in which 7 is given as in Theorem 4.1 except that in (4.7) the
summationisfrom1to 3.

The estimato¥; considered in Theorem 4.1 is truncated when its value exceeds
some (large) threshold. Such a truncation is needed only for establishing the
asymptotic result. In practice one does not need to truncate the estimator (because
it can be argued that for a given value pthere are always constantg and 1
such thatiij| < cod?). On the other hand, a similar result may be obtainedifor
without truncation, provided that is replaced by its truncated version (defined
above Section 3.1). The details of such a result are available at the web site given
at the beginning of Section 5.

4.1. REML and ML under the ANOVA model. In Section 5.9 we give sketches
of a proof that shows the conditions of Theorem 4.1 are satisfied if the REML
estimator ofo is used, provided that the same conditions under which the REML
estimators are consistent [Jiang (1996)] are satisfied. It can be shown that similar
results also hold for ML estimation, but we omit the details. According to (3.5),
in both REML and ML cases we havgo) = g1(0) + g2(0) + g3(o). However,
there is a difference between the two in terms of the spelled-out formulas for MSE
estimation. This difference is due to the fact that (4.8) holds for REML but not
for ML.

First consider REML. Letting: = aR, /(o) = Ir(c) and A = AR, we have
E(@r) = 0, and the(, j) element of Ag is given by —(1/2)tr(PV;PV)).
Furthermore, we haveAg(c) = 0, A1(o) = b/Agle(a) + o(a'*_z), where
wr(o) = (WoR, .-, wq,R)’ with w; r = —tr{AEl[tI’(PV,-PV/-PVk)]OSjkaq}, i=
0,....q; Ax(0) = —g3(c) + o(d;?), wheregs(o) is given by (3.4) withA = Ar
andAs(o) = —b'Ag M wr(0) + o(d;?). Thus for REML we havé~3_; A (o) =
—g3(0) + o(d*—z). It follows from (4.7) that for REML#; = 7jr, where

(4.9) R = g1(6R) + g2(6R) + 283(6R),
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whereog is the REML estimator otr. The MSE estimatofjr given by (4.9)
depends on the dataonly throughor. An alternative MSE estimator that is data
specific can be obtained by using the following estimatqg0):

(4.10)  33(6R) = (y — XB)[Vs(0)I AR Vs(@)I(y — XB)lo—sp»

where § is the BLUE given below (1.3). It can be shown thaigkéRr)] =
g3(0) + 0(d?). The estimator (4.10) is obtained from (3.4) by replacihdy
Y= —-XBRI—XBR)

Now consider ML. For simplicity, we assume that réakilk = p is bounded.
Then, similarly, lettinga = am, (o) = lp(o) and A = Ay for ML, we
have Eaw) = —gmo(0) = —gmo With gmo; = (L/Qt[(Z™F — P)Vi], i =
0,...,q. Furthermore Ag(o) = 2b'Aytamo; A1(o) = b Aytwm — b’ Aytemo +
o(d;?), wherewy is wgr with P replaced byz =% Ax(0) = —g3(0) + 0(d;?)
and Az(0) = —b'Aytwm + o(d;?). Also, b'Aytamo = (9g1/90) Aytemo +
o(d;?) = g10(0) + 0(d;?), say. Thus for ML we han?z0 Aj(0) = g10(o) —
23(0) + o(d?), hencej = fim, where

(4.11) M = g1(6m) + g2(6m) + 2g3(6m) — g10(6Mm).

whereagy is the ML estimator ofr. Similar to the REML case, a data-specific
estimator can be obtained by usigg(ov) instead ofgz(owm).

4.2. REML and ML under the longitudinal model. For longitudinal models
the spell-out of (4.7) [up to a term(d;z)] is given by Datta and Lahiri (2000)
for REML and ML estimation. Note that, similar to the previous subsection, there
is a difference between using REML and ML. In the following we give regularity
conditions such that the conditions of Theorem 4.1 are satisfied for longitudinal
models. The assumption th@ andR; are linear functions of can be relaxed.

We consider REML estimation. Similar results also hold for ML but we shall
omit the details. Let = (oo, ..., 0,)’. Suppose that

1. G; and R; are linear ino such that||G;|l, [[R;]l, 10G;/d0ll, I0R;/dc;]l,
0<j<gq, and||Z | are bounded, and, a — o, max<; |G (&) —
Gi(@)]| — 0,||R;(6) — R;(0)]| = O uniformly inz:

o € B°, the interior of®.

The following are boundegt, n;, | X; |, |1 Z; ]I, |I| and )i _; [m;].

4. 1iminf,_ 0o Amin(r =2 X0_q Bi) > 0, iminf, o0 Amin(t ™1 X1, X/ 271X,) > 0,
whereB; is the(q + 1) x (g + 1) matrix whos€(j, k) element is t(Zi_lz,-’j X
Zi‘lE,-,k) with %; ; = 0%;/00;. Then the conditions of Theorem 4.1 are
satisfied for the longitudinal model. A sketch of the proof is given in
Section 5.10.

wn
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5. Sketches of proofs. In this section we give very brief sketches of the
proofs involved in this paper. These include proofs of the theorems and other
technical details. The detailed proofs are available at the following web site
address: http://anson.ucdavis.égarig/jp8.pdf.

5.1. Regarding Theorem2.1 Leto, =0 — A~1a and 8 = B1 N B>, where
By ={Ig] < (1A/2dy~"} andB, = {[Inl| 1+ A~ HED2 + (s¥/2/3)c A+ [0 Y DS <
IAl/2) with & = D Ya, A = Amad(D1AD™Y, 5 = D102 (0)/
302 — A)D~1 and¢ = max_; 1 {Mijr(y)/d;d;dy). It can be shown that, oiB,
() — Il(oy) <0 if [ID(G — 04)| = 1. Since the functiori(¢) cannot attain its
maximum over the sets:|D(¢ — o,)| < 1} at the boundary of the set, the
maximum must be attained in the interior. Thus, there is a solution to (2.1)
in {6:|D(c — o4)| < 1}. Let 6 be the solution to (2.1) closest tg.. It can be
shown that, onB, 6 € ®, 3l(6)/dc =0and|D(6 —o)| < di_p. Furthermore, by
Taylor expansion it can be shown that, 8 6 — o0 = —A~Ya + r1 + r» such
that [r1| < dx*"uy, Ir2l < di *’uz with E@$), j = 1,2, bounded. Finally, it

can be shown that(®$) < c1ds Y78 and RBS) < cody 8% for some constants
c1 andca.

5.2. Regarding Section 2.1 The following lemmas are used to verify that the
conditions of Theorem 2.1 are satisfied.

LEMMA 5.1. Let Q be a symmetric matrix and &€ ~ N (0O, I). Then for any
g > 2 thereisa constant ¢ that only dependson g such that E|§' Q& — EE' Q&8 <

8
cll@liz-

LEMMA 5.2. For any matrices A, B and C, we have |tr(ABC)| < ||B] -
|All2 - [IC]l2, provided that the matrix product is well defined.

LEMMA 5.3. Letg;, b; bereal numbersand §; > Osuchthata; <b;+A,, 1<
i <s,where A, =3%_;8;a;. If A=3"_;8; <1,thena; <b; +(1—A)~tA,,
1<i<s,where A, =Z§-:16jbj.

We also use the following expressions for second and third derivativgsoof.

92r(o) 1
5.1 = Ztr(PV;PV;)—u'PV;PV;Pu,
(5.1) 80’,‘an 2 (PV; ]) u i jru
a3
_ORO)__ i py,pv, PV PU
30,' 8ch~ 80‘k ’
+u'PV;PViPV;Pu+u'PViPV;PV;Pu
(5.2)

1
— E[tr(PViPVjPVk) +tr(PV; PV PV;))].
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Note that the second and third derivatives are involved in the conditions of
Theorem 2.1.

5.3. Regarding Section 2.2 In addition to (2.13), we have

32lp(o) 1 1 1
5.3 =tr(ZV;Z7V;) —u'PV;PV;Pu,
(5.3) do; 80"/' 2 ( i ]) u i jru
3%
_97%p(0) =u'PV;PV;PVyPu
30’i 80']' 80'k
+u'PV;PVkPV;Pu+u'PViPV;PV;Pu

(5.4)

1
— E[tr(Z_lv,-E_lV,-E_lvk)

+r vz vzl
From these expressions we obtain the following relationships:
dlp(o)  dlr(0)
do; o
3°lp(o)  9%R(o) 1 1 1
= |t~ V; 2 V) —tr(PV,PV;)|,
30’i 30']' 80'1' 30']' + 2[ ( ! J) ( ! /)]
3Blp(c)  03R(0)
30,' an aUk - acr,' 80“/' 80‘k
wherely =tr(PV;PV;PVy), I =tr(PV; PV, PV;) andJ, is I, with P replaced
by »~1 =12 We assume thap = rank(X) is bounded. Then it can be
shown thattr(£~1V;) — tr(PV;)| < po; %, [tr(2 -V, S71V) —tr(PVi PV))| <
3p(oio))~tand |t (v, 271V, 271V, —tr(PV; PV, P V)| < Tp(oiojor) L.
Thus, by the result of the previous subsection, it can be shown that the conditions
of Theorem 2.1 are satisfied.

+tr(PV;) —tr(=71Vy),

(5.5)

1
+ 5(11 —Ji+ L —Jy),

5.4. Regarding Theorem 3.1 Let p = 3/4. By Theorem 2.1 and Taylor
expansion it can be shown that6) — r(c) = —h'A"1a + r, where |r| <
d:%u and Hu?) is bounded. Thus, we have[5) — t(0)]2 = E(-)%1g +
E(-)21gc, where(-)2 denoteq(6) — 7(0)]2. The first term= E(h’'A~1a)%15 +

0d; %)) + 0(d;*), while E(h’ A=Xa)?15c = 0(d72~) for somev > 0.
5.5. Regarding Proposition 3.1 First, the following identity can be estab-
lished:
p=x1_sxx's1x)x'g1

(5.6) _ {In B (%)XX’}E‘?
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By the definition of BLUP forv, Lemma 3.2 and (5.6), it can be shown that
Ui = 2 kes, .1 0i Tk Wi ky, Where ther,'s are given by (3.9) and

w+1l
Wik = Z;{In — <§>XX/} QI ke Suit
=1

5.6. Regarding the Fay—Herriot model. For REML estimation, the restricted
loglikelihood is given byir(c) = ¢ — (1/2)(log|T'<T| + y'Py), wherec is a
constant] is as in Section 2.1 anfl = T(T’XT) 1T’ = the middle term of (5.6)
with ¥ = oI 4+ ®. Suppose that > 0 and theg;’s are bounded. Then it can
be shown that the conditions of Theorem 2.1 are satisfied Wita d = /1. A
similar result can be proved for ML estimation, in which case one considers the
profile loglikelihoodlp(o) = ¢ — (1/2)[log|Z| + y' Py].

5.7. Regarding Proposition 3.3. First note thatX; = (1,,x;), where thejth
row of x; is x{j. Also, we haveX; = ool,, + o1J,,, thus Ei_l = )Li_lln,. +
yn,-ki_l(lni — J_n,,), wherey = o1/09, A; = Ai(0) = oo + n;o1 and J_n,, = Jy, /1.
Therefore, we can write

t
R B’

1=

where A = Zleni/ki, B = Z;zlxlflni/)»,-, C = Z?zlxl{xi/)”. and D =

i1 (ni/A)x[(In; — Jn;)xi. Thus,

! -1 _A-1lps
(5.7) (ZXEEi_lXt) :<—A_QlRB ARBR)’

i=1

whereQ =[A — B (C+yD) 1Bt andR = (C +yD — A~1BB’)~ 1. It can
be shown thatdC — BB’ > S,/21%,, whereiy = max A; = o0 + nmaxo1 With
nmax= Max; n;. It follows, by conditions (ii) and (iii), thal R|| < Am /7 (81y +62),
whered,, a = 1,2, are some positive constants. Then, using the ideity
A~14+ A=2B’'RB, one can shoW Q|| < c¢(im/1), wherec is a constant.

5.8. Regarding Theorem4.1L The proof of Theorem 4.1 requires the following
lemmas [see Jiang, Lahiri and Wan (2002)].

LEMMA 5.4. For any nonsingular matrices P, Q and nonnegative integer ¢,

q
0 t= (Z[P—1<P - Q)]’)P‘l +[PTHP - Qo

r=0
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LEMMA 5.5. Let P, Q bematricessuchthat P isnonsingular and ||Q — P|| <
3||P~1)~L. Then Q isnonsingular and |Q~1|| < (3/v/2)| P71

Let 4 be the set such that the following hold:

2 2
! az(a)_E[azw—)} <d’, 1<ij<s,
,/d,'dj 80,- 80“/' acr,' acrj - - -
3 3
1 o) [ 9% -yt l<iik<s.
i %0 —_ 7], —_
1/djdk 30’i 30']' 80'k 80'1' 80']' 80'k

Let& = ANB. Letp =3/4in Theorem 2.1. It can be shown thaEP) < cd, "¢,
wheret = 1/4. By Taylor expansion, it can be shown that the following holds
oné:

n(6)=n(o)—20' A" a+b'A"  fA a
+3dA™BAT a — b ATICA ] + 1,
where|r| < d;g”u and Hu) is bounded. Thus it can be shown thai(&)1s =

n(o) + Zfzo Aj(o) + o(d;z). On the other hand, we have the following
expressions:

1
Ag(o) =-2) Zbi(a)wij(a)uj(o'),
i 4
A1(0) =) 1 bi(o)w;j(o)wki(o)u jri(o)
1(0) = i ij k(0 (o),
7 div/djde ’ ’

1 1
Ax0) =3 Y ——bjr(0)wij(@)w(o)ui(0),
2, K1 i

1 1
Az0)=—= Y ———bi(0)wj(0)w(0)Win (0 jkimn(0).
2 i,j.k,l,m,n didj

With these it can be shown thatAg(6)1g = Aj(o) + o(d;z). It follows that
Efile = n(o) + o(d;?). Finally, we have Fj|lec = o(d;?).

5.9. Regarding Section 4.1 It suffices to show that (3) and (4) hold. Liét ',
k' be a permutation of, j, k and w.l.o.g. letd;y =dy Adj ANdpy =d; Adj A dy.
Then by Lemmas 5.1 and 5.2, it can be shown that

1 8
— [y PViPVj PV Py —E(y PViPV;PViPy)]| <c.
J

E
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Here ¢ represents a constant whose value may be different at different places.
Similarly, it can be shown thatr(PV; PV P V)| < c(d;id;dy/d; v d; v dy),

d? - - - - g
E<7* sup y/PV-rPV-rPVk/PVl/Py) <c
didjdrd) es; | e |

and(d?/d;d;dydy)|t((PVy PV PV PVp)| < c.
As for (4), first note thaP (o) = —(1/2)(r(HG; HG j)/d;dj)o<i, j<4-. It can be
shown that

\(r(HG;HG ;) —tr(HG;HG )|

<Y |6k — oxl|tr(HG HG;HG ;)|
k

+> 161 — ol tr(HGHG jHG))|
[

+ Y16k — oxll&1 — ol tr(HG HGi HG HG ),
k,l

Itr(HGyHGHG })| < 20, *d;jd; and |tr(HGyHG;HGHG )| < &(o01) L x
did;. Thus supcg, [P(6) — P(0)|| — 0 asé — 0. Note thatUs(o) = —P (o).
Similarly, one can show that spips, [|U2(6) — Uz(o)|| — 0 asé — 0. Finally, it
can be shown that

Wijkim = [tr(PV;PV;PV}) +tr(PV; PV,PV)]tr(PV,PVy,)

1
2d jdidydy,
+ Y tr(PVyPVyPV.PVyPVy)

a,b,c

+ Y tr(PV,PVyPV.PV, PVp) ¥,

a,b,c

where the summation is over all b, ¢ which is a permutation af, j, /. It follows
that sug g, [1U3(6) — Us(o)|| — 0 ass — 0.

5.10. Regarding Section 4.2 First note that the formulas derived in Sections
2.1 and 5.2 forir(c) and its derivatives hold for the general linear mixed
model (1.1), which includes the longitudinal model. Next, note that the ma&trix
of (2.6) can be expressed 8s= =1+ A, where||A||» is bounded. These results
and Lemma 5.1 are used to verify the moment conditions involved.
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As for the conditions regarding and its derivatives, we have the following
expressionsy(o) = g1(o) + g2(o) + g3(o), where

t
g1(0) =Y mi(G; — G, Z[27'Z;Gm;,
i=1

t Iyt -1 t
go(0) = (1 — ngzi—lz,-c,-m,-) (Zx;zi—lx,-) (1 — Zx;zi—lz,-c,-m,),

i=1 i=1 i=1
! d 1 '[9 1
gato) = Lt {2522 Gim) | =1 552 Gm | |.
i=1

With these expressions one can verify the conditions regardingnd|| B

Finally, for condition (iv) of Theorem 4.1 we have, for exampe,— Q =
—(1/20)[tr(PX; P X)) ]o<j,k<q» WhereX; =0X/do;. Note thatP — P = P(T —
$)P, whereP is P with o replaced by and so on.
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