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MEAN SQUARED ERROR OF EMPIRICAL PREDICTOR

BY KALYAN DAS,1 JIMING JIANG2 AND J. N. K. RAO1

Calcutta University, University of California, Davis and Carleton University

The term “empirical predictor” refers to a two-stage predictor of a linear
combination of fixed and random effects. In the first stage, a predictor is
obtained but it involves unknown parameters; thus, in the second stage,
the unknown parameters are replaced by their estimators. In this paper, we
consider mean squared errors (MSE) of empirical predictors under a general
setup, where ML or REML estimators are used for the second stage. We
obtain second-order approximation to the MSE as well as an estimator of
the MSE correct to the same order. The general results are applied to mixed
linear models to obtain a second-order approximation to the MSE of the
empirical best linear unbiased predictor (EBLUP) of a linear mixed effect
and an estimator of the MSE of EBLUP whose bias is correct to second order.
The general mixed linear model includes the mixed ANOVA model and the
longitudinal model as special cases.

1. Introduction. We consider a general linear mixed model of the form

y = Xβ + Zv + e,(1.1)

where y is an n × 1 vector of sample observations,X and Z are known
matrices,β is a p × 1 vector of unknown parameters (fixed effects) andv and
e are distributed independently with means 0 and covariance matricesG andR,
respectively, depending on some unknown vector of parametersσ . We assume that
p is fixed andX is of full rankp (< n). Note that cov(y) = � = R + ZGZ′.

Problems involving multiple sources of random variation are often modeled as
special cases of (1.1). For example, in the well-known ANOVA model we partition
Z asZ = (Z1, . . . ,Zq) andv = (v′

1, . . . , v
′
q)′, whereZi is n × ri , vi is ri × 1, i =

1, . . . , q, andv1, . . . , vq are mutually independent withvi ∼ N(0, σiIri ) ande ∼
N(0, σ0In). (For notational convenience we useσi rather than the customaryσ 2

i

to denote theith variance component.) Note that the ANOVA model is a special
case of (1.1) withR = σ0In, G = diag(σ1Ir1, . . . , σqIrq ) andσ = (σ0, σ1, . . . , σq)

′.
The (dispersion) parameter space under the ANOVA model is� = {σ :σi ≥ 0,
i = 0,1, . . . , q}. The well-known “longitudinal” random effects model [Laird and
Ware (1982)] is also a special case of (1.1). In this casey = (y′

1, . . . , y
′
t )

′ with

yi = Xiβ + Zivi + ei, i = 1, . . . , t,(1.2)
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where yi is ni × 1, Xi is ni × p and Zi is ni × ri . It is assumed that the
yi ’s are independent, cov(vi) = Gi , cov(ei) = Ri , where Gi and Ri depend
on σ , andvi andei are independent. It follows that� = diag(�1, . . . ,�t) with
�i = cov(yi) = �i = Ri + ZiGiZ

′
i . [Note that the longitudinal model (1.2)

is not a special case of the ANOVA model and vice versa.] The well-known
Fay–Herriot (1979) model widely used in small area estimation is a special case
of the longitudinal model. The (dispersion) parameter space under the longitudinal
model is� = {σ :�i is nonnegative definite,i = 1, . . . , t}.

Estimation of linear combinations ofβ and realizedv from (1.1), sayµ =
l′β + m′v, for specified vectors of constantsl andm is of considerable interest
in many practical applications, for example, the estimation of quality index,
longitudinal studies, the selection index in quantitative genetics, plant varietal trials
and small area estimation [Robinson (1991)]. Henderson (1975) obtained the best
linear unbiased predictor (BLUP) ofµ under model (1.1) as

t (σ ) = t (σ, y)

(1.3) = l′β̃ + m′ṽ = l′β̃ + s(σ )′(y − Xβ̃),

where

β̃ = β̃(σ ) = (X′�−1X)−1X′�−1y

is the generalized least squares estimator, or best linear unbiased estimator
(BLUE), of β, ṽ = ṽ(σ ) = GZ′�−1(y − Xβ̃) ands(σ ) = �−1ZGm.

The BLUP estimator (1.3) is unbiased in the sense of E[t (σ, y) − µ] = 0
under (1.1). The mean squared error (MSE) oft (σ ) is given by

MSE[t (σ )] = E[t (σ ) − µ]2 = g1(σ ) + g2(σ ),(1.4)

where

g1(σ ) = m′(G − GZ′�−1ZG)m

and

g2(σ ) = [l − X′s(σ )]′(X′�−1X)−1[l − X′s(σ )];
see Henderson (1975). Results (1.3) and (1.4) do not require normality of random
effectsv ande.

The BLUP estimatort (σ ) depends on the dispersion parametersσ , which
are unknown in practice. It is therefore necessary to replaceσ by a consistent
estimatorσ̂ to obtain a two-stage estimator or empirical BLUP (EBLUP) given
by t (σ̂ ). Methods of estimatingσ include maximum likelihood (ML) and restricted
maximum likelihood (REML) under normality, the method of fitting-of-constants
and minimum norm quadratic unbiased estimation (MINQUE) without the
normality assumption; see Searle, Casellaand McCulloch (1992). The resulting
estimatorsσ̂ are even and translation invariant, that is,σ̂ (y) = σ̂ (−y) for all y
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andσ̂ (y + Xβ) = σ̂ (y) for all y andβ. Jiang (1996) proved that ML and REML
estimatorsσ̂ obtained under normality remain consistent without the normality
assumption.

Kackar and Harville (1981) showed that the EBLUPt (σ̂ ) remains unbiased if
σ̂ is even and translation invariant. This result holds provided that E[t (σ̂ )] is finite
andv ande are symmetrically distributed (not necessarily normal). In particular,
the two-stage estimator̂β = β̃(σ̂ ) is unbiased forβ.

Kenward and Roger (1997) studied inference for the fixed effects,β, under a
general Gaussian linear mixed modely ∼ N(Xβ,�) with a structured covariance
matrix � = �(σ) depending on some parameterσ . They used the REML esti-
mator of β, namely the two-stage estimatorβ̂ = β̃(σ̂ ), where σ̂ is the REML
estimator ofσ . A naive estimator of cov(β̂) that ignores the variability in̂σ is
given by[X′�−1(σ̂ )X]−1. Kenward and Roger (1997) derived a bias-adjusted es-
timator of cov(β̂) and used it to derive a scaled Wald statistic, together with an
F approximation to its distribution. The F approximation performed well in simu-
lations under a range of small sample settings. Kenward and Roger (1997) did not
study the precise order of the bias of the adjusted estimator.

Kackar and Harville (1981) studied approximation to the MSE of EBLUPt (σ̂ ),
assuming normality of the random effectsv and errorse in the model (1.1). They
showed that

MSE[t (σ̂ )] = MSE[t (σ )] + E[t (σ̂ ) − t (σ )]2(1.5)

for any even and translation invariant estimatorσ̂ , provided that MSE[t (σ̂ )]
is finite. It should be pointed out that, under very mild conditions, E[t (σ̂ )]
and MSE[t (σ̂ )] are, in fact, finite [see Jiang (2000)]. It is customary among
practitioners to ignore the variability associated withσ̂ and use the following naive
estimator of MSE[t (σ̂ )]:

mseN[t (σ̂ )] = g1(σ̂ ) + g2(σ̂ ).(1.6)

However, it follows from (1.4) and (1.5) that (1.6) can lead to significant
underestimation. Therefore, it is practically important to obtain approximately
unbiased estimators of MSE that reflect the true variability associated with the
EBLUP estimators. This becomes particularly important when large sums of funds
are involved. For example, over $7 billion dollars of funds are allocated annually
on the basis of EBLUP estimators of school-age children in poverty at the county
and school district levels [National Research Council (2000)].

Kackar and Harville (1984) gave an approximation to MSE[t (σ̂ )] under the
general model (1.1), taking account of the variability inσ̂ , and proposed an
estimator of MSE[t (σ̂ )] based on this approximation. However, the approximation
is somewhat heuristic, and the accuracy of the approximation and the associated
estimator of MSE[t (σ̂ )] was not studied. Prasad and Rao (1990) studied the
accuracy of a second-order approximation to MSE[t (σ̂ )] for two important special
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cases of the longitudinal model (1.2): (i) the well-known Fay–Herriot model (2.15)
studied in Section 2.3 and (ii) the nested error linear regression model given
by (1.2) with Zi = 1ni

, a scalarvi with var(vi) = σ1 and cov(ei) = σ0Ini
,

i = 1, . . . , t . In the context of small area estimationni is the sample size in
the ith area andt is the number of small areas. The nested error model may
also be regarded as a special case of the ANOVA model with a single source of
variation (q = 1),G = σ1It andR = σ0In. Using the method of fitting-of-constants
estimatorσ̂ , Prasad and Rao (1990) showed that, for larget ,

E[t (σ̂ ) − t (σ )]2 = g3(σ ) + o(t−1),(1.7)

whereg3(σ ) depends on cov(σ̂ ). This leads to a second-order approximation

MSEa[t (σ̂ )] = g1(σ ) + g2(σ ) + g3(σ ).(1.8)

The approximation is accurate to termso(t−1), that is, the neglected terms
areo(t−1). Theg3(σ ) term is computationally simpler compared to an asymptoti-
cally equivalent term obtained from Kackar and Harville’s approximation. Prasad
and Rao (1990) also obtained an estimator of MSE[t (σ̂ )] given by

msePR[t (σ̂ )] = g1(σ̂ ) + g2(σ̂ ) + 2g3(σ̂ ).(1.9)

The estimator (1.9) is approximately unbiased in the sense that its bias iso(t−1).
Kackar and Harville (1984) proposed an alternative estimator given by

mseKH[t (σ̂ )] = g1(σ̂ ) + g2(σ̂ ) + g∗
3(σ̂ )(1.10)

for any even and translation invariant estimatorσ̂ . The bias of (1.10) isO(t−1);
that is, it is not approximately unbiased to termso(t−1).

Harville and Jeske (1992)studied various MSE estimators under the ANOVA
model with a single source of random variation (q = 1) and the REML estimator
of σ , including an estimator of the form (1.9). They referred to the latter estimator
as the Prasad–Rao (P–R) estimator. They appealed to Prasad–Rao’s asymptotic
results for its justification, but the latter results have been justified only for the
special cases (i) and (ii). They also conducted a limited simulation study based
on the simple one-way random effects model,yij = β + vi + eij , j = 1, . . . , ni ,
i = 1, . . . , t , using a small balanced design (t = 9, ni = 2 for all i), a small
unbalanced design (t = 9, n1 = · · · = n8 = 1, n9 = 10) and a large unbalanced
design (t = 21, n1 = · · · = n20 = 1, n21 = 50). The objective was to estimate the
meanµ = β + v1. Simulation results indicated that the P–R estimator performs
well whenγ = σ1/σ0 is not small, but it can lead to substantial overestimation for
small values ofγ closer to the lower bound of 0, especially for smallt (= 9). Two
partially Bayes estimators perform better than the P–R estimator whenγ is close
to 0.

Datta and Lahiri (2000) extended Prasad and Rao’s (1990) results to the
general longitudinal model (1.2) with covariance matricesRi andGi having linear
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structures of the formRi = ∑q
j=0 σjRijR

′
ij and Gi = ∑q

j=0σjGijG
′
ij , where

σ0 = 1, Rij and Gij (i = 1, . . . , t ; j = 0,1, . . . , q) are known matrices with
uniformly bounded elements such thatRi andGi are positive definite matrices
for i = 1, . . . , t . They studied ML and REML estimators ofσ = (σ1, . . . , σq)

′
and showed that an estimator of MSE[t (σ̂ )] of the form (1.9) is approximately
unbiased when the REML estimator ofσ is used but not when the ML estimator is
used. In the latter case an additional term involving the bias of the ML estimatorσ̂

is needed for getting an approximately unbiased MSE estimator. Datta and Lahiri
(2000) also gave explicit formulas under ML and REML for the two special cases
(i) and (ii) studied by Prasad and Rao (1990). The underlying proof of Datta and
Lahiri (2000), however, is not rigorous.

The main purpose of our paper is to study the general linear mixed model (1.1)
that covers the ANOVA model as well as the longitudinal model and derive
a second-order approximation to MSE of EBLUPt (σ̂ ) under REML and
ML estimation of the variance components parametersσ . We also derive
approximately unbiased estimators of MSE[t (σ̂ )] and specify the precise order
of the neglected terms. For ANOVA models with multiple sources of random
variation, the components of̂σ may have different convergence rates [Miller
(1977) and Jiang (1996)]. As a result, rigorous proofs are quite technical and long.
We have therefore only sketched the technical details in Section 5 of our paper, but
the detailed proofs are available at the web site address given in Section 5.

The remaining sections of the paper are organized as follows. In Section 2, we
first present a general asymptotic representation ofσ̂ − σ , whereσ̂ is obtained
as a solution of “score” equations of the form∂l(σ )/∂σ = 0, andσ represents
the true value of parameter vector. Normality assumption is not needed for this
asymptotic representation. We then verify that the conditions underlying this
representation are satisfied by solutions to the ML and REML score equations
belonging to a parameter space� under the ANOVA model and normality. As
another example, we show that the conditions are satisfied by the ML and REML
estimators under the Fay–Herriot model and normality. In Section 3 we obtain
a second-order approximation to MSE[t (σ̂ )] under normality. The second-order
approximation is then spelled out under the ANOVA model using ML and REML
estimatorsσ̂ . We also verify the underlying key conditions for the special cases
of the balanced ANOVA model and two special cases of the longitudinal model:
the Fay–Herriot model and the nested error regression model. Section 4 gives an
estimator of MSE[t (σ̂ )] correct to second order. The MSE estimator is then spelled
out under the ANOVA model and the longitudinal model using ML and REML
estimatorŝσ . Technical details are sketched in Section 5.

2. Asymptotic representation of σ̂ − σ . Throughout the rest of this paper,
σ represents the true parameter vector in places where there is no confusion;
expressions such as∂l(σ̃ )/∂σ mean derivative with respect toσ evaluated at̃σ ; in
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expressions such as E[∂2l(σ )/∂σ 2], the expectation is taken at the trueσ , and the
function inside E(·) is also evaluated at the trueσ . We first obtain an asymptotic
representation of̂σ − σ , whereσ̂ is obtained as a solution to “score” equations of
the form

∂l(σ )

∂σ
= 0(2.1)

and then apply the general theory to the ANOVA model with REML and
ML estimation of σ . In Section 5.1 we sketch the proof of the asymptotic
representation. Herel(σ ) may correspond to the logarithm of the restricted
likelihood lR(σ ), or the profile loglikelihoodlP(σ ) under model (1.1) and
normality ofv ande.

THEOREM 2.1. Suppose that:

(i) l(σ ) = l(σ, y) is three times continuously differentiable with respect to
σ = (σ1, . . . , σs)

′, where y = (y1, . . . , yn)
′;

(ii) the true σ ∈ �o, the interior of �;
(iii)

−∞ < lim sup
n→∞

λmax(D
−1AD−1) < 0,(2.2)

where λmax means the largest eigenvalue, A = E[∂2l(σ )/∂σ 2] and D = diag(d1,

. . . , ds) with di > 0, 1≤ i ≤ s, such that d∗ = min1≤i≤s di → ∞ as n → ∞; and
(iv) the gth moments of the following are bounded (g > 0):

1

di

∣∣∣∣∂l(σ )

∂σi

∣∣∣∣, 1√
didj

∣∣∣∣ ∂2l(σ )

∂σi ∂σj

− E
[

∂2l(σ )

∂σi ∂σj

]∣∣∣∣, d∗
didjdk

Mijk(y),

1 ≤ i, j, k ≤ s,

where Mijk(y) = sup̃σ∈Sδ(σ ) |∂3l(σ̃ )/∂σi ∂σj ∂σk| with Sδ(σ ) = {σ̃ : |σ̃i − σi| ≤
δd∗/di , 1 ≤ i ≤ s} for some δ > 0. Then (1) a σ̂ exists such that for any 0 <

ρ < 1 there is a set B satisfying for large n and on B, σ̂ ∈ �, ∂l(σ̂ )/∂σ = 0,
|D(σ̂ − σ)| < d

1−ρ∗ and

σ̂ = σ − A−1a + r,(2.3)

where a = ∂l(σ )/∂σ and |r| ≤ d
−2ρ∗ u∗ with E(u

g∗) bounded, and (2) P(Bc) ≤
cd

−τg∗ , where τ = (1/4) ∧ (1− ρ) and c is a constant.

Note that Theorem 2.1 states that the solution to (2.1),σ̂ , exists and lies in the
parameter space with probability tending to 1 and gives the convergence rate ofσ̂

to σ as well as the asymptotic representation (2.3), assuming that the true vectorσ

belongs to the interior of the parameter space�.
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2.1. REML estimation under the ANOVA model. The ANOVA model is given
by

y = Xβ +
q∑

i=1

Zivi + e.(2.4)

The restricted loglikelihood under the ANOVA model with normality ofv ande

has the form

lR(σ ) = c − (1/2)[log(|T ′�T |) + y′Py],(2.5)

whereσ = (σ0, σ1, . . . , σq)′, c is a constant,|T ′�T | is the determinant ofT ′�T ,
T is anyn × (n − p) matrix such that rank(T ) = n − p andT ′X = 0,

P = T (T ′�T )−1T ′
(2.6) = �−1 − �−1X(X′�−1X)−1X′�−1,

and� = ∑q
i=0 σiVi with V0 = In andVi = ZiZ

′
i , i ≥ 1 [e.g., Searle, Casella and

McCulloch (1992), page 451]. The REML estimator ofσ is a solution to (2.1)
with l(σ ) = lR(σ ). Section 5.2 sketches the proof that shows the conditions of
Theorem 2.1 are satisfied, provided that the same conditions under which REML
estimators are consistent are satisfied [Jiang (1996)]. The actual proof is somewhat
lengthy and uses results on moments of quadratic forms in normal variables
and di = ‖Z′

iPZi‖2 for the ANOVA model, where‖B‖2 = [tr(B ′B)]1/2 for a
matrix B. A quadratic form iny or u = y − Xβ appears in the formulas for the
first derivatives oflR,

∂lR(σ )

∂σi

= 1

2
[y′PViPy − tr(PVi)]

(2.7)
= 1

2
[u′PViPu − tr(PVi)], 0≤ i ≤ q.

Note that u ∼ N(0,�). Similarly, the second and third derivatives involve
quadratic forms inu; see Section 5.2.

2.2. ML estimation under the ANOVA model. The (unrestricted) loglikelihood
has the form

l(β, σ ) = c − 1
2

[
log(|�|) + (y − Xβ)′�−1(y − Xβ)

]
,(2.8)

wherec is a constant. We have
∂l(β,σ )

∂β
= X′�−1y − X′�−1Xβ,(2.9)

∂l(β,σ )

∂σi

= 1

2

[
(y − Xβ)′�−1Vi�

−1(y − Xβ) − tr(�−1Vi)
]
,(2.10)

0≤ i ≤ q.
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Solving ∂l(β,σ )/∂β = 0 for β, we obtain from (2.9)β̃(σ ) = (X′�−1X)−1X′ ×
�−1y. Substitutingβ̃(σ ) for β in (2.8), and using (2.6), we obtain the profile
loglikelihood

lP(σ ) = c − 1
2[log(|�|) + y′Py].(2.11)

It now follows that the MLE ofσ is the solution of the equation

∂lP(σ )

∂σ
= 0.(2.12)

Note thatlP(σ ) is not a loglikelihood function, but Theorem 2.1 does not require
l(σ ) to be a loglikelihood function, so we can takel(σ ) = lP(σ ) in Theorem 2.1.
Section 5.3 sketches the proof that shows the conditions of Theorem 2.1 are
satisfied with the samedi as in the REML case and the same set of conditions,
providedp, the dimension ofβ, is bounded asn increases. Again, quadratic forms
appear in the formulas for the first derivatives oflP(σ ):

∂lP(σ )

∂σi

= 1

2

[
y′PViPy − tr(�−1Vi)

]
(2.13)

= 1

2

[
u′PViPu − tr(�−1Vi)

]
, 0 ≤ i ≤ q.

Similarly, the second and third derivatives involve quadratic forms inu; see
Section 5.3.

2.3. The Fay–Herriot model. In Sections 2.1 and 2.2 we considered ML and
REML estimations under the ANOVA model. Now we consider a different case,
the Fay–Herriot model [Fay and Herriot (1979)]. This model has been considered
by many authors; see Ghosh and Rao (1994) for a review and extensions.

Suppose thatyi is a scalar random variable such that

yi = x′
iβ + vi + ei, i = 1, . . . , t,(2.14)

where thevi ’s are i.i.d.∼ N(0, σ ), ei ’s are independent such thatei ∼ N(0, φi)

with known φi , and vi ’s are independent ofei ’s. Furthermore,xi is a known
p × 1 vector of covariates, andβ is an unknown vector of regression coefficients.
In the context of small area estimation,yi denotes a survey estimate of theith
area meanµi andei denotes the sampling error with known sampling variance,
var(ei) = φi . Furthermore,µi is modelled asµi = x′

iβ + vi with model errorsvi .
Note that model (2.14) is not a special case of the ANOVA model. In fact, it may

be considered as a special case of the longitudinal model introduced in Section 1.
Model (2.14) may be written in matrix form as

y = Xβ + v + e,(2.15)

where y = (y1, . . . , yt )
′, v = (v1, . . . , vt )

′ ∼ N(0, σ It ), e = (e1, . . . , et )
′ ∼

N(0,�) with � = diag(φ1, . . . , φt ), X is t × p with ith rowx′
i , andv, e are inde-

pendent.
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Now consider REML and ML estimations under the Fay–Herriot model (2.15).
In Section 5.6 we sketch the proofs that show the conditions of Theorem 2.1 are
satisfied if REML or ML estimators ofσ are used, provided thatσ is positive and
theφi ’s are bounded.

3. MSE approximation. We now obtain a second-order approximation to the
MSE of EBLUPt (σ̂ ). Under normality the MSE oft (σ̂ ) satisfies (1.5), that is,

MSE[t (σ̂ )] = MSE[t (σ )] + E[t (σ̂ ) − t (σ )]2,(3.1)

where MSE[t (σ )] is obtained from (1.4). It remains to approximate the last term
on the right-hand side of (3.1).

THEOREM 3.1. Suppose that the conditions of Theorem 2.1 are satisfied.
Furthermore, suppose that t (σ ) can be expressed as

t (σ ) =
K∑

k=1

λk(σ )Wk(y),(3.2)

where K = O(dα∗ ) for some α ≥ 0, and the following terms are bounded for some
b > 2 and δ > 0:

(i) max
1≤k≤K

E|Wk(y)|b,
(ii) max

1≤k≤K
sup
σ

|λk(σ )|,

(iii)
K∑

k=1

∣∣∣∣∂λk(σ )

∂σ

∣∣∣∣,

(iv)
K∑

k=1

sup
|σ̃−σ |≤δ

∥∥∥∥∂2λk(σ̃ )

∂σ 2

∥∥∥∥,
where ‖B‖ = [λmax(B

′B)]1/2 is the spectral norm of a matrix B. If g > 8(1 +
α)(1− 2/b)−1, then

E[t (σ̂ ) − t (σ )]2 = E(h′A−1a)2 + o(d−2∗ ),(3.3)

where h = ∂t (σ )/∂σ , A = E[∂2l(σ )/∂σ ], and a = ∂l(σ ) ∂σ .

A sketch of the proof of Theorem 3.1 is given in Section 5.4. Note that normality
is not required in Theorem 3.1. On the other hand, Theorem 3.1 requires that
the predictort (σ ) have the form (3.2). In the next two subsections we show that
this condition holds for balanced ANOVA models as well as for two longitudinal
models. It is possible to replace (3.2) by some moment conditions ont (σ ) and its
first and second derivatives, provided that one considers instead a truncated version
of σ̂ , which is defined aŝσ if |σ̂ | ≤ Ln, and isσ ∗ otherwise withσ ∗ being a known
vector in� andLn a positive number such thatLn → ∞ asn → ∞. The details of
the latter approach are available at the web site given at the beginning of Section 5.
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3.1. ANOVA model. We first spell out E(h′A−1a)2 for the ANOVA model
with normality of v and e. We assume that the elements of the coefficient
vectorsl andm definingµ = l′β + m′v are bounded, and|m| = O(1). In fact,
m typically consists of only a finite number of elements equal to 1 and the rest
equal to 0. For the balanced caseβ̃ = (X′X)−1X′y does not depend on�. In this
caseh(σ ) = ∂t (σ )/∂σ = [∇s(σ )]′(I − P̃X)u = [∇s(σ )]′u+ lower order terms,
whereu = Zv + e, ∇s(σ ) = ∂s(σ )/∂σ ′ andP̃X = X(X′X)−1X′. For the general
unbalanced casẽβ depends on� but the same expression still holds, that is,
∂t (σ )/∂σ = [∇s(σ )]′u+ lower order terms. Using Lemma 3.1 below on higher
moments of normal variables, we get

E(h′A−1a)2 = tr
{[∇s(σ )]′�[∇s(σ )]A−1} + o(d−2∗ )

(3.4) = g3(σ ) + o(d−2∗ ),

when a is taken as∂lR(σ )/∂σ corresponding to REML. Note thatd2
i is the

diagonal element of the information matrix associated withσ̂i and represents the
“effective sample size” for estimatingσi .

LEMMA 3.1. Let A1 and A2 be k × k symmetric matrices, and u ∼ N(0,�),
where � is k × k and positive definite. Then the following hold:

(i) E[u{u′Aju − E(u′Aju)}u′] = 2�Aj�, j = 1,2.
(ii) E[{u′A1u − E(u′A1u)}{u′A2u − E(u′A2u)}] = 2 tr(A1�A2�).
(iii) E [u{u′A1u − E(u′A1u)}{u′A2u − E(u′A2u)}u′] = 2 tr(A1�A2�)� +

4�A1�A2� + 4�A2�A1�.
(iv) Write wj = λ′

j u, Wj = u′Aju, j = 1, . . . , s, where λj and Aj are
nonstochastic of order k × 1 and k × k, respectively. Then, for w = (w1, . . . ,ws)

′
and W = (W1, . . . ,Ws)

′,

E[w′(W − EW)]2

= tr(�w�W) + 4
s∑

j=1

s∑
l=1

λ′
j�(Aj�Al + Al�Aj)�λl,

where �w and �W denote the covariance matrices of w and W , respectively.

The proofs of (i)–(iv) are immediate from Lemmas A.1 and A.2 of Prasad and
Rao (1990).

It can be shown that (3.4) is also valid whena is taken as∂lP(σ )/∂σ

corresponding to ML. Thus, using (1.4), (3.1), (3.3) and (3.4), we get

MSE[t (σ̂ )] = g1(σ ) + g2(σ ) + g3(σ ) + o(d−2∗ ),(3.5)

valid for both the REML estimator and the ML estimator ofσ .
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Next, we show that the key condition (3.2) ont (σ ) is satisfied for all balanced
ANOVA models. Note that, based on the expression given by Proposition 3.1
below, all the other conditions of Theorem 3.1 are either trivial or known to be
satisfied in the balanced case with normality [see Jiang (1996)]. Of course, the
verification of (3.2) does not require normality.

A balancedw-factor linear mixed ANOVA model may be expressed as

y = Xβ + ∑
i∈S

Zivi + e,(3.6)

where X and Zi ’s have the following expressions [e.g., Searle, Casella and
McCulloch (1992), Rao and Kleffe (1988)]:X = ⊗w+1

l=1 1sl
nl

with (s1, . . . , sw+1) ∈
Sw+1 = {0,1}w+1, Zi = ⊗w+1

l=1 1il
nl

with (i1, . . . , iw+1) ∈ S ⊂ Sw+1, where ⊗
denotes the operation of a Kronecker product,nl is the number of levels for
factor l, 1n represents then-dimensional vector of 1’s,10

n = In and11
n = 1n. The

(w + 1)st factor corresponds to “repetition within cells,” and thussw+1 = 1 and
iw+1 = 1, i ∈ S. We use 0 for the element(0, . . . ,0) in Sw+1 and letS̄ = {0} ∪ S.
The covariance matrix ofy then has the form

� = σ0In + ∑
i∈S

σiZiZ
′
i

= ∑
i∈Sw+1

λi

w+1⊗
l=1

J il
nl

,

(3.7)

whereJn represents then×n matrix of 1’s,J 0
n = In andJ 1

n = Jn; λi = σi if i ∈ S̄,
andλi = 0 if i /∈ S̄.

Searle and Henderson (1979) showed that�−1 has the same form,

�−1 = ∑
i∈Sw+1

τi

w+1⊗
l=1

J il
nl

,(3.8)

where the coefficientsτi in (3.8) are computed by an algorithm. From a
computational point of view, the Searle–Henderson algorithm is easy to operate.
However, with such a form it may not be so easy to investigate theoretical
properties of�−1, which are important to the current paper. Jiang (2004) gives an
alternative derivation of (3.8) with explicit expressions for theτi ’s; see Lemma 3.2.
First, note that under the balanced model we haveri = ∏

il=0 nl, i ∈ S. This allows
us to extend the definition ofri to all i ∈ Sw+1. In particular,p = rs = ∏

sl=0 nl ,

and n = r0 = ∏w+1
l=1 nl . We shall use the abbreviations{kl = 1} and so on for

subsets ofL = {1, . . . ,w + 1}. For example, ifk, u ∈ Sw+1, then{kl = 1, ul = 0}
means{l ∈ L :kl = 1, ul = 0}. Also, for i, j ∈ Sw+1, j ≤ i meansjl ≤ il , 1≤ l ≤
w + 1. Finally, |B| denotes the cardinality of setB.
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LEMMA 3.2. For any balanced w-factor mixed ANOVA model (3.8) holds
with

τi =
(

ri

n

){ ∑
j∈Sw+1

(−1)|{il=1,jl=0}|1(j≤i)

σ0 + ∑
k∈S σk(n/rk)1(k≤j)

}
, i ∈ Sw+1.(3.9)

Using Lemma 3.2, the following proposition can be proved. A sketch of the
proof is given in Section 5.5.

PROPOSITION 3.1. For any balanced mixed ANOVA model, the BLUP t (σ )

given by (1.3)can be expressed as (3.2)with K ≤ 1 + |S|2w+1 [hence K = O(1)

and the terms below (3.2)bounded].
It is known that (3.2) also holds for some unbalanced ANOVA models. For

example, see the nested error regression model discussed in the next subsection,
which is also a special case of the longitudinal model.

3.2. The longitudinal model. For longitudinal models the spelled-out expres-
sion for E(h′A−1a)2 in (3.3) [up to a termo(d−2∗ )] is given in Datta and Lahiri
(2000). In the following we show that the key condition (3.2) in Theorem 3.1 is
satisfied for two special (and important) classes of longitudinal models: the Fay–
Herriot model and the nested error regression model.

First consider the Fay–Herriot model (see Section 2.3). It is easy to show the
following:

l′β̃ =
t∑

i=1

ai(σ )yi,(3.10)

m′ṽ =
t∑

i=1

miṽi

=
t∑

i=1

bi(σ )yi −
t∑

i,k=1

bi,k(σ )yk,(3.11)

where

ai(σ ) = l′
(

t∑
i=1

xix
′
i

σ + φi

)−1
xi

σ + φi

,

bi(σ ) = mi

(
σ

σ + φi

)
,

bi,k = mi

(
σ

σ + φi

)
x′
i

(
t∑

k=1

xkx
′
k

σ + φk

)−1(
σ

σ + φk

)
.

We have the following result. The proof is straightforward.
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PROPOSITION3.2. For the Fay–Herriot model (2.14),the BLUP t (σ ) given
by (1.3) can be expressed as (3.2) with K = (t + 1)2 − 1 [and the terms below
(3.2) bounded], provided that (i) the φi ’s are bounded from above and away
from 0; (ii) |xi|, 1 ≤ i ≤ t , are bounded, and so are |l| and

∑t
i=1 |mi |, and

(iii) lim inf λmin(t
−1 ∑t

i=1 xix
′
i ) > 0.

Next we consider the nested error regression model. Suppose that

yij = β0 + x′
ij β + vi + eij , j = 1, . . . , ni; i = 1, . . . , t,(3.12)

whereβ = (βu)1≤u≤p−1 andβu, 0 ≤ u ≤ p − 1, are unknown regression coeffi-
cients;xij ’s are known vectors of covariates;vi ’s are independent random effects
with distributionN(0, σ1); eij ’s are independent errors with distributionN(0, σ0),
andv ande are independent. W.l.o.g. letni ≥ 1. For the nested error regression
model (3.12)l′β̃ andm′ṽ can, again, be expressed as (3.10) and (3.11), where

ai(σ ) = l′
(

t∑
i=1

X′
i�

−1
i Xi

)−1

X′
i�

−1
i ,

bi(σ ) = mi

(
σ1

λi

)
1′
ni

,

bi,k(σ ) = mi

(
σ1

λi

)
1′
ni

Xi

(
t∑

k=1

X′
k�

−1
k Xk

)−1

X′
k�

−1
k .

We have the following result. A sketch of the proof is given in Section 5.7.

PROPOSITION 3.3. For the nested error regression model (3.12) the BLUP
t (σ ) given by (1.3)can be expressed as (3.2)with K = O(t2) [and the terms below
(3.2)bounded], provided that (i) σ0 > 0; (ii) p, ni , |xij |, 1≤ i ≤ t , 1≤ j ≤ ni , are
bounded, and so are |l| and

∑t
i=1 |mi |, and (iii) lim inf λmin(t

−aSa) > 0, a = 1,2,
where S1 = ∑t

i=1 ni

∑ni

j=1(xij − x̄i)(xij − x̄i )
′, S2 = ∑t

i=1
∑ni

j=1
∑t

k=1
∑nk

l=1(xij −
xkl)(xij − xkl)

′ and x̄i = n−1
i

∑ni

j=1xij .

Note that in both cases considered aboved∗ can be chosen as
√

t .

4. Estimation of MSE. We now turn to the estimation of MSE[t (σ̂ )].
We obtain an estimator mse[t (σ̂ )] correct to second order in the sense of
E{mse[t (σ̂ )]} = MSE[t (σ̂ )] + o(d−2∗ ). That is, the bias of mse[t (σ̂ )] in estimating
MSE[t (σ̂ )] is o(d−2∗ ).

First, we have from (3.1) and (3.3),

MSE[t (σ̂ )] = MSE[t (σ )] + E(h′A−1a)2 + o(d−2∗ )

(4.1) = η(σ ) + o(d−2∗ ), say.
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We now define an estimatorη̂ of η(σ ) having the following property:

E(η̂) = η(σ ) + o(d−2∗ ).(4.2)

It follows from (4.1) and (4.2) that the bias of̂η in estimating MSE[t (σ̂ )] is
o(d−2∗ ). In addition toa andA defined in Section 2 (Theorem 2.1), letb = ∂η(σ )/

∂σ = (bi); B = ∂2η(σ )/∂σ 2 = (bij ); F = ∂2l(σ )/∂σ 2, Hi = (∂3l(σ )/∂σi ∂σ 2)

andC = (a′A−1hi)1≤i≤s , wheres is the dimension ofσ . Also, letQ = D−1AD−1

and W = Q−1 = (wij ). Let D−1a = (λi), D−1/2(F − A)D−1/2 = (λij ) and
D−1HiD

−1 = (λijk). We define the following vector, matrix and arrays:U0 =
(ui), U1 = (uil), U2 = (ujkl) andU3 = (ujklmn), whereui = E(λi), uil = E(λiλl),
ujkl = E(λjkλl) andujklmn = E(λjkmλlλn). Note that all of these are functions of
σ [e.g.,A = A(σ)]. The norm of anr-way array (r ≥ 3) U , denoted by‖U‖, is
defined as the maximum of the absolute values of its elements. (The norm of a
matrix is defined in Theorem 3.1.) Define

�0(σ ) = −2b′A−1E(a),(4.3)

�1(σ ) = b′A−1E(FA−1a),(4.4)

�2(σ ) = 1
2E(a′A−1BA−1a),(4.5)

�3(σ ) = −1
2b′A−1E(CA−1a).(4.6)

Finally, we define

η̂ = η(σ̂ ) −
3∑

j=0

�j(σ̂ ),(4.7)

provided that|η̂| ≤ c0d
λ∗ ; otherwise, letη̂ = η(σ ∗), wherec0 andλ are known

positive constants andσ ∗ is a given point in�.

THEOREM 4.1. The estimator η̂ given above satisfies the property (4.2)
provided that

(i) η(·) is three times continuously differentiable and the following are
bounded: η(σ ), |b|, ‖B‖ and

sup
σ̃∈Sδ(σ )

∣∣∣∣ ∂3η(σ̃ )

∂σi ∂σj ∂σk

∣∣∣∣, 1 ≤ i, j, k ≤ s,

where δ is a positive number and Sδ(σ ) = {σ̃ : |σ̃i − σi | ≤ δd∗/di,1 ≤ i ≤ s}.
(ii) The conditions of Theorem 2.1 hold with g > 8 + 4λ and l(σ ) four times

continuously differentiable with respect to σ .
(iii) The gth moments of the following are bounded:

1√
djdk

∣∣∣∣ ∂3l(σ )

∂σi ∂σj ∂σk

− E
[

∂3l(σ )

∂σi ∂σj ∂σk

]∣∣∣∣, 1

djdk

∣∣∣∣ ∂3l(σ )

∂σi ∂σj ∂σk

∣∣∣∣
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and

d2∗
didj dkdl

sup
σ̃∈Sδ(σ )

∣∣∣∣ ∂4l(σ̃ )

∂σi ∂σj∂σk ∂σl

∣∣∣∣, 1 ≤ i, j, k, l ≤ s.

(iv) supσ̃∈Sδ(σ ) ‖Q(σ̃ ) − Q(σ)‖ → 0 and sup̃σ∈Sδ(σ ) ‖Uj(σ̃ ) − Uj(σ )‖ → 0,
j = 1,2,3, as δ → 0 uniformly in n.

(v) |E(a)| is bounded and sup̃σ∈Sδ(σ ) |E(a)|σ=σ̃ − E(a)| → 0 as δ → 0
uniformly in n.

A sketch of the proof is given in Section 5.8.

COROLLARY 4.1. If condition (v) of Theorem 4.1 is strengthened to

E(a) = 0,(4.8)

then (4.2) holds, in which η̂ is given as in Theorem 4.1 except that in (4.7) the
summation is from 1 to 3.

The estimator̂η considered in Theorem 4.1 is truncated when its value exceeds
some (large) threshold. Such a truncation is needed only for establishing the
asymptotic result. In practice one does not need to truncate the estimator (because
it can be argued that for a given value ofη̂ there are always constantsc0 andλ

such that|η̂| ≤ c0d
λ∗ ). On the other hand, a similar result may be obtained forη̂

without truncation, provided that̂σ is replaced by its truncated version (defined
above Section 3.1). The details of such a result are available at the web site given
at the beginning of Section 5.

4.1. REML and ML under the ANOVA model. In Section 5.9 we give sketches
of a proof that shows the conditions of Theorem 4.1 are satisfied if the REML
estimator ofσ is used, provided that the same conditions under which the REML
estimators are consistent [Jiang (1996)] are satisfied. It can be shown that similar
results also hold for ML estimation, but we omit the details. According to (3.5),
in both REML and ML cases we haveη(σ ) = g1(σ ) + g2(σ ) + g3(σ ). However,
there is a difference between the two in terms of the spelled-out formulas for MSE
estimation. This difference is due to the fact that (4.8) holds for REML but not
for ML.

First consider REML. Lettinga = aR, l(σ ) = lR(σ ) and A = AR, we have
E(aR) = 0, and the(i, j) element of AR is given by −(1/2) tr(PViPVj).
Furthermore, we have�0(σ ) = 0, �1(σ ) = b′A−1

R wR(σ ) + o(d−2∗ ), where
wR(σ ) = (w0,R, . . . ,wq,R)′ with wi,R = − tr{A−1

R [tr(PViPVjPVk)]0≤j,k≤q}, i =
0, . . . , q; �2(σ ) = −g3(σ ) + o(d−2∗ ), whereg3(σ ) is given by (3.4) withA = AR

and�3(σ ) = −b′A−1
R wR(σ ) + o(d−2∗ ). Thus for REML we have

∑3
j=0�j (σ ) =

−g3(σ ) + o(d−2∗ ). It follows from (4.7) that for REMLη̂ = η̂R, where

η̂R = g1(σ̂R) + g2(σ̂R) + 2g3(σ̂R),(4.9)
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where σ̂R is the REML estimator ofσ . The MSE estimator̂ηR given by (4.9)
depends on the datay only throughσ̂R. An alternative MSE estimator that is data
specific can be obtained by using the following estimator ofg3(σ ):

g̃3(σ̂R) = (y − Xβ̃)′[∇s(σ )]′A−1
R [∇s(σ )](y − Xβ̃)|σ=σ̂R,(4.10)

where β̃ is the BLUE given below (1.3). It can be shown that E[g̃3(σ̂R)] =
g3(σ ) + o(d−2∗ ). The estimator (4.10) is obtained from (3.4) by replacing� by

�̂ = (y − Xβ̂R)(y − Xβ̂R)′.
Now consider ML. For simplicity, we assume that rank(X) = p is bounded.

Then, similarly, letting a = aM, l(σ ) = lP(σ ) and A = AM for ML, we
have E(aM) = −gM0(σ ) = −gM0 with gM0,i = (1/2) tr[(�−1 − P )Vi], i =
0, . . . , q. Furthermore,�0(σ ) = 2b′A−1

M gM0; �1(σ ) = b′A−1
M wM − b′A−1

M gM0 +
o(d−2∗ ), wherewM is wR with P replaced by�−1; �2(σ ) = −g3(σ ) + o(d−2∗ )

and �3(σ ) = −b′A−1
M wM + o(d−2∗ ). Also, b′A−1

M gM0 = (∂g1/∂σ )′A−1
M gM0 +

o(d−2∗ ) = g10(σ ) + o(d−2∗ ), say. Thus for ML we have
∑3

j=0�j(σ ) = g10(σ ) −
g3(σ ) + o(d−2∗ ), henceη̂ = η̂M, where

η̂M = g1(σ̂M) + g2(σ̂M) + 2g3(σ̂M) − g10(σ̂M),(4.11)

whereσ̂M is the ML estimator ofσ . Similar to the REML case, a data-specific
estimator can be obtained by usingg̃3(σ̂M) instead ofg3(σ̂M).

4.2. REML and ML under the longitudinal model. For longitudinal models
the spell-out of (4.7) [up to a termo(d−2∗ )] is given by Datta and Lahiri (2000)
for REML and ML estimation. Note that, similar to the previous subsection, there
is a difference between using REML and ML. In the following we give regularity
conditions such that the conditions of Theorem 4.1 are satisfied for longitudinal
models. The assumption thatGi andRi are linear functions ofσ can be relaxed.

We consider REML estimation. Similar results also hold for ML but we shall
omit the details. Letσ = (σ0, . . . , σq)′. Suppose that

1. Gi and Ri are linear inσ such that‖Gi‖, ‖Ri‖, ‖∂Gi/∂σj‖, ‖∂Ri/∂σj‖,
0 ≤ j ≤ q, and ‖�−1

i ‖ are bounded, and, as̃σ → σ , max1≤i≤t ‖Gi(σ̃ ) −
Gi(σ )‖ → 0, ‖Ri(σ̃ ) − Ri(σ )‖ → 0 uniformly in t :

2. σ ∈ �o, the interior of�.
3. The following are bounded:p, ni , ‖Xi‖, ‖Zi‖, |l| and

∑t
i=1 |mi |.

4. lim inft→∞ λmin(t
−1 ∑t

i=1 Bi) > 0, lim inft→∞ λmin(t
−1 ∑t

i=1 X′
i�

−1
i Xi) > 0,

whereBi is the(q + 1)× (q + 1) matrix whose(j, k) element is tr(�−1
i �i,j ×

�−1
i �i,k) with �i,j = ∂�i/∂σj . Then the conditions of Theorem 4.1 are

satisfied for the longitudinal model. A sketch of the proof is given in
Section 5.10.
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5. Sketches of proofs. In this section we give very brief sketches of the
proofs involved in this paper. These include proofs of the theorems and other
technical details. The detailed proofs are available at the following web site
address: http://anson.ucdavis.edu/j̃iang/jp8.pdf.

5.1. Regarding Theorem 2.1. Let σ∗ = σ − A−1a andB = B1 ∩ B2, where
B1 = {|ξ | ≤ (|λ|/2)d

1−ρ∗ } andB2 = {‖η‖(1+|λ|−1|ξ |)2+(s3/2/3)ζ(1+|λ|−1|ξ |)3 <

|λ|/2} with ξ = D−1a, λ = λmax(D
−1AD−1), η = D−1(∂2l(σ )/

∂σ 2 − A)D−1 and ζ = maxi,j,k{Mijk(y)/didjdk}. It can be shown that, onB,
l(σ̃ ) − l(σ∗) < 0 if |D(σ̃ − σ∗)| = 1. Since the functionl(σ̃ ) cannot attain its
maximum over the set{σ̃ : |D(σ̃ − σ∗)| ≤ 1} at the boundary of the set, the
maximum must be attained in the interior. Thus, there is a solution to (2.1)
in {σ̃ : |D(σ̃ − σ∗)| < 1}. Let σ̂ be the solution to (2.1) closest toσ∗. It can be
shown that, onB, σ̂ ∈ �, ∂l(σ̂ )/∂σ = 0 and|D(σ̂ −σ)| < d

1−ρ∗ . Furthermore, by
Taylor expansion it can be shown that, onB, σ̂ − σ = −A−1a + r1 + r2 such
that |r1| ≤ d

−1−ρ∗ u1, |r2| ≤ d
−2ρ∗ u2 with E(u

g
j ), j = 1,2, bounded. Finally, it

can be shown that P(Bc
1) ≤ c1d

−(1−ρ)g∗ and P(Bc
2) ≤ c2d

−g/4∗ for some constants
c1 andc2.

5.2. Regarding Section 2.1. The following lemmas are used to verify that the
conditions of Theorem 2.1 are satisfied.

LEMMA 5.1. Let Q be a symmetric matrix and ξ ∼ N(0, I ). Then for any
g ≥ 2 there is a constant c that only depends on g such that E|ξ ′Qξ − Eξ ′Qξ |g ≤
c‖Q‖g

2.

LEMMA 5.2. For any matrices A, B and C, we have | tr(ABC)| ≤ ‖B‖ ·
‖A‖2 · ‖C‖2, provided that the matrix product is well defined.

LEMMA 5.3. Let ai , bi be real numbers and δi ≥ 0 such that ai ≤ bi +�a , 1≤
i ≤ s, where �a = ∑s

j=1 δj aj . If � = ∑s
j=1 δj < 1, then ai ≤ bi + (1− �)−1�b,

1 ≤ i ≤ s, where �b = ∑s
j=1 δj bj .

We also use the following expressions for second and third derivatives oflR(σ ):

∂2lR(σ )

∂σi ∂σj

= 1

2
tr(PViPVj) − u′PViPVjPu,(5.1)

∂3lR(σ )

∂σi ∂σj ∂σk

= u′PViPVjPVkPu

+ u′PVjPVkPViPu + u′PVkPViPVjPu

(5.2)
− 1

2
[tr(PViPVjPVk) + tr(PViPVkPVj)].
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Note that the second and third derivatives are involved in the conditions of
Theorem 2.1.

5.3. Regarding Section 2.2. In addition to (2.13), we have

∂2lP(σ )

∂σi ∂σj

= 1

2
tr(�−1Vi�

−1Vj) − u′PViPVjPu,(5.3)

∂3lP(σ )

∂σi ∂σj ∂σk

= u′PViPVjPVkPu

+ u′PVjPVkPViPu + u′PVkPViPVjPu

(5.4)
− 1

2

[
tr(�−1Vi�

−1Vj�
−1Vk)

+ tr(�−1Vi�
−1Vk�

−1Vj)
]
.

From these expressions we obtain the following relationships:

∂lP(σ )

∂σi

= ∂lR(σ )

∂σ1
+ tr(PVi) − tr(�−1Vi),

∂2lP(σ )

∂σi ∂σj

= ∂2lR(σ )

∂σi ∂σj

+ 1

2

[
tr(�−1Vi�

−1Vj) − tr(PViPVj)
]
,(5.5)

∂3lP(σ )

∂σi ∂σj ∂σk

= ∂3lR(σ )

∂σi ∂σj ∂σk

+ 1

2
(I1 − J1 + I2 − J2),

whereI1 = tr(PViPVjPVk), I2 = tr(PViPVkPVj) andJr is Ir with P replaced
by �−1, r = 1,2. We assume thatp = rank(X) is bounded. Then it can be
shown that| tr(�−1Vi) − tr(PVi)| ≤ pσ−1

i , | tr(�−1Vi�
−1Vj ) − tr(PViPVj)| ≤

3p(σiσj )
−1 and | tr(�−1Vi�

−1Vj�
−1Vk) − tr(PViPVjPVk)| ≤ 7p(σiσjσk)

−1.
Thus, by the result of the previous subsection, it can be shown that the conditions
of Theorem 2.1 are satisfied.

5.4. Regarding Theorem 3.1. Let ρ = 3/4. By Theorem 2.1 and Taylor
expansion it can be shown thatt (σ̂ ) − t (σ ) = −h′A−1a + r , where |r| ≤
d

−2ρ∗ u and E(u2) is bounded. Thus, we have E[t (σ̂ ) − t (σ )]2 = E(·)21B +
E(·)21Bc , where(·)2 denotes[t (σ̂ ) − t (σ )]2. The first term= E(h′A−1a)21B +
O(d

−(1+2ρ)∗ ) + O(d
−4ρ∗ ), while E(h′A−1a)21Bc = O(d−2−ν∗ ) for someν > 0.

5.5. Regarding Proposition 3.1. First, the following identity can be estab-
lished:

P = �−1 − �−1X(X′�−1X)−1X′�−1

=
{
In −

(
p

n

)
XX′

}
�−1.

(5.6)
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By the definition of BLUP forv, Lemma 3.2 and (5.6), it can be shown that
ṽi = ∑

k∈Sw+1
σiτkWi,ky, where theτk ’s are given by (3.9) and

Wi,k = Z′
i

{
In −

(
p

n

)
XX′

} w+1⊗
l=1

J kl
nl

, k ∈ Sw+1.

5.6. Regarding the Fay–Herriot model. For REML estimation, the restricted
loglikelihood is given bylR(σ ) = c − (1/2)(log|T ′�T | + y′Py), wherec is a
constant,T is as in Section 2.1 andP = T (T ′�T )−1T ′ = the middle term of (5.6)
with � = σI + �. Suppose thatσ > 0 and theφi ’s are bounded. Then it can
be shown that the conditions of Theorem 2.1 are satisfied withD = d = √

t . A
similar result can be proved for ML estimation, in which case one considers the
profile loglikelihoodlP(σ ) = c − (1/2)[log|�| + y′Py].

5.7. Regarding Proposition 3.3. First note thatXi = (1ni
xi), where thej th

row of xi is x′
ij . Also, we have�i = σ0Ini

+ σ1Jni
, thus �−1

i = λ−1
i Ini

+
γ niλ

−1
i (Ini

− J̄ni
), whereγ = σ1/σ0, λi = λi(σ ) = σ0 + niσ1 andJ̄ni

= Jni
/ni .

Therefore, we can write

t∑
i=1

X′
i�

−1
i Xi =

(
A B ′
B C + γD

)
,

where A = ∑t
i=1 ni/λi , B = ∑t

i=1 x′
i1ni

/λi , C = ∑t
i=1 x′

ixi/λi and D =∑t
i=1(ni/λi)x

′
i(Ini

− J̄ni
)xi . Thus,

(
t∑

i=1

X′
i�

−1
i Xi

)−1

=
(

Q −A−1B ′R
−A−1RB R

)
,(5.7)

whereQ = [A − B ′(C + γD)−1B]−1 andR = (C + γD − A−1BB ′)−1. It can
be shown thatAC − BB ′ ≥ S2/2λ2

M, whereλM = maxi λi = σ0 + nmaxσ1 with
nmax= maxi ni . It follows, by conditions (ii) and (iii), that‖R‖ ≤ λM/t (δ1γ +δ2),
whereδa , a = 1,2, are some positive constants. Then, using the identityQ =
A−1 + A−2B ′RB, one can show‖Q‖ ≤ c(λM/t), wherec is a constant.

5.8. Regarding Theorem 4.1. The proof of Theorem 4.1 requires the following
lemmas [see Jiang, Lahiri and Wan (2002)].

LEMMA 5.4. For any nonsingular matrices P , Q and nonnegative integer q,

Q−1 =
( q∑

r=0

[P −1(P − Q)]r
)
P −1 + [P −1(P − Q)]q+1Q−1.
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LEMMA 5.5. Let P , Q be matrices such that P is nonsingular and ‖Q−P ‖ ≤
(3‖P −1‖)−1. Then Q is nonsingular and ‖Q−1‖ ≤ (3/

√
2)‖P −1‖.

Let A be the set such that the following hold:

1√
didj

∣∣∣∣ ∂2l(σ )

∂σi ∂σj

− E
[

∂2l(σ )

∂σi ∂σj

]∣∣∣∣ ≤ dτ∗ , 1 ≤ i, j ≤ s,

1√
djdk

∣∣∣∣ ∂3l(σ )

∂σi ∂σj ∂σk

− E
[

∂3l(σ )

∂σi ∂σj ∂σk

]∣∣∣∣ ≤ dτ∗ , 1 ≤ i, j, k ≤ s.

Let E = A∩B. Letρ = 3/4 in Theorem 2.1. It can be shown that P(E c) ≤ cd
−τg∗ ,

whereτ = 1/4. By Taylor expansion, it can be shown that the following holds
onE :

η(σ̂ ) = η(σ ) − 2b′A−1a + b′A−1fA−1a

+ 1
2[a′A−1BA−1a − b′A−1CA−1a] + r,

where|r| ≤ d
−3ρ∗ u and E(u) is bounded. Thus it can be shown that Eη(σ̂ )1E =

η(σ ) + ∑3
j=0�j(σ ) + o(d−2∗ ). On the other hand, we have the following

expressions:

�0(σ ) = −2
∑
i,j

1

di

bi(σ )wij (σ )uj (σ ),

�1(σ ) = ∑
i,j,k,l

1

di

√
djdk

bi(σ )wij (σ )wkl(σ )ujkl(σ ),

�2(σ ) = 1

2

∑
i,j,k,l

1

djdk

bjk(σ )wij (σ )wkl(σ )uil(σ ),

�3(σ ) = −1

2

∑
i,j,k,l,m,n

1

didj

bi(σ )wij (σ )wkl(σ )wmn(σ )ujklmn(σ ).

With these it can be shown that E�j(σ̂ )1E = �j(σ ) + o(d−2∗ ). It follows that
Eη̂1E = η(σ ) + o(d−2∗ ). Finally, we have E|η̂|1Ec = o(d−2∗ ).

5.9. Regarding Section 4.1. It suffices to show that (3) and (4) hold. Leti′, j ′,
k′ be a permutation ofi, j , k and w.l.o.g. letdi′ = di′ ∧ dj ′ ∧ dk′ = di ∧ dj ∧ dk .
Then by Lemmas 5.1 and 5.2, it can be shown that

E
∣∣∣∣ 1√

djdk

[
y′PVi′PVj ′PVk′Py − E

(
y′PVi′PVj ′PVk′Py

)]∣∣∣∣
g

≤ c.
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Here c represents a constant whose value may be different at different places.
Similarly, it can be shown that| tr(PVi′PVj ′PVk′)| ≤ c(didjdk/di ∨ dj ∨ dk),

E
(

d2∗
didjdkdl

sup
σ̃∈Sδ

∣∣y′P̃ Vi′P̃ Vj ′P̃ Vk′P̃ Vl′Py
∣∣)g

≤ c

and(d2∗/didj dkdl)| tr(P̃ Vi′ P̃ Vj ′P̃ Vk′P̃ Vl′)| ≤ c.
As for (4), first note thatP (σ ) = −(1/2)(tr(HGiHGj)/didj )0≤i,j≤q . It can be

shown that

| tr(H̃GiH̃Gj) − tr(HGiHGj)|
≤ ∑

k

|σ̃k − σk|| tr(HGkH̃GiHGj)|

+ ∑
l

|σ̃l − σl|| tr(HGlH̃GjHGi)|

+ ∑
k,l

|σ̃k − σk||σ̃l − σl|| tr(HGkH̃GiHGlH̃Gj )|,

| tr(HGkH̃GiHGj)| ≤ 2σ−1
k didj and | tr(HGkH̃GiHGlH̃Gj)| ≤ 4(σkσl)

−1 ×
didj . Thus sup̃σ∈Sδ

‖P (σ̃ ) − P (σ )‖ → 0 asδ → 0. Note thatU1(σ ) = −P (σ ).
Similarly, one can show that supσ̃∈Sδ

‖U2(σ̃ ) − U2(σ )‖ → 0 asδ → 0. Finally, it
can be shown that

uijklm = 1

2djdkdldm

{[
tr(PViPVjPVl) + tr(PViPVlPVj)

]
tr(PVkPVm)

+ ∑
a,b,c

tr(PVaPVbPVcPVkPVm)

+ ∑
a,b,c

tr(PVaPVbPVcPVmPVk)

}
,

where the summation is over alla, b, c which is a permutation ofi, j , l. It follows
that sup̃σ∈Sδ

‖U3(σ̃ ) − U3(σ )‖ → 0 asδ → 0.

5.10. Regarding Section 4.2. First note that the formulas derived in Sections
2.1 and 5.2 forlR(σ ) and its derivatives hold for the general linear mixed
model (1.1), which includes the longitudinal model. Next, note that the matrixP

of (2.6) can be expressed asP = �−1 +�, where‖�‖2 is bounded. These results
and Lemma 5.1 are used to verify the moment conditions involved.
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As for the conditions regardingη and its derivatives, we have the following
expressions:η(σ ) = g1(σ ) + g2(σ ) + g3(σ ), where

g1(σ ) =
t∑

i=1

m′
i (Gi − GiZ

′
i�

−1
i ZiGi)mi,

g2(σ ) =
(
l −

t∑
i=1

X′
i�

−1
i ZiGimi

)′( t∑
i=1

X′
i�

−1
i Xi

)−1(
l −

t∑
i=1

X′
i�

−1
i ZiGimi

)
,

g3(σ ) =
t∑

i=1

tr
{[

∂

∂σ
(�−1

i ZiGimi)

]′
�i

[
∂

∂σ
(�−1

i ZiGimi)

]}
.

With these expressions one can verify the conditions regardingη b and‖B‖.
Finally, for condition (iv) of Theorem 4.1 we have, for example,Q̃ − Q =

−(1/2t)[tr(P�jP�k)]0≤j,k≤q , where�j = ∂�/∂σj . Note thatP̃ − P = P (� −
�̃)P̃ , whereP̃ is P with σ replaced bỹσ and so on.
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