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This paper offers a new approach for estimating and forecasting the
volatility of financial time series. Nossumption is made about the parametric
form of the processes. On the comyrawe only supposehit the volatility
can be approximated by a constant over some interval. In such a framework,
the main problem consists of filtering thigerval of time homogeneityhen
the estimate of the volatility can be simply obtained by local averaging. We
construct aocally adaptive vatility estimate(LAVE) which can perform
this task and investigate it both from the theoretical point of view and through
Monte Carlo simulations. Finally, the LAVE procedure is applied to a data set
of nine exchange rates and a comparison with a standard GARCH model is
also provided. Both models appear to be capable of explaining many of the
features of the data; nevertheless, the new approach seems to be superior to
the GARCH method as far as the out-of-sample results are concerned.

1. Introduction. The aim of this paper is to offer a new perspective for the
estimation and forecasting of the volatility of financial asset returns such as stocks
and exchange rate returns.

A remarkable amount of statistical research is devoted to financial time series,
in particular, to the volatility of asset returns, where the term volatility indicates a
measure of dispersion, usually the variance or the standard deviation. The interest
in this topic is motivated by the needs of the financial industry, which regards
volatility as one of the main reference numbers for risk management and derivative
pricing.

Actually, asset returns time series display very peculiar stylized facts, which
are connected with their second moments. Graphically, they look like white noise,
where periods of high and low volatility seem to alternate. Their density has fat
tails if compared to that of a normal random variable, and they show significantly
positive and highly persistent autocorrelation of the absolute returns, meaning that
large (resp. small) absolute returns are likely to be followed by large (resp. small)
absolute returns. Typical examples can be seen in Section 6, and further details
on this topic can be found in Taylor (1986). Therefore, a white-noise process with
time-varying variance is usually taken to model such featuresSl denote the
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observed asset process. Then the corresponding (log) reRueadog(S;/S;—1)
follow the heteroscedastic model

R; = 044,

whereé; are standard Gaussian independent innovationgairgla time-varying
volatility coefficient. It is often assumed that is measurable w.r.t. the-field
generated by the preceding returRs, ..., R;_1. For modeling this volatility
process, parametric assumptions are usually used. The main model classes are the
ARCH and GARCH family [Engle (1995)]rad the stochastic volatility models
[Harvey, Ruiz and Shephard (1994)]. A large number of papers has followed the
first publications on this topic, and the original models have been extended in
order to provide better explanations. For example, models which take into account
asymmetries in volatility have been proposed, such as EGARCH [Nelson (1991)],
QGARCH [Sentana (1995)] and GJR [Glosten, Jagannathan and Runkle (1993)];
furthermore, the research on integrated processes has produced integrated [Engle
and Bollerslev (1986)] and fractal integrated versions of the GARCH model.

The availability of very large samples of financial data has made it possible
to construct models which display quite complicated parameterizations in order
to explain all the observed stylized facts. Obviously, these models rely on the
assumption that the parametric structure of the process remains constant through
the whole sample. This is a nontrivial and possibly dangerous assumption, in
particular, as far as forecasting is concerned [Clements and Hendry (1998)].
Furthermore, checking for parameter instability becomes quite difficult if the
model is nonlinear and/or the number of parameters is large. Thus, those
characteristics of the returns, which are often explained by the long memory
and (fractal) integrated nature of the volatility process, could also depend on the
parameters being time varying.

In this paper we propose another approach focusing on a very simple model but
with a possibility for model parameters to depend on time. This means that the
model is regularly checked and adapted to the data. No assumption is made about
the parametric structure of the volatility process. We only suppose that it can be
locally approximated by a constant; that is, for every time poithere exists a
past intervalt — m, t] where the volatilityo, did not vary much. This interval is
referred to as thiterval of time homogeneityAn algorithm is proposed for data-
driven estimation of the interval of time homogeneity, after which the estimate of
the volatility can be simply obtained by averaging.

Our approach is similar to varying-coefficient modeling from Fan and Zhang
(1999); see also Cai, Fan and Li (2000) and Cai, Fan and Yao (2000). Fan,
Jiang, Zhang and Zhou (2003) discussed applications of this method to stock price
volatility modeling. The proposed procedure is based on the assumption that the
model parameters smoothly vary with time and can be locally approximated by
a linear function of time. This approach has the drawback of not allowing one to
incorporate structural breaks into the model.
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Change point modeling with applications to financial time series was consid-
ered in Mikosch and Starica (2000). Kitagawa (1987) applied non-Gaussian ran-
dom walk modeling with heavy tails as the prior for the piecewise constant mean
for one-step-ahead prediction of nonstationary time series. However, the afore-
mentioned approaches require some essential amount of prior information about
the frequency of change points and their size.

The LAVE approach proposed in this article does not assume smooth or
piecewise constant structure of the underlying process and does not require any
prior information. The procedure proposed below in Section 3 focuses on adaptive
choice of the interval of homogeneity that allows one to proceed in a unified way
with smoothly varying coefficient models and change point models.

The proposed approach attempts to describéoited dynamic of the volatility
process, and it is particularly appealing for short-term forecasting purposes which
is an important building block, for example, in value-at-risk and portfolio hedging
problems or backtesting [Hardle and Stahl (1999)].

The remainder of the paper is organized as follows. Section 2 introduces the
adaptive modeling procedure. Then some theoretical properties are discussed in
the general situation and for a change point model. A simulation study illustrates
the performance of the new methodology with respect to the change point model.
The guestion of selecting the smoothing parameters is also addressed and some
solutions are proposed. Finally, the procedure is applied to a set of nine exchange
rates and it appears to be highly competitive with standard GARCHI, which
is used as a benchmark model. Mathematical proofs are given in Section 8.

2. Modeling volatility via power transformation. Let S, be an observed
asset process in discrete times 1, 2, ..., T andR; are the corresponding returns:
R, =10g(S;/S;—1). We model this process via tlownditional heteroscedasticity
assumption

(2.1) Ry = 04§,

whereg;, t > 1, is a sequence of independent standard Gaussian random variables
ando; is thevolatility process which is in general a predictable random process,
that is,o; ~ F;_1 with F_1 =0 (R1, ..., R;_1) (theo-field generated by the first
t — 1 observations).

A time-homogeneou$ime-homoscedasdienodel means that; is a constant.
The processs; is then a geometric Brownian motion observed at discrete time
moments. The assumption of time homogeneity is too restrictive in practical
applications, and it does not allow one to fit real data very well. In this paper,
we consider an approach based onltdeal time homogeneifywhich means that
for every time moment there exists a time intervfd — m, t] where the volatility
processs; is nearly constant. Under such a modeling, the main intention is both
to describe the interval of homogeneity and to estimate the corresponding value
o, which can then be used for one-step forecasting and the like.
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2.1. Data transformation. The model equation (2.1) links the target volatility
processs; with the observation®; via the multiplicative errorg;. The classical
well-developed regression approach relies on the assumption of additive errors
which can then be smoothed out by some kind of averaging. A natural and
widespread method of transforming equation (2.1) into a regression-like equation
is to apply the log function to both its sides squared:

(2.2) log R? = logo? + log£?,
which can be rewritten in the form
log th = |Oga,2 + C + v,

with C = Elog&?, v? = Varlogé? and¢; = v1(log&? — C); see, for example,
Gouriéroux (1997). This is a usual regression equation with the “response”
Y, = log R?, target regression functiorf(r) = logo? + C and homogeneous
“noise” vg;.

The main problem with this approach is due to the distribution of the etfors
which is highly skewed and gives very high weights to the small values of the
errorsg,. In particular, this leads to a serious problem with missing data which are
typically modeled equal to previous values providiRg= 0.

Another possibility is based on power transformation [see Carroll and Ruppert
(1988)] which also leads to a regression with additive noise and this noise is much
closer to a Gaussian one. Due to (2.1), the random varigbie conditionally
on ¥;_, Gaussian and

E(R?|Fi-1) = o/,
Similarly, for everyy > 0,
E(R | |Fi-1) = o] E(&] |Fi-1) = Cyo; ,
E(R I = Cyol 1Fi-0)® = o E(§] — C))? =" D,

where ¢ denotes a standard Gaussian r@, = E|§|” and D]% = Varl&|”.
Therefore, the proce$®;|” allows for the representation

(2-3) |Rt|y = Cyo'ty + D),O'tyé',,

where¢; is equal to(|£|” — C,)/D,,. Note that the problem of estimatirg is
in some sense equivalent to the problem of estimaijng Cyaty, which is the
conditional mean of the transformed proceé®s|”. This is already a kind of
heteroscedastic regression problem with additive em;,rs,y ¢; satisfying

E(D, o} ¢1F-1) =0,

2 o~ 2
E(DZ0,” ¢?|Fi—1) = D20, .
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normal and powertransformed densities

FiG. 1. Density ofp1/2(x) (straight ling and the standard normal densifgiotted ling.

A natural choice of the parametgris y = 2 providing nearly efficient variance
estimation under homogeneity. Fpr= 2 one hasC,, =1 and D}% = 2. Note,
however, that the distribution of the “errorg’ = (|&;|” — C,)/D,, is still heavy
tailed and highly skewed, which results in a low sensitivity of the method in
an inhomogeneous situation. The other important caseg ard andy = 1/2.

A minimization of the skewnesE;f and the faE;*;1 — 3 with respectty leadsto
the choicey ~ 1/2. The corresponding densipj, >(x) of ¢1/> together with the
standard normal density/(x) is plotted in Figure 1. Our numerical results are also
in favor of the choicer = 1/2; see Section 5.

3. Adaptive estimation under local time homogeneity. Here we describe
one approach to volatility modeling based on the assumption of local time
homogeneity starting from the preliminary heuristic discussion. The assumption
of local time homogeneity means that the functignis nearly constant within
an interval I = [t — m, 1], and the proces®; follows the regression-like
equation (2.3) with the constant treld = C, 0} which can be estimated by

averaging over this intervdl:

(3.1) 01 = T Z|

tel

For the particular casg = 2 the estimat®; coincides with the local maximum
likelihood estimator (MLE) of the voIatiIityy,2 considered in Fan, Jiang, Zhang
and Zhou (2003). As discussed in the previous section, a smaller vajumaght
be preferred for improving the stability of the method. Similarly to Fan, Jiang,
Zhang and Zhou (2003), one can also incorporate the one-sided kernel weighting
to this estimator.

By (2.3)

(3.2) b, = |I|Z + Zat;, mZe, mZ%,

tel tel tel tel
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with s, = D, /C, so that

- 1
(3.3) E6; = EmZG,,

tel

S2 2 SZ
(3.4) #E(Z@,g) = #EZ@E.

tel tel

3.1. Some properties of the estimafig. Due to our assumption of local
homogeneity, the processis close ta9; for all ¢ € I. Define also

2
A;=supld, —6;] and v?= s—yz > 62,
el 12 =
The value ofA; measures the departure from homogeneity within the intdrval
and it can be regarded as an upper bound of the “bias” of the estimalthe
value of v?, because of (3.4), will be referred as the “conditional variance” of
the estimat®;. The next theorem provides a probability bound for the estimation
error, that is, the deviation & from the present value of the volatility in terms
of A; andvy.

THEOREM 3.1. Letthe volatility coefficient; satisfy the condition
(3.5) b<o! <bB,

with some positive constanks B. Then there exists,, > 0 such that for every
A>1,

P(0; — 6:1 > Ap + Avy) < 4/ea "A(L+ log Bye ™/ @40,

REMARK 3.1. Thisresult can be slightly refined for the special case when the
volatility processy, for ¢ € I is deterministic or (conditionally) independent of the
observationg, preceding/. Namely, in such a situation the factor/@a;lk(l +
log B) in the bound can be replaced by 2:

A similar remark applies to all the results that follow.

The result of this theorem bounds the loss of the estifiatda the valueA;
and the conditional standard deviatiopn. Under homogeneityA; = 0 and the
error of estimation is of ordar;. Unfortunatelyp; depends, in turn, on the target
processd;. One would be interested in another bound which does not involve
the unknown functior®,. Namely, using (3.4) and assumig small, one may
replace the conditional standard deviatigrby its estimate

U1 =s,,0,|1)17Y/2.



TIME-INHOMOGENEOUS VOLATILITY MODELS 583

THEOREM 3.2. LetRy,..., R, obey(2.1)and let(3.5) hold true Then for
the estimat®; of 6, for everyD > 0andi > 1,

P(|é[ — 9r| > )Jﬁ], A[/U[ < D) < 4\/Ek(1+ |0g B)e‘kz/(z"y),
wherel’ solves

A+ D=2/A+Ns,|[1]7V?).

3.2. Adaptive choice of the interval of homogeneit@iven observations
R1, ..., R, following the time-inhomogeneous model (2.1), we aim to estimate
the current value of the parameterusing the estimaté; with a properly selected
time intervall of the form[r — m, t] to minimize the corresponding estimation
error. Below we discuss one approach which goes back to the idea of pointwise
adaptive estimation; see Lepski (1990), Lepski and Spokoiny (1997) and Spokoiny
(1998). The idea of the method can be explained as follows. Suppdsen
interval candidate; that is, we expect time homogeneity and, hence, in every
subinterval off . This particularly implies that the valug; is small and similarly
for all Ay, J C I, and that the mean values of theover I and overJ nearly
coincide. Our adaptive procedure roughly means the choice of the largest possible
interval I such that the hypothesis that the valjeis a constant within/ is
not rejected. For testing this hypothesis, we consider the family of subintervals
of I of the formJ = [t — m/, ] with m’ < m and for every such subinterval
J compare two different estimates: one is based on the observationg/frand
the other one is calculated from the complemiend = [t —m, T —m/[. Theorems
3.1 and 3.2 can be used to bound the differefice- é,v under homogeneity
within 1. Indeed, the conditional variance éf,; — 6; is vf, , + v5 and can be

estimated by?, , + 5. Thus, with high probability it holds that

0 — 0,1 < )»\/1712\] + 99,

provided thath is sufficiently large. Therefore, if there exists a testing interval
J C I such that the quantit;; — 6, is significantly positive, then we reject
the hypothesis of homogeneity for the intervalFinally, our adaptive estimate
corresponds to the largest intendakuch that the hypothesis of homogeneity is
not rejected fod itself and all smaller considered intervals.

Now we present a formal description. Suppose a fantilgf interval candi-
dates! is fixed. Each of them is of the forth= [t — m, ], m € N, so that the set
J is ordered due te:. With every such interval, we associate the estiriatef 6,
and the corresponding estimaigof the conditional standard deviations.

Next, for every intervall from 4 we assume there is a sg(/) of testing
subintervalsJ [one example of these sefisand g(/) is given in Section 6].
For everyJ € g(I) we construct the corresponding estiméje(resp.é,w) from
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the observation®, = |R,|” for ¢t € J (resp. fort € I \ J) according to (3.1) and
computev; (resp.vyy).

Now, with a constant, define the adaptive choice of the interval of homogene-
ity by the following iterative procedure:

Initialization. Select the smallest interval ih

lteration. Select the next interval in £ and calculate the corresponding
estimated; and the estimated conditional standard deviafign

Testing homogeneity.Reject! if there exists ond € §(7) such that

(36) |§1\J—9~]|>K,/5%\J+173.

Loop. If I is notrejected, then continue with the iteration step by choosing a
larger interval. Otherwise, sét= “the latest nonrejectefl.”

Thelocally adaptive vaitility estimate(LAVE) 6 of 6, is defined by applying
this selected interval:

b =4
The next section discusses the theoretical properties of the LAVE algorithm in a
general framework, while Section 6 gives a concrete example for the choice of the

setsd, (1) and the parameter. This choice is then applied to simulated and real
data.

4. Theoretical properties. In this section we collect some results describing
the quality of the proposed adaptive procedure.

4.1. Accuracy of the adaptive estimateLet / be the interval selected by our
adaptive procedure. We aim to show that our adaptive choice is up to some constant
factor in the losses as good as the “ideal” chditeat may utilize the knowledge
of the volatility processs;. This “ideal” choice can be defined by balancing
the accuracy of approximating the underlying procésgwhich is controlled
by Aj) and the stochastic error controlled by the stochastic standard dewation
By definition, v; = s, |1|7%(X,c; 62)Y/? so thatv; typically decreases when
|| increases. For simplicity of notation we shall suppose furtherthat v; for
JcClI.

We do not give a formal definition of an “ideal” choice of the interyadince
there is no one universally optimal choice even if the proéessknown. Instead,
we consider a family of all “good” intervalssuch that the variability of the process
0, insideT is not too large compared to the conditional stochastic deviation
This, due to Theorem 3.1, allows us to bound with high probability the losses of
the “ideal” estimaté; by (D + 1)vy provided thatA /vy < D anda is sufficiently
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large. A similar property should hold for all smaller intervdlg- I. Hence, it is
natural to quantify the quality of the inteniaby
o1 = sup A]/U[.
Ted:ICI
The next assertion claims that the risk of the adaptive estimate is not larger in order
thanuy for all T such thaty is sufficiently small.

THEOREM 4.1. Let(3.5)hold true Let an intervall be such thatfor some
D > 0, it holds with positive probability; < D. Then

P(Tis rejected sy < D)

(4.1) < Y Y 12/er; (1 +log By D 2y,
Ied@) Jeg)

wherex ; = A(1— s, AN /%) with Ny = min{| J|, |1\ J|}.

Moreoverif N; > 2s, 2 for all J € g(7) and all I € 4, then it holds for the
adaptive estimaté = éf on the random seA = {T is not rejecteds; < D}:

|9~1 — é]ﬂ < Z)Nj]l
and
101 = 0c] < (D + 3k + 24y, (D + M)[I ™)y,

REMARK 4.1. It is easy to see that the sum on the right-hand side of the
bound (4.1) can be made arbitrarily small by proper choice of the consiamd
the setsg (7). Hence, the result of the theorem claims that with a dominating
probability a “good” intervall will not be rejected and the adaptive estiméte
is up to a constant factor as good as any of the “good” estindates

REMARK 4.2. As mentioned in Remark 3.1, the probability bound on the
right-hand side of (4.1) can be refined for the special case when the pfpdsss
constant withinl by replacing the factor 12ex (1 + log B)e~C-/—P)*/2ay) py
Go—3/2).

5. Change point model. A change poinimodel is described by a sequence
T1 < T» < --- of stopping times with respect to the filtratidghi and by values
01,02, ..., Where eachyy is F7,-measurable. By definitiony; = oy for T <
t < Ty+1 and o, is constant forr < T1. This is an important special case of
the model (2.1). For this special case the above procedure has a very natural
interpretation: when estimating at the potnive search for a largest interval of the
form [t — m, t] that does not contain a change point. This is done via testing for a
change point within the candidate intervak [t — m, t]. Note that the classical
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maximum likelihood test for no change point in the regression case with Gaussian
N (0, 02) errors is also based on comparison of the mean values of observations
Y; over the subintervals = [t —m, T —m’] and every subinterval = [t —m/, 7]

for differentm’, so that the proposed procedure has strong appeal in this situation.
However, there is an essential difference between testing for a change point and
testing for homogeneity appearing as a building block of our adaptive procedure.
Usually, a test for a change point is constructed in a way to provide the prescribed
probability of a “false alarm,” that is, rejecting the “no change point” hypothesis
under homogeneity. Our adaptive procedure involves a lot of such tests for every
candidatel, which leads to a multiple-testing problem. As a consequence, each
particular test should be performed at a very high level; that is, it should be rather
conservative providing a joint error probability at a reasonable level.

5.1. Probability of a“false alarm” For the change point model, a “false
alarm” would mean that the candidate inter’éd rejected although the hypothesis
of homogeneity is still fulfilled. The arguments used in the proof of Theorem 4.1
lead to the following upper bound for the probability of a “false alarm”:

THEOREMbS.1. If I =[t —m, t]is an interval of homogeneitihat is 6; = 6,
forall r € I, then

52
P(Iisrejected < Y 6ex;<— — 2).
red(D) Jeg ) 2a, (1+ Asy|J171/2)

This result is a special case of Theorem 4.1 wkhkh = 0 when taking into
account Remark 4.2.

Theorem 4.1 implies that for every fixed valué there exists a fixed
providing a prescribed upper boundfor the probability of a “false alarm” for
a homogeneous intervélof length M. Namely, the choice

M
A>(1+¢),/2a,log—
moo

leads for a proper small positive constant O to the inequality

k2
6 — <a.
DS exp( Zay(lﬂsyl,l_l/z)z)_a

Ied() Jeg)

Here, M /mg is approximately the number of intervals §(7) (see Section 6.1).
This bound is, however, very rough, and it is only of theoretical importance since
we estimate the probability of the sum of dependent events by the sum of single
probabilities. The value of providing a prescribed probability of a “false alarm”
can be found by Monte Carlo simulation for the homogeneous model with constant
volatility as described in Section 6.
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5.2. Sensitivity to change points and the mean deldyhe quality (sensitivity)
of a change point procedure is usually measured by the mean delay between the
occurrence of a change point and its detection.

To study this property of the proposed method, we consider the case of
estimation at a point immediately after a change poiftp. It is convenient
to suppose thalc, belongs to the end points of an interval which is tested for
homogeneity. In this case the “ideal” choiteas clearly [7cp, 7]. Theorem 4.1
claims that the quality of estimation atis essentially the same as if we knew
the latest change poirif;, a priori. In fact, one can state a slightly stronger
assertion: every intervdl which is essentially larger thahwill be rejected with
high probability provided that theagnitude of the change is large enough.

Denotem’ = [IJ, that is,m’ =t — Tp. Let alsol = [Tep —m, t] = [t —m' —
m, t] for somem, so that|/| = m + m’, and letd (resp.9’) denote the value of
the parametes; before (resp. after) the change poifgh. The magnitude of the
change point is measured by the relative chainge2|6’ — 0|/6.

It is worth mentioning that the valuel and especially; can be random and
dependent on past observations. For instafjomay depend o, for all t < Tgp.

The interval I will certainly be rejected ifld;; — 1| is sufficiently large
compared to the corresponding critical value.

THEOREM 5.2. Let E(Y;|#,_1) = 6 before the change point &, and
E(Y,|F,_1) =6 after it, and letb = |0’ — 0]/0. Let I = [t — m' — m, t] with

m' =1 — Tep. If p:=2s, //min{m, m’} < 1and
_ 20 +~20(1+p)

(5.1) b

’

1-p
thenP(I is not rejected < 4e—*"/@ay)

The result of Theorem 5.2 delivers some additional information about the
sensitivity of the proposed procedure to change points. One possible question is
about the minimal delay:” between the change poifi¢ and the first moment
when the procedure starts to indicate this change point by selecting an interval of
type I = [Tcp, T]. Due to Theorem 5.2, the change will be “detected” with high
probability if the valuep = As, /+/m’ fulfills (5.1). With fixed b > 0, condition
(5.1) leads top < bCy for some fixed constanfy. The latter condition can be
rewritten in the formm’ > h=22%52/C§. We see that this lower bound for the

required delayn’ is proportional tob—2, whereb is the change point magnitude.
It is also proportional to the threshold squared. In turn, for the prescribed
probability « of rejecting a homogeneous interval of lengih the thresholad.
can be bounded bg /Tog(M/mow). In particular, if we fix the length ande,
thenm’ = O(b~2). If we keep fixed the valuegsand M but aim to provide a very
small probability of a “false alarm” by letting go to 0, thenn’ = O(loga™?1).
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All these issues are in agreement with the theory of change point detection; see,
for example, Pollak (1985) and Brodsky and Darkhovsky (1993).

6. LAVE in practice. The aim of this section is to give some hints concern-
ing the choice of the testing intervals and the smoothing paramesad to il-
lustrate the performance of the LAVE procedure on simulated and real data. We
consider the simplest homogeneous model and we study the stability of the proce-
dure in such a situation. Then a change point model is analyzed and the sensitivity
with respect to the jump magnitude is measured. Finally, LAVE is applied to a set
of exchange rate data.

6.1. Choice of the set$ and (7). The presented algorithm involves the sets
of interval candidated and of testing intervalg (/). The simplest proposal is
based on the use of a regular time gridr, ..., with grid stepmg € N, that is,

t =mok, k =1,2,.... Foragiven time point, the set{ of interval candidates is
defined in the following way:

l={]k=[tk,‘lf]3tk§‘r—mo,k=l,2...}.

Next, for every interval, we define the sej (I;) of testing subintervalg, C I
such that/y = [#, 7] for all # > # belonging to the grid. The homogeneity
within I is then tested by comparing the pairs of estlmageandelkv for all

J € F(Ly).

In this construction the sets, 4(I) are completely determined by the grid
stepmg. The value ofnng should be selected possibly small, because it represents
the minimal delay before the LAVE algorithm can detect a change point.
Neverthelessyig should be sufficiently large to provide stability of the estimates
vy andvp ;. For the simulation and the analysis of real data we mge= 10,
which represents a good compromise. However, small changes in this value, that
is, 5< mo < 20, do not appear to have great influence on the estimation results.

6.2. Choice of A and y. The selection ofy and, in particular) is more
critical. Theorem 5.1 suggests that in the context of a change point model,
a reasonable approach for selectings by providing a prescribed level for
rejecting a homogeneous intendabf a given lengthV/. This would clearly imply
at most the same levalfor rejecting a homogeneous interval of a smaller length.
However, the value ok which can be derived with the help of Theorem 5.1
is rather conservative. A more accurate choice can be made by Monte Carlo
simulation. We examine the procedure described in Section 3.2 with the sets of
intervalsd and g (I) on the regular grid with the fixed stepp = 10. A constant
(and therefore also time homogeneous) model assumes that the parandetes
not vary in time, that isg, = 6. It can easily be seen that the val@ehas no
influence on the procedure under time homogeneity. One can therefore suppose
thaté = 1 and the original model (2.1) is transformed into the regression model
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TABLE 1
The value o, which for a given power transformatiop, provides the rejection
of an interval of time homogeneity of lengthwith a frequency 05%

Smoothing parameter

y =0.5 y=10 y=20

M =80 M =40 M =80 M =40 M =80 M =40
A=274 A=240 A=258 A=224 A=218 A1=186

Y; =1+ s,¢ with constant trend and homogeneous variafceThis model is
completely described, and, therefore, one can determine by simulation the value
of A for which an interval of time homogeneity of lengif is not rejected with a
frequency of 95%.

The values ofi are computed forM = 40 and 80 and for the power
transformationsy = 0.5, 10 and 20. The results are shown in Table 1. Note that
the values ofx calibrated forM = 80 are necessarily larger and therefore more
conservative than the valuesotalibrated forM = 40.

6.3. Simulation results for the change point modeélVe now evaluate the
performance of the LAVE algorithm on simulated data. Two change point time
series of lengti” = 240 are considered. The simulated data display two jumps
of the same magnitude in opposite directions:= o for ¢+ € [1,80] andr €
[161, 2401 and o; = ¢’ for ¢t € [81,160], whereoc =1 ando’ = 3 and 5,
respectively. For each model 500 realizations are generated, and the estimation
is performed at each time point [z, 240], whererg is set equal to 20.

We compute the estimation error for each combinatiory adnd A with the
following criterion:

240 500 , ~

6.1) D3 ("’

t=20w=1

2
G’) (w),

where the indexv indicates the realizations of the change point model. We note
that in (6.1) the quadratic error is divided by the true volatility so that the criterion
does not depend on the scaleapf The results shown in Table 2 are favorable
to the choice of the smaller value ¢f, confirming that the loss of efficiency
caused by < 2 is offset by the greater normality of the errors. Figures 2 and 3
show the results of the estimation for the power transformatien 0.5 and the
value of A calibrated for an interval of time homogeneity of length= 40 and

M = 80, respectively. The plots on the top display the true process (straight line),
the empirical median among all estimates (thick dotted line) and the empirical
guartiles among all estimates (thin dotted lines). The plots on the bottom similarly
display the length of the interval of time homogeneity, which is minimal (resp.

Oy
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TABLE 2
Estimation errors for all the combinations of parametgrand A

Estimation error

y =0.5 y=1.0 y=20

Parameter A=274 Lr=240 A=258 A=224 A=218 A1=1.86

Smalljump 19,2419 17,175.3 19,121.2  16,522.5 24,887.2 17,490.9
Large jump 46,616.2 43,2825 51,363.9 46,706.4 68,730.7 55,706.3

maximal) just after (resp. just before) a change point, and the median and the
quartiles among all estimates.

The results are satisfactory. The volatility is estimated precisely and the change
points are quickly detected. As expected, the behavior of the method within
homogeneous regions is very stable. The delay in detecting a change point
becomes smaller as the jump size grows. Taking a smadlkso results in a smaller
delay and improves the quality of estimation after the change points. The results
for other power transformations look very similar and therefore are not displayed.

true and estimated volatility true and estimated volatility

© L L

40 80 120 160 200 240 40 80 120 160 200 240

8 L

_true and estimated interval of homogeneity

o
3

=3
i3

40 80 120 160 200 240 40 80 120 160 200 240

Fic. 2. Estimation results for the change point mad€he upper plots show the values of the
standard deviatiopwhile the lower plots show the values of the interval of homogeneity at each time
point True valueqsolid ling), median of all estimate@hick dotted ling, upper and lower quartiles
(thin dotted liney The value ok for y = 0.5 and M = 40 has been used
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true and estimated volatility true and estimated volatility

40 80 120 160 200 240 40 80 120 160 200 240
X X

true and estimated interval of homogeneity true and estimated interval of homogeneity

100

P

X.O
8‘0

4.0 6.0
6.()

40
A

2
2

40 80 120 160 200 240 40 80 120 160 200 240
X X

Fic. 3. Estimation results for the jump moddihe value ofs for y = 0.5 and M = 80 has been
used

6.4. Estimation of exchange rate volatilityWe apply the LAVE procedure
to a set of nine exchange rates, which are available from the web site http://
federalreserve.gov of the U.S. Federal Reserve. The data sets represent daily
exchange rates of the U.S. dollar (USD) against the following currencies:
Australian dollar (AUD), British pound (BPD), Canadian dollar (CAD), Danish
krone (DKR), Japanese yen (JPY), Norwegian krone (NKR), New Zealand

TABLE 3
Summary statistics

Currency n  Mean x10° Variancex 10° Skewness Kurtosis

AUD 2583  -1041 3191 —0.187 8854
BPD 2583 —0.679 3530 —-0.279 5792
CAD 2583 8819 0895 Q042 5499
DKR 2583 6097 4201 —0.037 4967
JPY 2583 1270 5486 —0.585 7.366
NKR 2583 9493 4251 0313 8630
NzZD 2583 —6.581 3604 —0.356 4917

SFR 2583 1480 5402 —0.186 4526

SKR 2583 1266 4615 Q372 9660
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dollar (NZD), Swiss franc (SFR) and Swedish krona (SKR). The period under
consideration goes from January 1, 1990, to April 7, 2000. See Table 3.

All the time series show qualitatively almost the same pattern; therefore, we
provide the graphical example only for the two representative exchange rates
JPY/USD and BPD/USD (Figure 4). The empirical mean of the returns is close
to 0, while the empirical kurtosis is larger than 3. Furthermore, variance clustering
and persistence of the autocorrelation of the square returns are also visible.
The estimated standard deviation is nicely in accordance with the development
of the volatility and, in particular, sharp changes in the volatility tend to be
quickly recognized. Note also that the variability of the estimated interval of time
homogeneity appears to grow as the estimated interval becomes larger. This is
a feature of the algorithm because the number of tests grows with the accepted

JPY/USD returns BPD/USD returns

Y+E-2
Y*E2

T T T T T T T T T T
1992 1994 1996 1998 2000 1992 1994 1996 1998 2000

X X
estimated volatility estimated volatility
& &1
e LR
. @
g @
=4 - 2
1992 1994 1996 1998 2000 1992 1994 1996 1998 2000
X X
estimated interval of homogeneity estimated interval of homogeneity
© o
° .
o o
¥ g
>~ <+ Fal
. .
< T T T T T < T T T T T
1992 1994 1996 1998 2000 1992 1994 1996 1998 2000
X X

FIG. 4. Exchange rate returnsestimated standard deviation and estimated interval of time
homogeneityThe value of. for y = 0.5 and M = 80 has been used
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JPY/USD al?solut returns ‘ JPY/U SD absolut returns standardized by L{XVE
v | A |
& | » g c:
= 0 I Ll -
B0 AT
0 5‘0 1 (‘)() B 0 5‘() 1 (‘J()
ACF ACF
BPD/USD apsolut returns ‘ BPD/USD absolut returr}s standardized by L{\VE
fA I “ ‘I i)
(RO |
0 % 0 0 % 10
ACF ACF

Fic. 5. ACF of the absolute values of the exchange rate returns and ACF of the absolute values of
the exchange rate returns standardized by LAVE

interval, so that a rejection becomes more probable. Nevertheless, this variability
does not strongly affect the estimated volatility coefficient. Figure 5 shows the
significantly persistent autocorrelation of the absolute returns, together with the
autocorrelation of the absolute returns divided by the estimated standard deviation.
The autocorrelation of the standardized absolute returns is not significant any
more, and this fact supports the choice of a locally homogeneous model in order
to explain the data.

A benchmark model.As a matter of comparison, we also consider a model
which is commonly used to estimate and forecast volatility processes: the
GARCH(1, 1) model proposed by Bollerslev (1986):

0,2 =w+ oeR,Z_l + /30,2_1.

Among all parametric volatility models, it represents the most common specifica-
tion: “The GARCH(, 1) is the leading generic model for almost all asset classes
of returns. ... it is quite robust and does most of the work in almost all cases”
[Engle (1995)].

We do not require the parameters to be constant throughout the whole sample,
but, similarly to Franses and van Dijk (1996), we consider a rolling estimate. We
thus fit the model to a sample of 350 observations, generate the forecast, delete the
first observation from the sample and add the next one. Such a procedure reduces
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TABLE 4
Forecast performance of LAVE relative to GARCH

y =05 y=10 y =20
Currency M =80 M =40 M =80 M =40 M =80 M =40
AUD 0.942 Q945 Q963 0962 Q991 Q982
BPD 0961 Q960 Q979 Q970 1006 1000
CAD 0.974 Q979 Q989 0992 1010 Q997
DKR 0.978 Q980 Q985 Q987 1010 1004
JPY Q951 Q949 Q971 Q966 1006 Q997
NKR 0.961 Q957 Q972 Q965 Q998 Q984
NzD 0.878 Q879 Q904 0902 Q952 Q947
SFR 0985 Q984 Q992 Q990 1004 1000
SKR 0965 0961 Q973 0968 Q982 Q977

the harmful effect of possible parameter shifts on the forecasting performances of
the model, even if at the same time it may increase the estimation variability.

The volatility is a hidden process which can be observed only together with
a multiplicative error; therefore, the evaluation of the forecasting performance of
an algorithm is not straightforward. Due to the model (2B)RZ ,|%) = 02 ;.

Therefore, given a forecast, 1, the empirical mean value pR?, ; —8t2+1‘t |7 can
be used to measure the quality of thisdoast. The forecasbdity of the LAVE

and the GARCH estimates is therefore evaluated with the following criterion:

1 a .

m Z |R12+1—6't2+1‘t|p W|th p=05
t=tp

The value ofp = 0.5 is chosen instead of the more commo#a: 2 because we are
interested in a robust criterion which is not too sensitive to the presence of outliers.
The relative performance of the LAVE and the GARCH estimates is displayed in
Table 4. The performance of the LAVE approach is clearly better; furthermore,
the table gives a clear hint for the choice of the power transformation. Indeed,
y = 0.5 provides the smallest forecasting errors, witile- 2.0 leads to the largest
forecasting errors, which are sometimes larger than that of the GARCH model.

7. Conclusionsand outlook. The locally adaptive volatility estimate (LAVE)
is described and analyzed in this paper. It provides a nonparametric way for
estimating and short-term forecasting the volatility of financial returns.

It is assumed that a local constant approximation of the volatility process
holds over some unknown interval. The issue of filtering this interval of time
homogeneity out of the return time series is considered, and a nonparametric
approach is presented. The estimate of the volatility process is then found by
averaging over the interval of time homogeneity.
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A theoretical analysis of the properties of the LAVE algorithm is provided and
the problem of selecting the smoothing parameters is analyzed through Monte
Carlo simulation. The estimation results on change point models show that the
method has reasonable performance in practice. An empirical application to
exchange rate returns and a comparison with a GARCH also provide good
evidence that the new method is competitive and can even outperform the standard
parametric models, especially for forecasting with a short horizon.

An important feature of the proposed method is that it allows for a straight-
forward extension to multivariate volatility estimation; see Hardle, Herwartz and
Spokoiny (2000) for a detailed discussion.

Obviously, if the underlying conditional distribution is not normal, the estimated
volatility can give only partibinformation about the rigness of the asset. Recent
developments in risk analysis tend to focus on the estimation of the quantiles of
the distribution. In this direction, the LAVE procedure can be used as a convenient
tool for prewhitening the returns and obtaining a sample of “almost” identical
and independently distributed returns, which do not display any more variance
clustering. Therefore, the usual techniques of quantile estimation could be applied
in a static framework. We regard such a development as a topic for future research.

8. Proofs. In this section, we collect the proofs of the results stated above.
We begin by considering some useful properties of the power transformation
introduced in Section 2.1.

Some properties of the power transformatiohet g, (1) be the moment
generating function of, = D; (|| — C)):

gy(u)= Eelr.

It is easy to see that this function is finite for< 2 and allu and fory = 2 and
u < 1. Fory =1/2, the function 2~2logg, () is plotted in Figure 6.

10,05
i

10
h

Y*0.1

9.95

9.9
i

T T
0 0.5 1
X

Fic. 6. The log-Laplace transform afy, divided by the log-Laplace transform of a standard
normal rv.
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LEMMA 8.1. Foreveryy < 1there exists a constant, > 0 such that

2
(8.1) logEe"%r < %.

PROOF. It is easy to check that the functiaf), (1) with y < 1 is positive
and smooth (infinitely many times differentiable). Moreover, the fundiipfx) =
log g, (1) is also smooth and satisfigs (0) = h;,(O) =0, h;j(O) = ng =1. This
yields thatu=2h, (u) = u~2logg, (u) is bounded on every finite interval of the
positive semiaxi$0, co). It therefore remains to show that

lim u=2logEe"s” < oo.
u—o0
Since, () = D;Y(|§]” — Cy), it suffices to bound:—2Ee"¥I"/Pr. For every
t>0,
Ee" Dy = Ee Py (g | < 1) + BV Py (| > 1)

ut? D1 ulg|tr=1D;t

v + Ee

<e
y -1 y—1p-1
< eut Dy +2Eeu$t Dy

y p-1
:eut Dy +2€u

22r-2p)-2
Next, withr = u@") andy < 1, foru — oo,
-1
M—2logeutVDy — u—l/ZD;l — O,

2,2y-2pn-2
u=2loge " Py = u_(l_y)/”D;2 — 0.

Fory =1, the last expression remains bounded and the assertion follows.

Fory =1/2, condition (8.1) is satisfied witl, = 1.005.
The next technical statement is a direct consequence of Lemma 8.1.

LEMMA 8.2. Letc, be a predictable process.nt. the filtration £ = (F;);
that is every ¢, is a function of previous observation®s,...,R,_1:¢; =
¢t(R1, ..., R,—1). Then the process

t a t
& = exp(ZcSQ — ?y chz
s=1 s=1
is a supermartingalghat is,
(8.2) E(&Fi-1) < &-1.

The next result has been stated in Liptser and Spokoiny (2000) for Gaussian
martingales; however, the proof is based only on the property (8.2) and allows for
straightforward extension to sums of the folh = >/ _; ¢, ¢s.
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THEOREMS8.1. LetM,=Y"'_; ¢, with predictable coefficients. Then let
T be fixed or a stopping timé&or everyb > 0, B> 1landi > 1,

P(IMr| > A/(M)7, b </(M)7 < bB) < 4/er(1+log B)e /%),

where

REMARK 8.1. If the coefficients:; are deterministic or independent f,
then Lemma 8.1 and the Chebyshev inequality yield

P(Mr| > i/ (M)7) < 27/ @),

PROOF OFTHEOREM3.1. Define

_ 1 _
epﬁﬂZ@, Er=s5,111"1>_ 6,4

tel tel

Thend; = 6; + &;. By the definition ofA;,

> (O —60)

tel

(8.3) 07 — 6| =117+ <Aj.

Next, by (3.2)
6 — 0, =01 — 0, + &5,

and the use of (8.3) yields
1/2
. x(Zef) )
tel

In addition, if the volatility coefficient;, satisfiesh < o> < bB with some positive
constants, B, then the conditional variana& = s)% 1|72y, 07 satisfies

> 6t

tel

HWI—&|>AI+xw>sP<

VIt <vf <b'|1)7'B,
with b’ = bs)%. Now the assertion follows from (3.5) and Theorem 8.[M
PROOF OFTHEOREM3.2. It suffices to show that the inequalitiég/v; < D
and
(8.4) &1 =107 — 0] < hvg

imply |6; —6.| < 1’3, where)' solves the equatioP +A = 1'/(1+ /s, |1|~1/2).
This would yield the desired result by Theorem 8.1; compare the proof of
Theorem 3.1.
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LEMMA 8.3. Let(A;/vp)sy|I|7Y/? < 1.Under(8.4)

5 = v (1= (Ar/o)22H 12 = sy ATT2) = 0 (1= sy 117200 /o +20).

PrROOF By the definition ofv; in view of (8.4),

-1/2

o =5, 0111172 = 5,61 — dwp| 17V,

Sinced; is the arithmetic mean @ overl,

Y0 — 0% <> (6 — 0:)2 < A4

tel tel

Next
s 2 NWE =17 0 =07 + 11171 (0, — 0% <07 + AT,

tel tel

so that

G = s M1 Y201 — (Ags, v V202,

Hence, under (8.4),

51 2 1 (V1= (Arsy v N2 = 5, 0011742),

and the assertion follows.[O

The bound (8.4) and the definition af; imply
107 — 0] <107 — 0| + 167 — 071 < Ag + vy < (D + My
By Lemma 8.35; > v;(1— s, D|I|~Y2 — s, A|1|7Y/?). Thus,

6, < D+
= 15,0 =

107 — Ao

as required. [

PROOF OF THEOREM 4.1. LetI be a “good” interval in the sense that,
with high probability, Ay /v; < D for some nonnegative constabt and every
J € 4. First we show thal will not be rejected with high probability provided
thatx is sufficiently large.

We proceed similarly as in the proofs of Theorems 3.1 and 3.2. The procedure
involves the estimate, 6\ ; and the differenceg; — 6, ; for all 7 € 4(I) and
all J € g(I). The expansiol; =0, + &; implies

0 — 0y =05 —0png)+ Er—Eny).
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Under the conditiod; < D,

67 — 6 s| < Ap < Dvy < D Jv3 +v,2\,.

Define the events
Ar= | {m—slmsm—m vi + o
Jeg )

-2 | -2
v+ v
and #>1—s AN, ~1/2
vy tvpg
Ar= |J An

Ied:ICI

whereN; =min{|J|, I\ J|} andi; = Ml—s},kNj‘l/z)_
Define A} = Ay N {81 < D}. On this set

10; — 6] - 107 —0ng|+ 15 —Enyl

[~2 | ~2 [~2 | =2
vJ~|—v,\J v,+v[\J

f+vi, _ D+ir;,—-D
<(D+2r-D) | LT o 2F =k
UJ+U[\J 1—Sy)\.N

It is easy to see that the conditional variance pf- £\ ; is equal tov? + vf\J.
Arguing similarly to Lemma 8.3 and Theorem 3.1, we bound, with, = 1; — D,

PAD < Y (E > A, D)

Jegny NV

n F,(|§1\J| - )%D) n P( IEJZ— El\zjl - kJ,D)
Vg VU7 Uy
< > 12/er;(1+log B)e9.0/2ay),
Jeg )
and the first assertion of the theorem follows. o
Now we show that on the séf the estimat® = 6; satisfie§d — 61| < 211y.
Due to the above, oA} the intervall will not be rejected and, hen¢é| > [IJ.
Let 7 be an arbitrary interval fron which is not rejected by the procedure.
By constructionl is one of the testing intervals far. DenoteJ = I \ 1. Note
that |11(6; — 01) = |J|(8; — 671), so that the eventl"is not rejected” implies
16, — 61] < 1/92 + 92 and
Al AlJ

|
10, — 61] < ﬁ + ]1 < ﬁ(vj + vp).
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The use ofi; =s,6,|J|~Y2 and|8; — A1 < A(T; + ) yields
|5 1172 = g I1Y2] < Ay () + D),

implying

R .l L i
UL, v V< —5—1U].
i J i |J|1/2—ksy i

V) < a5
|J|Y/2 — Asy,

Therefore,
AT Y2 + 1112

Ur.
T+ ID(TT2 = asy)

07 — 61| <
(

Itis straightforward to check that the functigitx) = x%(x +1)/[(x2+ 1) (x — ¢)]
with anyc > 0 satisfiesf (x) < 2 for allx > 2¢. This implies withx = | J|1/2/|1|1/2
andc = 1s, /1|2 that

107 — 01| < 249y

under the condition tha'|¥/2 > 24s,,.
Let Ap < Duy. Similarly to Lemma 8.371 < vg(1+s, (D + A)|1|7Y/?) and, by
Theorem 3.1|61 — 6;| < (D + A)vy. This yields
16 — 1] < 2xvr(1+ 5, (D 4+ 2|1 7Y/?)
and
167 — 6] < 2001(1+ 5, (D + W1 7Y2) + (D + M
= (D 4 3%+ 25, (D + 1)1 7Yy
as required. [
PROOF OF THEOREM 5.2. To simplify the exposition we suppose that
0 = 1. (This does not restrict generality since one can always normalize each
“observation”Y; by 6.) We also suppose that > 1 andb =6’ — 1. (The case
when ¢’ < 6 can be considered similarly.) Finally, we assume that= m.

(One can easily see that this case is the most difficult one.) We again apply the
decomposition

0;=1+¢y, Or=0"+&r;
see the proof of Theorem 3.1. Hence
O1—0,=b+&—&.

It is straightforward to see thaf = s2/m andvZ = s26'/m. By Lemma 8.1 (see
also Remark 8.1)

P(&/] > Avs) + P(E| > Avp) < de ™)
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and it suffices to check that the inequalitieg| < Avy, |&r| < Avr and (5.1) imply

16; — 1] > A/ 02 + 2.

Sinced’ — 1= b and sincei; = s, |J|~1/24, and similarly fori;, we have under
the conditiong&,| < Avy, |&1| < Avr,

. As, (0 + 1)
0, — 01| >b—"Y" "7 —p1— —2p,
|6y — 01| > NG A-p)—2p
~ Sy -1
= 1 <A 1 ,
vy fm( +&) <A "p(1+p)
~ Sy -1
=211 <A 1 ,
g ﬁ( +é&) <A "p(+p)

with p = m~Y/2s,. Therefore,

167 — 01] — 2/ 0% 4+ 32> b(L—8) —2p —V20(14p) > 0
in view of (5.1), and the assertion follows[]
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