TAIWANESE JOURNAL OF MATHEMATICS

Vol. 12, No. 1, pp. 255-268, February 2008

This paper is available online at http://www.tjm.nsysu.edu.tw/

SPACE-TIME APPROACH TO PERELMAN'S L-GEODESICS AND AN ANALOGY BETWEEN PERELMAN'S REDUCED VOLUME AND HUISKEN'S MONOTONICITY FORMULA

Sun-Chin Chu

Abstract. From the viewpoint of space-time geometry and the trick of space-time track, the author would like to investigate the \mathcal{L} -geodesics, Perelman's reduced volume and Huisken's monotonicity formula.

1. Introduction

Perelman [5] introduces a new length (energy-like) functional for paths in the space-times of solutions of the Ricci flow, called the \mathcal{L} -length. As seen, the naturalness of this functional can be justified by the space-time approach. At the end of §6 in [5], Perelman also remarks that

"The first geometric interpretation of Hamilton's Harnack expression was found by Chow and Chu [C-Chu 1,2]; ...; our construction is, in a certain sense, dual to theirs.

Our formula for the reduced volume resembles the expression in Huisken monotonicity for the mean curvature flow [Hu];"

This motivates the author to investigate the \mathcal{L} -geodesics, Perelman's reduced volume and Huisken's monotonicity formula [4] from the viewpoint of space-time geometry.

This paper is organized as follows. In section 2, for the reader's convenience we recall the definitions of the \mathcal{L} -length, \mathcal{L} -geodesics, \mathcal{L} -geodesic equation, reduced distance and reduced volume. In section 3, we relate Perelman's \mathcal{L} -geodesics and \mathcal{L} -geodesic equation to those defined with respect to the space-time connection defined by (11) (see also Lemma 4.3 in [2]). In section 4, by the trick of space-time track introduced in [2] we give an exact analogy between Perelman's reduced volume and Huisken's monotonicity formula [4].

Received November 20, 2006, accepted December 4, 2006.

Communicated by Shu-Cheng Chang.

2000 Mathematics Subject Classification: 53C44, 58J35.

Key words and phrases: Space-time, L-Geodesic, Reduced volume, Monotonicity formula.

2. Basic Definitions

Let $(\mathcal{N}^n, h(t))$, $t \in (\alpha, \omega)$, be a solution to the Ricci flow. From this we can easily obtain a solution $(\mathcal{N}^n, h(\tau))$ to the **backward Ricci flow**

$$\frac{\partial}{\partial \tau}h = 2 \operatorname{Rc}$$

by reversing time. In particular, if $\omega < +\infty$, let $\tau \doteq \omega - t$, so that $(\mathcal{N}, h(\tau))$ is a solution to the backward Ricci flow on the time interval $(0, \omega - \alpha)$.

2.1. The \mathcal{L} -length and the \mathcal{L} -geodesic

We begin by motivating the definition of Perelman's \mathcal{L} -length for the Ricci flow as a renormalization of the length with respect to Perelman's potentially infinite dimensional manifold $(\widetilde{\mathcal{N}}, \tilde{h})$.

2.1.1. Potentially infinite Riemannian metric on space-time

Given $N \in \mathbb{N}$, define a metric on $\widetilde{\mathcal{N}} = \mathcal{N}^n \times \mathcal{S}^N \times (0,T)$ by

(1)
$$\tilde{h} \doteq h_{ij} dx^i dx^j + \tau h_{\alpha\beta} dy^{\alpha} dy^{\beta} + \left(\frac{N}{2\tau} + R\right) d\tau^2,$$

where $h_{\alpha\beta}$ is the metric on \mathcal{S}^N of constant sectional curvature 1/(2N) and R denotes the scalar curvature of the evolving metric h on \mathcal{N} . Here we have used the convention that $\left\{x^i\right\}_{i=1}^n$ will denote coordinates on the \mathcal{N} factor, $\left\{y^{\alpha}\right\}_{\alpha=1}^N$ coordinates on the \mathcal{S}^N factor, and $x^0 \doteqdot \tau$. Latin indices i, j, k, \ldots will be on \mathcal{N} , Greek indices $\alpha, \beta, \gamma, \ldots$ will be on \mathcal{S}^N , and 0 represents the (minus) time component. Choosing N large enough so that $\frac{N}{2\tau} + R > 0$ implies that the metric \tilde{h} is Riemannian, i.e., positive-definite. In local coordinates,

(2)
$$\tilde{h}_{ij} = h_{ij}$$
, $\tilde{h}_{\alpha\beta} = \tau h_{\alpha\beta}$, $\tilde{h}_{00} = \frac{N}{2\tau} + R$, $\tilde{h}_{i0} = \tilde{h}_{i\alpha} = \tilde{h}_{\alpha0} = 0$.

Let $\tilde{\gamma}(s) \doteqdot (x(s),y(s),\tau(s))$ be a shortest geodesic, with respect to the metric \tilde{h} , between points $p \doteqdot (x_0,y_0,0)$ and $q \doteqdot (x_1,y_1,\tau_q) \in \tilde{\mathcal{N}}$. Since the fibers \mathcal{S}^N pinch to a point as $\tau \to 0$, it is clear that the geodesic $\tilde{\gamma}(s)$ is orthogonal to the fibers \mathcal{S}^N . (To see this directly, take a sequence of geodesics from $p_k \doteqdot (x_0,y_0,1/k)$ to q and pass to the limit as $k \to \infty$.) Therefore it suffices to consider the manifold $\bar{\mathcal{N}} \doteqdot \mathcal{N} \times (0,T)$ endowed with the Riemannian metric:

(3)
$$\bar{h} \doteq h_{ij} dx^i dx^j + \left(\frac{N}{2\tau} + R\right) d\tau^2.$$

¹We shall consider the case where $\alpha=-\infty$ (in which case we define $\omega-\alpha \doteq +\infty$.) On the other hand, if $\omega=+\infty$ and $\alpha=-\infty$, we may simply take $\tau=-t$. However, for the backward Ricci flow we are not as interested in the case where $\omega=+\infty$ and $\alpha>-\infty$.

Remark. The components of the Levi-Civita connection ${}^N\tilde{\nabla}$ of $(\bar{\mathcal{N}},\bar{h})$ are defined by

$${}^{N}\tilde{\nabla}_{\frac{\partial}{\partial x^{a}}}\frac{\partial}{\partial x^{b}}=\sum_{c=0}^{n}{}^{N}\tilde{\Gamma}_{ab}^{c}\frac{\partial}{\partial x^{c}},$$

where $x^0 = \tau$. By direct computation, we have that

$${}^{N}\tilde{\Gamma}_{ij}^{k} = \Gamma_{ij}^{k},$$

$${}^{N}\tilde{\Gamma}_{i0}^{k} = R_{i}^{k},$$

$${}^{N}\tilde{\Gamma}_{00}^{k} = -\frac{1}{2}\nabla^{k}R$$

and

$${}^{N}\tilde{\Gamma}_{ij}^{0} = -\left(\frac{N}{2\tau} + R\right)^{-1} R_{ij},$$

$${}^{N}\tilde{\Gamma}_{i0}^{0} = \left(\frac{N}{2\tau} + R\right)^{-1} \frac{1}{2} \nabla_{i} R,$$

$${}^{N}\tilde{\Gamma}_{00}^{0} = \left(\frac{N}{2\tau} + R\right)^{-1} \frac{1}{2} \left(\frac{\partial R}{\partial \tau} + \frac{R}{\tau}\right) - \frac{1}{2\tau}.$$

In particular, ${}^{N}\tilde{\Gamma}^{k}_{ab}$ are independent of N, whereas

$$\lim_{N \to \infty} {}^{N} \tilde{\Gamma}_{ij}^{0} = 0,$$

$$\lim_{N \to \infty} {}^{N} \tilde{\Gamma}_{i0}^{0} = 0,$$

$$\lim_{N \to \infty} {}^{N} \tilde{\Gamma}_{00}^{0} = -\frac{1}{2\tau}.$$

For convenience, denote $x(s) \doteq \gamma(s)$. Now we use $s=\tau$ as the parameter of the curve. Let $\dot{\gamma}\left(\tau\right) \doteq \frac{d\gamma}{d\tau}\left(\tau\right)$. The length of a path $\bar{\gamma}\left(\tau\right) \doteq \left(\gamma(\tau),\tau\right)$, with respect to the metric \bar{h} , is given by the following:

Length \bar{h} $(\bar{\gamma})$

$$\begin{split} &= \int_0^{\tau_q} \sqrt{\frac{N}{2\tau}} + R + |\dot{\gamma}\left(\tau\right)|^2 d\tau \\ &= \int_0^{\tau_q} \sqrt{\frac{N}{2\tau}} \sqrt{1 + \frac{2\tau}{N} \left(R + |\dot{\gamma}\left(\tau\right)|^2\right)} d\tau \\ &= \int_0^{\tau_q} \sqrt{\frac{N}{2\tau}} \left(1 + \frac{\tau}{N} \left(R + |\dot{\gamma}\left(\tau\right)|^2\right) + O\left(N^{-2}\right)\right) d\tau \\ &= \int_0^{\tau_q} \sqrt{\frac{N}{2\tau}} d\tau + \int_0^{\tau_q} \sqrt{\frac{\tau}{2N}} \left(R + |\dot{\gamma}\left(\tau\right)|^2\right) d\tau + \int_0^{\tau_q} \sqrt{\frac{1}{2\tau}} O\left(N^{-3/2}\right) d\tau \end{split}$$

$$= \sqrt{2N\tau_q} + \frac{1}{\sqrt{2N}} \int_0^{\tau_q} \sqrt{\tau} \left(R + |\dot{\gamma}(\tau)|^2 \right) d\tau + \sqrt{2\tau_q} O\left(N^{-3/2} \right).$$

The calculation indicates that as $N \to \infty$, a shortest geodesic should approach a minimizer of the following length functional:

$$\int_{0}^{\tau_{q}} \sqrt{\tau} \left(R\left(\gamma\left(\tau\right), \tau\right) + \left| \dot{\gamma}\left(\tau\right) \right|_{h(\tau)}^{2} \right) d\tau.$$

Note that the functional only depends on the data of (\mathcal{N}, h) .

A natural geometry on space-time (in the sense of lengths, distances and geodesics) is given by the following.

Definition. Let $(\mathcal{N}^n, h(\tau))$, $\tau \in (A, \Omega)$, be a solution to the backward Ricci flow $\frac{\partial}{\partial \tau}h = 2\operatorname{Rc}$, and let $\gamma: [\tau_1, \tau_2] \to \mathcal{N}$ be a piecewise C^1 -path, where $[\tau_1, \tau_2] \subset (A, \Omega)$ and $\tau_1 \geq 0$. The \mathcal{L} -length of γ is defined by

(4)
$$\mathcal{L}\left(\gamma\right) \doteq \mathcal{L}_{h}\left(\gamma\right) \doteq \int_{\tau_{1}}^{\tau_{2}} \sqrt{\tau} \left(R\left(\gamma\left(\tau\right), \tau\right) + \left|\frac{d\gamma}{d\tau}\left(\tau\right)\right|_{h(\tau)}^{2}\right) d\tau.$$

It is clear that the \mathcal{L} -length is defined only for paths defined on a subinterval of the time interval where the solution to the backward Ricci flow exists.

Now that we have defined the \mathcal{L} -length we may mimic basic Riemannian comparison geometry in the space-time setting for the Ricci flow. We compute the first variation of the \mathcal{L} -length and find the equation for the critical points of \mathcal{L} (the \mathcal{L} -geodesic equation). We shall also compare this equation with the geodesic equation for the space-time graph (with respect to a natural space-time connection) in Section 3

Let $(\mathcal{N}^n, h(\tau))$, $\tau \in (A, \Omega)$, be a solution to the backward Ricci flow. Consider a variation of the C^2 -path $\gamma : [\tau_1, \tau_2] \to \mathcal{N}$; that is, let

$$G: [\tau_1, \tau_2] \times (-\varepsilon, \varepsilon) \to \mathcal{N}$$

be a C^2 -map such that

$$G|_{[\tau_1,\tau_2]\times\{0\}}=\gamma.$$

We say that a variation $G(\cdot,\cdot)$ of a C^2 -path γ is C^2 if $G\left(\frac{\sigma^2}{4},s\right)$ is C^2 in (σ,s) . Define

$$\gamma_s \doteq G|_{[\tau_1, \tau_2] \times \{s\}} : [\tau_1, \tau_2] \to \mathcal{N} \text{ for } -\varepsilon < s < \varepsilon.$$

Let

$$X\left(\tau,s\right) \doteq \frac{\partial G}{\partial \tau}\left(\tau,s\right) = \frac{\partial \gamma_s}{\partial \tau}\left(\tau\right) \text{ and } Y\left(\tau,s\right) \doteq \frac{\partial G}{\partial s}\left(\tau,s\right) = \frac{\partial \gamma_s}{\partial s}\left(\tau\right)$$

be the tangent vector field and variation vector field along $\gamma_s(\tau)$, respectively. The first variation formula for \mathcal{L} is given by

Lemma. (Equation 7.1, Perelman [5]) Given a C^2 -family of curves γ_s : $[\tau_1, \tau_2] \to \mathcal{N}$, the first variation of its \mathcal{L} -length is given by

(5)
$$\frac{1}{2} \left(\delta_{Y} \mathcal{L} \right) \left(\gamma_{s} \right) \stackrel{:}{=} \frac{1}{2} \frac{d}{ds} \mathcal{L} \left(\gamma_{s} \right) = \sqrt{\tau} Y \cdot X \Big|_{\tau_{1}}^{\tau_{2}} + \int_{\tau_{1}}^{\tau_{2}} \sqrt{\tau} Y \cdot \left(\frac{1}{2} \nabla R - \frac{1}{2\tau} X - \nabla_{X} X - 2 \operatorname{Rc} \left(X \right) \right) d\tau,$$

where the covariant derivative ∇ is with respect to $h(\tau)$.

Proof. For a proof we refer the reader to [5].

The \mathcal{L} -first variation formula (5) leads us to the following.

Definition. If γ is a critical point of the \mathcal{L} -length functional among all C^2 -paths with fixed endpoints, then γ is called an \mathcal{L} -geodesic.

It follows from the \mathcal{L} -first variation formula that a C^2 -path $\gamma: [\tau_1, \tau_2] \to (\mathcal{N}, h)$ is an \mathcal{L} -geodesic if and only if it satisfies the \mathcal{L} -geodesic equation:

(6)
$$\nabla_X X - \frac{1}{2} \nabla R + 2 \operatorname{Rc}(X) + \frac{1}{2\tau} X = 0,$$

where $X\left(\tau\right) \doteq \frac{d\gamma}{d\tau}\left(\tau\right)$.

Remark. Let $(\mathcal{M}, g(\tau))$ be a complete solution to the backward Ricci flow with bounded sectional curvature. (1) Given a space-time point $(p, \tau_1) \in \mathcal{M} \times [0, T)$ and a tangent vector $V \in T_p\mathcal{M}$, there exists a unique \mathcal{L} -geodesic $\gamma : [\tau_1, T) \to \mathcal{M}$ with

$$\lim_{\tau \to \tau_1} \sqrt{\tau} X(\tau) = V.$$

(2) Given two points $p, q \in \mathcal{M}$ and $0 \le \tau_1 < \tau_2 < T$, there exists a smooth path $\gamma : [\tau_1, \tau_2] \to \mathcal{M}$ from p to q such that γ has the minimal \mathcal{L} -length among all such paths. Furthermore, all \mathcal{L} -length minimizing paths are smooth \mathcal{L} -geodesics. For more details, we refer the reader to [3, 6].

2.2. The reduced distance and the reduced volume

We motivate the definition of Perelman's reduced volume by computing the volume of geodesic spheres in the potentially infinite-dimensional manifold.

Let $p = (x_0, y_0, 0), \bar{\tau} \in (0, T),$ and

$$B_{\tilde{g}}\left(p,\sqrt{2N\bar{\tau}}\right)\subset\widetilde{\mathcal{M}}\doteqdot\mathcal{M}\times\mathcal{S}^{N}\times(0,T)$$

denote the ball centered at p with radius $\sqrt{2N\bar{\tau}}$ with respect to the metric:

$$\tilde{g} \doteq g_{ij}dx^idx^j + \tau g_{\alpha\beta}dy^{\alpha}dy^{\beta} + \left(\frac{N}{2\tau} + R\right)d\tau^2,$$

where $g_{\alpha\beta}$ is the metric on \mathcal{S}^N of constant sectional curvature 1/(2N). For any point $w=(x,y,\tau_w)\in\partial B_{\tilde{g}}(p,\sqrt{2N\bar{\tau}})$, because of the factor τ in $\tau g_{\alpha\beta}dy^{\alpha}dy^{\beta}$, we have

$$\sqrt{2N\bar{\tau}} = d_{\tilde{g}}(w, p) = d_{\tilde{g}}((x, y, \tau_w), (x_0, y_0, 0))$$
$$= d_{\tilde{g}}((x, y, \tau_w), (x_0, y, 0)).$$

Hence, letting $\gamma\left(\tau\right) \doteq \left(\gamma_{\mathcal{M}}\left(\tau\right), y, \tau\right), \ \tau \in \left[0, \tau_{w}\right], \text{ with } \gamma\left(0\right) = \left(x_{0}, y, 0\right) \text{ and } \gamma_{\mathcal{M}}\left(\tau_{w}\right) = w, \text{ we have }$

(7)
$$\sqrt{2N\overline{\tau}} = \inf_{\gamma} \operatorname{Length}_{\tilde{g}}(\gamma)$$

$$= \inf_{\gamma_{\mathcal{M}}} \left(\frac{1}{\sqrt{2N}} \int_{0}^{\tau_{w}} \sqrt{\tau} \left(R + |\dot{\gamma}_{\mathcal{M}}(\tau)|^{2} \right) d\tau + \sqrt{2N\tau_{w}} + O\left(N^{-3/2} \right) \right)$$

$$= \sqrt{2N\tau_{w}} + \frac{1}{\sqrt{2N}} L(x, \tau_{w}) + O\left(N^{-3/2} \right),$$

where

$$L(x, \tau_w) \doteq \inf_{\gamma_M} \int_0^{\tau_w} \sqrt{\tau} \left(R + |\dot{\gamma}_M(\tau)|^2 \right) d\tau$$

and the infimum is taken over $\gamma_{\mathcal{M}}:[0,\tau_w]\to\mathcal{M}$ with $\gamma_{\mathcal{M}}\left(0\right)=x_0$ and $\gamma_{\mathcal{M}}\left(\tau_w\right)=x$. Therefore for any $w=(x,y,\tau_w)\in\partial B_{\tilde{g}}(p,\sqrt{2N\bar{\tau}}),$

$$\sqrt{\tau_w} = \sqrt{\bar{\tau}} - \frac{1}{2N} L(x, \tau_w) + O\left(N^{-2}\right).$$

This implies that the geodesic sphere $\partial B_{\tilde{g}}\left(p,\sqrt{2N\bar{\tau}}\right)$, with respect to \tilde{g} , is $O(N^{-1})$ -close to the hypersurface $\mathcal{M}\times\mathcal{S}^N\times\{\bar{\tau}\}$.

Note that since the fibers \mathcal{S}^N pinch to a point as $\tau \to 0$, if $w = (x, y, \tau_w) \in \partial B_{\tilde{g}}(p, \sqrt{2N\bar{\tau}})$, then any point in $\{x\} \times \mathcal{S}^N \times \{\tau_w\}$ also lies on the sphere $\partial B_{\tilde{g}}(p, \sqrt{2N\bar{\tau}})$. We have that the volume of $\partial B_{\tilde{g}}(p, \sqrt{2N\bar{\tau}})$ is roughly (since the sphere

has small curvature for N large) the volume of the hypersurface $\mathcal{M} \times \mathcal{S}^N \times \{\bar{\tau}\}$ in $\widetilde{\mathcal{M}}$ and its volume can be computed as:

$$\operatorname{Vol}_{\tilde{g}} \partial B_{\tilde{g}} \left(p, \sqrt{2N\bar{\tau}} \right)$$

$$\approx \int_{\partial B_{\tilde{g}}(p,\sqrt{2N\bar{\tau}})} d\mu_{g_{\mathcal{M}}(\tau_{w})} \left(x \right) \wedge \tau_{w}^{N/2} d\mu_{\mathcal{S}^{N}} \left(y \right)$$

$$\approx \operatorname{Vol}(\mathcal{S}^{N}, g_{\mathcal{S}^{N}}) \int_{\mathcal{M}} \left(\sqrt{\bar{\tau}} - \frac{1}{2N} L(x, \tau_{w}) + O(N^{-2}) \right)^{N} d\mu_{g_{\mathcal{M}}(\bar{\tau})}$$

$$\approx \omega_{N} \left(\sqrt{2N\bar{\tau}} \right)^{N} \int_{\mathcal{M}} \left(1 - \frac{1}{2N\sqrt{\bar{\tau}}} L(x, \bar{\tau}) + O(N^{-2}) \right)^{N} d\mu_{g_{\mathcal{M}}(\bar{\tau})},$$

where ω_N is the volume of the unit sphere \mathcal{S}^N (recall that $g_{\mathcal{S}^N}$ has constant sectional curvature 1/(2N), i.e., radius $\sqrt{2N}$). We observe that

$$\lim_{N \to \infty} \left(1 - \frac{1}{2N\sqrt{\bar{\tau}}} L(x, \bar{\tau}) + O(N^{-2}) \right)^{N}$$

$$= \lim_{N \to \infty} \left(1 - \frac{1}{N} \frac{1}{2\sqrt{\bar{\tau}}} L(x, \bar{\tau}) \right)^{N}$$

$$= e^{-\frac{1}{2\sqrt{\bar{\tau}}} L(x, \bar{\tau})}$$

For convenience, denote the quantity $\frac{1}{2\sqrt{\bar{\tau}}}L(x,\bar{\tau})$ by the **reduced distance** ℓ , i.e.,

(8)
$$\ell(x,\bar{\tau}) \doteq \frac{1}{2\sqrt{\bar{\tau}}} L(x,\bar{\tau}).$$

Therefore, we have

$$\lim_{N\to\infty} \left(1 - \frac{1}{2N\sqrt{\bar{\tau}}}L(x,\bar{\tau}) + O(N^{-2})\right)^N = e^{-\ell(x,\bar{\tau})}.$$

It is easy to see that

(9)
$$\frac{\operatorname{Vol}_{\tilde{g}}\left(\partial B_{\tilde{g}}\left(p,\sqrt{2N\bar{\tau}}\right)\right)}{\left(\sqrt{2N\bar{\tau}}\right)^{N+n}} \\
= (2N)^{-n/2} \omega_N \left(\int_{\mathcal{M}} \bar{\tau}^{-n/2} e^{-\ell(x,\bar{\tau})} d\mu_{g_{\mathcal{M}}(\bar{\tau})} + O(N^{-1})\right).$$

In particular, we obtain the geometric invariant

$$\int_{\mathcal{M}} \bar{\tau}^{-n/2} e^{-\ell(x,\bar{\tau})} d\mu_{g_{\mathcal{M}}(\bar{\tau})}$$

for $\bar{\tau} \in (0,T)$.

Thus we are led to the following.

Definition. Let $(\mathcal{M}^n,g\left(\tau\right))$, $\tau\in\left[0,T\right]$, be a complete solution to the backward Ricci flow with bounded curvature. The **reduced volume** functional is defined by

(10)
$$\tilde{V}(\tau) \doteq \int_{\mathcal{M}} (4\pi\tau)^{-n/2} e^{-\ell(x,\tau)} d\mu_{g(\tau)}(x)$$

for $\tau \in (0,T)$.

3. SPACE-TIME APPROACH TO PERELMAN'S \mathcal{L} -GEODESIC EQUATION

We now compare the \mathcal{L} -geodesic equation for γ with the geodesic equation for the graph $\bar{\gamma}(\tau) = (\gamma(\tau), \tau)$ with respect to the following space-time connection (see also Lemma 4.3 in [1]):

(11)
$$\tilde{\Gamma}_{ij}^k = \Gamma_{ij}^k, \quad \tilde{\Gamma}_{i0}^k = \tilde{\Gamma}_{0i}^k = R_i^k, \quad \tilde{\Gamma}_{00}^k = -\frac{1}{2}\nabla^k R, \quad \tilde{\Gamma}_{00}^0 = -\frac{1}{2\tau},$$

where $i,j,k\geq 1$ (above and below), and the rest of the components are zero. It is instructive to compare the Christoffel symbols $\tilde{\Gamma}$ above with the the symbols $^N\tilde{\Gamma}$ of the Levi-Civita connection $^N\tilde{\nabla}$ for the metric \bar{h} introduced in subsection 2.1. For $k\geq 1$, note that $\tilde{\Gamma}^k_{ab}=^N\tilde{\Gamma}^k_{ab}$ is independent of N, whereas $\tilde{\Gamma}^0_{ab}=\lim_{N\to\infty}^N\tilde{\Gamma}^0_{ab}$ for all $a,b\geq 0$.

Let $\tau = \tau(\sigma) \doteq \sigma^2/4$, i.e., $\sigma \doteq 2\sqrt{\tau}$. We look for a geodesic, with respect to the space-time connection defined above, of the form

$$\tilde{\beta}(\sigma) \doteq (\gamma(\tau(\sigma)), \sigma^2/4),$$

where $\gamma: [\tau_1, \tau_2] \to \mathcal{M}$ is a path. For convenience, let $\beta(\sigma) \doteqdot \gamma(\tau(\sigma))$, $\tilde{\beta}^i \doteqdot x^i \circ \beta \doteqdot \beta^i$ for $i = 1, \ldots, n$, and $\tilde{\beta}^0 \doteqdot x^0 \circ \tilde{\beta}$ (so that $\tilde{\beta}^0$ $(\sigma) = \sigma^2/4$).

The motivation for change of time-variable is given by the following.

Claim. If $\tilde{\beta}:[0,\bar{\sigma}]\to\mathcal{N}\times[0,T]$ is a geodesic, with respect to the connection $\tilde{\nabla}$, with $\tilde{\beta}^0(0)=0$ and $\frac{d\tilde{\beta}^0}{d\sigma}(\sigma)\neq 0$ for $\sigma>0$, then $\tilde{\beta}^0(\sigma)=A\sigma^2$ for some positive constant A.

Proof. If $\tilde{\beta}^0(\sigma) = \tau(\sigma)$, then the time-component of the geodesic equation with respect to $\tilde{\nabla}$ is:

$$0 = \frac{d^2 \tilde{\beta}^0}{d\sigma^2} + \sum_{0 \le i, j \le n} \left(\tilde{\Gamma}_{ij}^0 \circ \tilde{\beta} \right) \frac{d\tilde{\beta}^i}{d\sigma} \frac{d\tilde{\beta}^j}{d\sigma}$$
$$= \frac{d^2 \tau}{d\sigma^2} - \frac{1}{2\tau} \left(\frac{d\tau}{d\sigma} \right)^2$$

since $\tilde{\Gamma}_{ij}^0=0$ when $i\geq 1$ or $j\geq 1$, and $\tilde{\Gamma}_{00}^0=-\frac{1}{2\tau}$. Hence, assuming $\tau\left(\sigma\right)>0$ and $\frac{d\tau}{d\sigma}\left(\sigma\right)>0$ for $\sigma>0$, we have

$$\frac{d}{d\sigma}\log\frac{d\tau}{d\sigma} = \frac{\frac{d^2\tau}{d\sigma^2}}{\frac{d\tau}{d\sigma}} = \frac{\frac{d\tau}{d\sigma}}{2\tau} = \frac{d}{d\sigma}\log\sqrt{\tau},$$

so that

$$\frac{d\tau}{d\sigma} = C\sqrt{\tau}$$

for some constant C > 0. Since $\tau(0) = 0$, we conclude

$$\tau\left(\sigma\right) = C^2 \sigma^2 / 4.$$

By direct computation, we have

$$\frac{d\beta^k}{d\sigma} = \frac{\sigma}{2} \frac{d\gamma^k}{d\tau}, \quad \frac{d\tilde{\beta}^0}{d\sigma} = \frac{\sigma}{2},$$

and

$$\begin{split} \frac{d^2\beta^k}{d\sigma^2} &= \frac{d}{d\sigma} \left(\frac{\sigma}{2} \frac{d\gamma^k}{d\tau} (\tau(\sigma)) \right) \\ &= \left(\frac{\sigma}{2} \right)^2 \frac{d^2\gamma^k}{d\tau^2} (\tau(\sigma)) + \frac{1}{2} \left(\frac{d\gamma^k}{d\tau} (\tau(\sigma)) \right). \end{split}$$

We justify the change of variables from τ to σ via the geodesic equation with respect to $\tilde{\Gamma}$ by showing the time-component of $\tilde{\beta}$ satisfies the geodesic equation:

$$\frac{d^2 \tilde{\beta}^0}{d\sigma^2} + \sum_{0 \le i, j \le n} \left(\tilde{\Gamma}_{ij}^0 \circ \tilde{\beta} \right) \frac{d\tilde{\beta}^i}{d\sigma} \frac{d\tilde{\beta}^j}{d\sigma} = \frac{d^2}{d\sigma^2} \left(\sigma^2 / 4 \right) + \tilde{\Gamma}_{00}^0 \left(\tilde{\beta} \left(\sigma \right) \right) \left(\sigma / 2 \right)^2$$
$$= \frac{1}{2} - \frac{1}{2 \left(\sigma^2 / 4 \right)} \left(\sigma / 2 \right)^2 = 0.$$

(This last equation justifies defining the time-component of $\tilde{\beta}(\sigma)$ as $\sigma^2/4$, and in particular, the change of variables $\sigma=2\sqrt{\tau}$.) For the space components, the geodesic equation with respect to $\tilde{\Gamma}$ says that for k=1,...,n,

$$\begin{split} 0 &= \frac{d^2 \tilde{\beta}^k}{d\sigma^2} + \sum_{0 \leq i,j \leq n} \tilde{\Gamma}^k_{ij} \frac{d\tilde{\beta}^i}{d\sigma} \frac{d\tilde{\beta}^j}{d\sigma} \\ &= \frac{d^2 \beta^k}{d\sigma^2} + \sum_{1 \leq i,j \leq n} \Gamma^k_{ij} \frac{d\beta^i}{d\sigma} \frac{d\beta^j}{d\sigma} + 2 \sum_{1 \leq i \leq n} \tilde{\Gamma}^k_{i0} \frac{d\beta^i}{d\sigma} \frac{d\tilde{\beta}^0}{d\sigma} + \tilde{\Gamma}^k_{00} \frac{d\tilde{\beta}^0}{d\sigma} \frac{d\tilde{\beta}^0}{d\sigma}. \end{split}$$

This is equivalent to:

$$0 = \left(\frac{\sigma}{2}\right)^2 \frac{d^2 \gamma^k}{d\tau^2}(\tau(\sigma)) + \sum_{1 \le i, j \le n} \Gamma_{ij}^k \left(\frac{\sigma}{2} \frac{d\gamma^i}{d\tau}(\tau(\sigma))\right) \left(\frac{\sigma}{2} \frac{d\gamma^j}{d\tau}(\tau(\sigma))\right) + \frac{1}{2} \left(\frac{d\gamma^k}{d\tau}(\tau(\sigma))\right) + 2 \sum_{1 \le i \le n} R_i^k \left(\frac{\sigma}{2} \frac{d\gamma^i}{d\tau}(\tau(\sigma))\right) \left(\frac{\sigma}{2}\right) - \frac{1}{2} \left(\frac{\sigma}{2}\right)^2 \nabla^k R,$$

which, after dividing by $\tau = \sigma^2/4$, implies

$$0 = \frac{d^2 \gamma^k}{d\tau^2}(\tau(\sigma)) + \sum_{1 \le i,j \le n} \Gamma^k_{ij} \frac{d\gamma^i}{d\tau}(\tau(\sigma)) \frac{d\gamma^j}{d\tau}(\tau(\sigma)) + \frac{1}{2\tau} \left(\frac{d\gamma^k}{d\tau}(\tau(\sigma))\right) + 2\sum_{1 \le i \le n} R^k_i \frac{d\gamma^i}{d\tau}(\tau(\sigma)) - \frac{1}{2} \nabla^k R.$$

That is, in invariant notation and with $X = \frac{d\gamma}{d\tau}$, we have

$$\nabla_X X - \frac{1}{2} \nabla R + 2 \operatorname{Rc}(X) + \frac{1}{2\tau} X = 0,$$

which is the same as (6). Thus \mathcal{L} -geodesics correspond to geodesics defined with respect to the space-time connection. In particular, $\gamma(\tau)$ is an \mathcal{L} -geodesic if and only if $\beta(\sigma) \doteq \gamma\left(\sigma^2/4\right)$ is a geodesic with respect the space-time connection $\tilde{\nabla}$. Since $\tilde{\Gamma}_{ab}^c = \lim_{N \to \infty} {}^N \tilde{\Gamma}_{ab}^c$, we also conclude that the Riemannian geodesic equation for the metric \bar{h} on $\mathcal{N}^n \times (0,T)$ (defined in subsection 2.1) limits to the $\sigma = 2\sqrt{\tau}$ reparametrization of the \mathcal{L} -geodesic equation as $N \to \infty$.

4. An Analogue Between Perelman's Reduced Volume and Huisken's Monotonicity Formula

Given a 1-parameter family of metrics g(t), $t \in \mathcal{I}$, on a manifold M^n and functions $\beta(t): M^n \to \mathbb{R}$, we define the metric g_{β} on $\tilde{M}^{n+1} \doteq M^n \times \mathcal{I}$ by (see [2])

$$g_{\beta}(x,t) \doteq g(x,t) + \beta^{2}(x,t) dt^{2}$$
.

We consider the family of hypersurfaces given by the time slices $M_t \doteq M^n \times \{t\} \subset \tilde{M}^{n+1}$. A choice of unit normal vector field to M_t is

$$\nu \doteq -\frac{1}{\beta} \frac{\partial}{\partial t}.$$

The hypersurfaces M_t parametrized by the maps $X_t: M^n \to \tilde{M}^{n+1}$ defined by $X_t(x) \doteq (x,t)$ are evolving by the flow

$$\frac{\partial}{\partial t}X_t = -\beta\nu.$$

This implies the metrics are evolving by

$$\frac{\partial}{\partial t}g_{ij} = -2\beta h_{ij},$$

where h_{ij} is the second fundamental form of $M_t \subset \tilde{M}^{n+1}$. One way of seeing this formula is from

$$\frac{1}{\beta}h_{ij} = (\Gamma_{\beta})_{ij}^{0} = -\frac{1}{2} (g_{\beta})^{00} \frac{\partial}{\partial x^{0}} (g_{\beta})_{ij} = -\frac{1}{2\beta^{2}} \frac{\partial}{\partial t} g_{ij},$$

where $x^0 = t$. Hence

$$\beta h_{ij} = R_{ij}.$$

Consider the special case where $\beta\left(t\right)^{2}=R\left(t\right)$ is the scalar curvature of $g\left(t\right)$. Tracing (12) we get $\beta H=R$ so that $\beta=H$ and the hypersurfaces M_{t} satisfy the mean curvature flow: $\frac{\partial}{\partial t}X_{t}=-H\nu$.

Now we consider the more general setting of hypersurfaces evolving in a Riemannian manifold. Given (P^{n+1},g) , let $X_t:M^n\to P^{n+1},\,t\in\mathcal{I}$, parametrize a 1-parameter family of hypersurfaces $M_t=X_t(M^n)$ evolving in their normal directions

$$\frac{\partial}{\partial t}X_t = -\beta\nu,$$

where $\beta(t): M^n \to \mathbb{R}$ are arbitrary functions. We consider the product metric $g + Ndt^2$ on $P^{n+1} \times \mathcal{I}$. The **space-time track** is defined by

$$\tilde{M}^{n+1} \doteqdot \{(x,t) : x \in M_t, \ t \in \mathcal{I}\} \subset P^{n+1} \times \mathcal{I}.$$

We parametrize this by the map

$$\tilde{X}: M^n \times \mathcal{T} \to P^{n+1} \times \mathcal{T}$$

defined by

$$\tilde{X}(p,t) \doteq (X_t(p),t)$$
.

Let ${}^{N}\hat{g}$ denote the induced metric on \tilde{M}^{n+1} . Its components

$${}^{N}\hat{g}_{ab} \doteq \left\langle \frac{\partial \tilde{X}}{\partial x^{a}}, \frac{\partial \tilde{X}}{\partial x^{b}} \right\rangle_{a+Ndt^{2}} = \left\langle \frac{\partial X_{t}}{\partial x^{a}}, \frac{\partial X_{t}}{\partial x^{b}} \right\rangle_{g} + N\delta_{a0}\delta_{b0},$$

where $a, b \ge 0$ are given by

$${}^{N}\hat{g}_{ij} = g_{ij}, {}^{N}\hat{g}_{i0} = 0, {}^{N}\hat{g}_{00} = \beta^{2} + N,$$

where $i, j \geq 1$.

Now, following Perelman, we renormalize length function associated to the metric (similar to what we did in section 2) on $M^n \times \mathcal{J}$ (we switch from \mathcal{I} to \mathcal{J} when we consider the time parameter to be τ instead of t)

$$^{N}\breve{g}\left(x,\tau\right) \doteqdot g\left(x,\tau\right) +\left(\beta^{2}\left(x,\tau\right) +\frac{N}{2\tau}\right) d\tau^{2},$$

where $\frac{d\tau}{dt}=-1$ and $g\left(\tau\right)=g\left(t\left(\tau\right)\right)$ is the pulled back metric on M^{n} by X_{τ} of the induced metric on $M_{\tau}\doteqdot X_{\tau}\left(M^{n}\right)\subset P^{n+1}$. We may also think of this metric as defined on an open subset of P^{n+1} by pushing forward by the diffeomorphism $(x,\tau)\mapsto X_{\tau}\left(x\right)$. Let $\gamma:\left[0,\tau_{0}\right]\to M^{n}$ be a path and define the path $\bar{\gamma}:\left[0,\tau_{0}\right]\to P^{n+1}$ by

$$\bar{\gamma}(\tau) \doteq X_{\tau}(\gamma(\tau)) \in M_{\tau}$$

so that $(\gamma(\tau), \tau) \in M^n \times \mathcal{J}$ corresponds to the point $\bar{\gamma}(\tau) \in M_\tau \subset P^{n+1}$. We have

$$\mathcal{L}_{(N\breve{g})}(\bar{\gamma}) = \int_0^{\tau_0} \left(\left| \frac{d\gamma}{d\tau} \right|_{g(\tau)}^2 + \beta^2 + \frac{N}{2\tau} \right)^{1/2} d\tau.$$

Again, motivated by carrying out the expansion of $L_{(N \check{g})}(\bar{\gamma})$ in powers of N, and considering highest order non-trivial term, we define the \mathcal{L} -length of γ by

$$\mathcal{L}(\gamma) \doteq \int_{0}^{\tau_{0}} \sqrt{\tau} \left(\left| \frac{d\gamma}{d\tau} (\tau) \right|_{g(\tau)}^{2} + \beta^{2} (\gamma (\tau), \tau) \right) d\tau$$
$$= \int_{0}^{\tau_{0}} \sqrt{\tau} \left| \frac{d\bar{\gamma}}{d\tau} (\tau) \right|_{g}^{2} d\tau.$$

(The equality holds since $\iota^*g = g_\beta$, where $\iota : M^n \times \mathcal{J} \to P^{n+1}$ is defined by $\iota(x,\tau) \doteq X_\tau(x)$.) Making the change of variables $\sigma = 2\sqrt{\tau}$, we have

$$\mathcal{L}\left(\gamma\right) = \int_{0}^{2\sqrt{\tau_{0}}} \left| \frac{d\bar{\gamma}}{d\tau} \left(\sigma\right) \right|_{g}^{2} d\sigma.$$

This is the energy of the path $\bar{\gamma}(\sigma)$ and assuming that $\tau_0, \gamma(0) = p$ and $\gamma(\tau_0) = q$ are fixed, $\mathcal{L}(\gamma)$ is minimized by a constant speed geodesic and

$$\check{L}(q, \tau_0) \doteqdot \inf_{\gamma} \mathcal{L}(\gamma) = \frac{d_g(p, q)^2}{2\sqrt{\tau_0}}.$$

Let $\check{\ell}\left(q,\tau_{0}\right)\doteqdot\frac{1}{2\sqrt{\tau_{0}}}\check{L}\left(q,\tau_{0}\right)$. Then

$$\check{\ell}\left(q,\tau_{0}\right) = \frac{d_{g}\left(p,q\right)^{2}}{4\tau_{0}}.$$

Recall that Perelman's **reduced volume** for a solution to the backward Ricci flow is defined by

(10)
$$\tilde{V}(\tau) \doteq \int_{M} (4\pi\tau)^{-n/2} e^{-\ell(x,\tau)} d\mu_{g(\tau)}(x),$$

where ℓ is defined in (8). From the above considerations, we see that Huisken's monotonicity formula for the mean curvature flow (see [4]) is the analogue of the monotonicity of $\tilde{V}(\tau)$. In particular, if $P^{n+1}=\mathbb{R}^{n+1}$, then Huisken's monotone quantity is

$$\int_{X_{t}} (4\pi\tau)^{-n/2} e^{-\frac{|x|^{2}}{4\tau}} d\mu = \int_{M^{n}} (4\pi\tau)^{-n/2} e^{-\check{\ell}} d\mu.$$

Remark. The above can perhaps be seen more clearly and simply in the case of a fixed Riemannian metric g on a manifold M^n . Define on $M \times \mathcal{J}$, where \mathcal{J} is an interval, the metric

$$^{N}\mathring{g}(x,\tau) \doteq g(x) + \frac{N}{2\tau}d\tau^{2}.$$

Then given $\gamma: [\tau_1, \tau_2] \to M^n$, the length of $\tilde{\gamma}: [\tau_1, \tau_2] \to M^n \times \mathcal{J}$ defined by $\tilde{\gamma}(\tau) \doteqdot (\gamma(\tau), \tau)$ is

$$L_{(N_{\tilde{g}})}(\tilde{\gamma}) = \int_{\tau_1}^{\tau_2} \left(\left| \frac{d\gamma}{d\tau} \right|_{g(\tau)}^2 + \frac{N}{2\tau} \right)^{1/2} d\tau
= \sqrt{N} \left(\sqrt{2\tau_2} - \sqrt{2\tau_1} \right) + \frac{1}{\sqrt{2N}} \int_{\tau_1}^{\tau_2} \sqrt{\tau} \left| \frac{d\gamma}{d\tau} \right|_{g(\tau)}^2 d\tau + O\left(N^{-3/2} \right).$$

ACKNOWLEDGMENT

The author would like to thank the Center for Theoretical Sciences in Taiwan for the support in the summer of 2004.

REFERENCES

- 1. B. Chow and S.-C. Chu, A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow, *Math. Res. Lett.* **2** (1995), 701-718.
- 2. B. Chow and S.-C. Chu, Spacetime formulation of Harnack inequalities for curvature flows of hypersurfaces, *J. Geom. Anal.*, **11** (2001), 219–231.
- 3. B. Chow, P. Lu and L. Ni, *Hamilton's Ricci flow*, Graduate Studies in Mathematics, Vol. 77, AMS, 2006.

- 4. G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Diff. Geom., 31(1) (1990), 285-299.
- 5. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.
- 6. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo and L. Ni, The Ricci flow: Techniques and Applications, Mathematical Surveys and Monographs, Vol. 135, AMS, 2007.

Sun-Chin Chu Department of Mathematics National Chung Cheng University Chia-Yi 621, Taiwan

E-mail: scchu@math.ccu.edu.tw