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SPACE-TIME APPROACH TO PERELMAN'’S £-GEODESICS
AND AN ANALOGY BETWEEN PERELMAN’S REDUCED
VOLUME AND HUISKEN’S MONOTONICITY FORMULA

Sun-Chin Chu

Abstract. From the viewpoint of space-time geometry and the trick of space-
time track, the author would like to investigate the £-geodesics, Perelman’s
reduced volume and Huisken’s monotonicity formula.

1. INTRODUCTION

Perelman [5] introduces a new length (energy-like) functional for paths in the
space-times of solutions of the Ricci flow, called the £-length. As seen, the natu-
ralness of this functional can be justified by the space-time approach. At the end
of §6 in [5], Perelman also remarks that

“The first geometric interpretation of Hamilton’s Harnack expression
was found by Chow and Chu [C-Chu 1,2]; ...; our construction is, in a
certain sense, dual to theirs.

Our formula for the reduced volume resembles the expression in Huisken
monotonicity for the mean curvature flow [Hu]; ....”

This motivates the author to investigate the £-geodesics, Perelman’s reduced volume
and Huisken’s monotonicity formula [4] from the viewpoint of space-time geometry.

This paper is organized as follows. In section 2, for the reader’s convenience
we recall the definitions of the £-length, £-geodesics, £-geodesic equation, reduced
distance and reduced volume. In section 3, we relate Perelman’s £-geodesics and £L-
geodesic equation to those defined with respect to the space-time connection defined
by (11) (see also Lemma 4.3 in [2]). In section 4, by the trick of space-time track
introduced in [2] we give an exact analogy between Perelman’s reduced volume and
Huisken’s monotonicity formula [4].
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2. Basic DEFINITIONS

Let (N, h(t)), t € (a,w), be a solution to the Ricci flow. From this we can
easily obtain a solution (N, h (7)) to the backward Ricci flow
0
—h=2R
or ¢
by reversing time. In particular, if w < 400, let 7 = w — ¢, so that (M, h (7)) is a
solution to the backward Ricci flow on the time interval (0,w — «). *

2.1. The L-length and the £-geodesic

We begin by motivating the definition of Perelman’s £-length for the Ricci flow
as a renormalization of the length with respect to Perelman’s potentially infinite
dimensional manifold (V, ).

2.1.1. Potentially infinite Riemannian metric on space-time
Given N € N, define a metric on N = N x SV x (0,T) by

1) h = hijda'da? + Thegdy®dy® + (% + R) r?,

where h,s is the metric on SV of constant sectional curvature 1/ (2N) and R
denotes the scalar curvature of the evolving metric » on N. Here we have used
the convention that {«}"" ~will denote coordinates on the N\ factor, {y* 3,
coordinates on the SV factor, and z° = . Latin indices i, j, k, ... will be on
N, Greek indices a, 3,7, ... will be on S, and 0 represents the (minus) time
component. Choosing N large enough so that % -+ R > 0 implies that the metric

h is Riemannian, i.e., positive-definite. In local coordinates,
- - - N - - -
(2 hij = hij, hag = Thag, hoo = 7.t R, hjo = hia = hao = 0.

Let ¥(s) = (z(s),y(s), 7(s)) be a shortest geodesic, with respect to the metric
h, between points p = (z0, 0, 0) and ¢ = (1, y1, 7,) € N, Since the fibers S¥
pinch to a pointas 7 — 0, it is clear that the geodesic 7(s) is orthogonal to the fibers
SN, (To see this directly, take a sequence of geodesics from py = (0, 3o, 1/k) to
g and pass to the limit as £ — oo.) Therefore it suffices to consider the manifold
N = N x (0,T) endowed with the Riemannian metric:

_ o N
(3) h = hijdr'dx? + (2— + R) dr?.
T

"We shall consider the case where o« = —oo (in which case we define w — a = +00.) On the other
hand, if w = 400 and a = —oo, we may simply take 7 = —¢. However, for the backward Ricci
flow we are not as interested in the case where w = +o00 and « > —oo0.
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Remark. The components of the Levi-Civita connection V'V of (A, h) are

defined by
~ 0 " ye. O
N o2 Nte Y
V% oxb g b He’

where z° = 7. By direct computation, we have that
NTE =T%,
foo = Rfv
Nk = —%V’“R
and .
Nf‘?j = — <%+R) Rz‘j,

. N -1
NTO — (4 R) -WViR
i0 <27‘+ ) QV ’

_ N 11/6R R 1
Npo o — [ — =4+ =) - =,
00 <27+R> 2(87+T> 2T

In particular, YT, are independent of N, whereas

limy oo VTY; =0,
limy_oo NI =0,
: NT0 1

For convenience, denote x(s) = ~(s). Now we use s = 7 as the parameter of

the curve. Let+ (1) = j—z (7). The length of a path ¥ (7) = (y(7), T), with respect

to the metric h, is given by the following:

Length; (7
= [" e me @

_ /0 \/g (14 = (R+15(R) + 0 (N2)) dr

= [ R [ (R Ry [T Lo () 4
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= V2N, + \/%/OTQ VT (R+13 (0P dr + /27,0 (N732).

The calculation indicates that as N — oo, a shortest geodesic should approach a
minimizer of the following length functional:

[V (RO 0+ 0l dr

Note that the functional only depends on the data of (A, h).
A natural geometry on space-time (in the sense of lengths, distances and geodesics)
is given by the following.

Definition. Let (N™,h (7)), 7 € (A,Q), be a solution to the backward
Ricci flow %h = 2Rc, and let v : [r1, ] — N be a piecewise C!-path, where
[11,72] C (A,Q) and 7, > 0. The L-length of ~ is defined by

2
> dr.
h(7)

It is clear that the L£-length is defined only for paths defined on a subinterval of
the time interval where the solution to the backward Ricci flow exists.

@ a(v)%h(v)#/”ﬁ(mwmw 2 ()

T1

Now that we have defined the £-length we may mimic basic Riemannian com-
parison geometry in the space-time setting for the Ricci flow. We compute the first
variation of the £-length and find the equation for the critical points of £ (the £-
geodesic equation). We shall also compare this equation with the geodesic equation
for the space-time graph (with respect to a natural space-time connection) in Section
3.

Let (N, h (7)), T € (A, Q), beasolution to the backward Ricci flow. Consider
a variation of the C?-path  : [11, 2] — N; that is, let

G:|r,m] X (—&,6) = N
be a C?-map such that
Gl ra)efoy = 7-
We say that a variation G (-,-) of a C?-path ~ is C? if G <§,s) is C? in
(0,s) . Define
Vs = Gliy roxgs} © [T1,72] — N for—e<s<e.

Let

oG, v, oG, v,

X (1,5) = 5 (1,9) 5, (1) and Y (7, 8) = s (1,5) = s (1)
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be the tangent vector field and variation vector field along s (7) , respectively. The
first variation formula for £ is given by

Lemma. (Equation 7.1, Perelman [5]) Given a C?2-family of curves v, :
[11, o] — N, the first variation of its £-length is given by

5 OvL) (3s) = 55 L (0s) = VY - X[
T2 1 1

+ | Jrv. <§VR — - X - VX —2Re (X)) dr,
T1 T

where the covariant derivative V is with respect to /(7).
Proof. For a proof we refer the reader to [5]. |
The L-first variation formula (5) leads us to the following.

Definition. If v is a critical point of the £-length functional among all C'-paths
with fixed endpoints, then ~ is called an £-geodesic.

It follows from the £-first variation formula that a C%-path v : [r1, 72] — (N, h)
is an £-geodesic if and only if it satisfies the £-geodesic equation:

1 1
(6) VxX = JVR+2Re(X)+ -X =0,
T

where X (1) = 3—2 (7).

Remark. Let (M,g(7)) be a complete solution to the backward Ricci flow
with bounded sectional curvature. (1) Given a space-time point (p, 1) € M x[0,T)
and a tangent vector V' € T,,M, there exists a unique £-geodesic v : [ry,T) — M
with

lim /7X(1)=V.

T—T1
(2) Given two points p,g € M and 0 < 71 < 7o < T, there exists a smooth path
v : 11, 7] — M from p to ¢ such that v has the minimal £-length among all such
paths. Furthermore, all £-length minimizing paths are smooth £-geodesics. For
more details, we refer the reader to [3, 6].

2.2. The reduced distance and the reduced volume
We motivate the definition of Perelman’s reduced volume by computing the
volume of geodesic spheres in the potentially infinite-dimensional manifold.
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Let p = (xo,¥0,0), 7 € (0,7, and
By <Z%V2N?> CM=MxSNx(0,T)
denote the ball centered at p with radius +/2N7 with respect to the metric:
~ . % ] a g, 3 N 2
g = gijdz'dx’ + Tgapdy®dy” + 77 + R ) dr*,

where g, is the metric on SV of constant sectional curvature 1/ (2N). For any
point w = (z,y, 7,) € OB;(p, V2NT), because of the factor 7 in 7g,dy*dy”, we
have

2NT = d§ (va) = d§ ((IL', Y, Tw)v (x07 Yo, 0))

= dg (%, y, Tw), (0,9,0)) .

Hence, letting v (1) = (ym (7),y,7), 7 € [0,7y], with v(0) = (x0,y,0) and
YMm (Tw) = w, wWe have

V2NT = inf Length 5 ()

7 e = [ V(R ) dr
" VAN 40 (NH)

ONTy + L(z,70) + O (N—3/2) ,

1
V2N
where

L(z, 7) = inf /Ow V7 (R+ Fim (D) dr

Tm

and the infimum is taken over y 4 : [0, 7] — M with v (0) = 29 and Yy (1) =
x. Therefore for any w = (z,y, %) € dB;(p, V2N7),

VTw = \/;—WL(xTw)JFO( 7).
This implies that the geodesic sphere 0B <p, \/2N%> , with respect to g, is O(N ~1)-

close to the hypersurface M x SV x {7}.
Note that since the fibers SV pinch to a point as 7 — 0, if w = (x,y,7) €
dBg(p, V2N7), then any point in {z} x SV x {r,,} also lies on the sphere dB; (p,

\/2N%> . We have that the volume of 0B; <p, \/2N%> is roughly (since the sphere
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has small curvature for IV large) the volume of the hypersurface M x SN x {7} in
M and its volume can be computed as:

Vol; 9B; (p, V2N7)

~ ity vy (2) AN 2dpgn (y)
/83_;,(17, o) gan(rw) s (
. N
~ Vol(SY, gsn) / <ﬁ - WL(% Tw) + O(N_2)> Afig i (7)
M

=5 1 hron?)
N wN < 2NT> /M <1 - WL(%T) + O( )) dlugm(?)’

where wy is the volume of the unit sphere SV (recall that g~ has constant sectional
curvature 1/ (2N), i.e., radius v2N). We observe that

1
1i 1—
N o ( ON V7
11 N
prg 1. 1 — ——L T
Nl—rgo ( N 2\/7 (x’7)>

_ e—#L(m,’F)

N
L(z,7) + O(N—2)>

For convenience, denote the quantity ﬁL(m, 7) by the reduced distance /, i.e.,

(8) a,7) = #L(m,%).

Therefore, we have

: 1 = -2 N —_ —(x,7)
A}E)noo <1 2N\/?L(JU,T)—FO(N )) =e .

It is easy to see that
Vol (985 (p, V2NT))
N+n
9) (van7)
= (2N) 2wy ( / P2 N ey + O(N‘1)> :
M

In particular, we obtain the geometric invariant

/ 7—_—n/26—€(a},’?) d,ugM(’F)
M
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for 7€ (0,7).
Thus we are led to the following.

Definition. Let (M™,g(7)), 7 € [0,T], be a complete solution to the back-
ward Ricci flow with bounded curvature. The reduced volume functional is defined

by
(10) Vi(r)= /M (47TT)_”/2 e_z(m’T)dug(T) (z)

for 7€ (0,7).

3. SPACE-TIME APPROACH TO PERELMAN’S £-GEODESIC EQUATION

We now compare the £-geodesic equation for ~ with the geodesic equation for
the graph 4 (7) = (v (7),7) with respect to the following space-time connection
(see also Lemma 4.3 in [1]):

1 1

(11) If =T}, T =T% = R, flgo:—§kav Iy =—o

)

where i, j, k > 1 (above and below), and the rest of the components are zero. It is
instructive to compare the Christoffel symbols I" above with the the symbols VT of
the Levi-Civita connection V'V for the metric & introduced in subsection 2.1. For
k > 1, note that T%, = NT*, is independent of N, whereas I'%) = limy_,o, T,
for all a,b > 0.

Let 7 = 7(0) = 0%/4, i.e., o = 2,/7. We look for a geodesic, with respect to
the space-time connection defined above, of the form

B(o) = (v(1(0)),0%/4),

where v : [r1, 2] — M is a path. For convenience, let 3(co) = ~v(7(0)), G =
riofB=pfori=1,...,n,and B° = 200 3 (so that 3° (o) = 02/4).
The motivation for change of time-variable is given by the following.

Claim. If 3:[0,5] — N x [0, T] is a geodesic, with respect to the connection
Vv, with 3°(0) = 0 and % (0) # 0 for ¢ > 0, then 3° (¢) = Ao? for some
positive constant A.

Proof. If B? (o) = 7 (o), then the time-component of the geodesic equation
with respect to V is:
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d?p3° o =\ dBtdp
0=25+ 3 (05) 5%
2 ©J
do 0<ig<n do do
_dr 1 (dry?
~do? 27 \do
since T, = 0 when ¢ > 1 or j > 1, and '), = —3-. Hence, assuming 7 () > 0
and j—;( ) > 0 for o > 0, we have
d. dr 5 &y
= log — — do? _ do _ _1
do o8 do gll—T 27 08 VT,
a
so that J
ooV
do

for some constant C' > 0. Since 7 (0) = 0, we conclude
7(0) = C?c?/4.

By direct computation, we have

gt ody* dp’ o
do  2dr’ do 2
and d%’“ . ok
o dy
do? ~ do <2 dr (7 (U))>
2 d?yF 1 (dy*
- ()" S lon+ 5 (L rion).

We justify the change of variables from 7 to o via the geodesic equation with respect
to I" by showing the time-component of 3 satisfies the geodesic equation:

d250+0<;<n< o B) P )+ T (B(0) o2
1 1

(0/2)" =

T2 2(0%/4)
(This last equation justifies defining the time-component of (o) as /4, and
in particular, the change of variables o = 2./7.) For the space components, the

geodesic equation with respect to T" says that for k =1, ...,

dQBk - dﬂz d/@j
0= do? + Z T do do
0<,5<n
dQﬂk k dﬁ dﬁ ~ dﬁ dﬂo ~ dﬂo dﬂo
= —— I + 2 T +T
+ 9 do do > Odo do " do do’

1<4,5<n 1<i<n
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This is equivalent to:

0= (9 Ceen+ X (38 00n) (32 o)

1<i,j<n
dy k ffdv AV LA
s (Greon) w2 3w (Seen) (5) -5 (5) v'n
1<i<n
which, after dividing by 7 = 02/4, implies
d%y k . dfy dfyj 1 [dy
=% Z o 2 o) o r (o) + 5 (ot
1<z J<n
+2 > R - —ka
1<i<n

That is, in invariant notation and with X = d” , We have

VxX — —VR—i—QRC(X)—i——X =0,
2 2T

which is the same as (6). Thus £-geodesics correspond to geodesics defined with
respect to the space-time connection. In particular, v (7) is an £-geodesic if and only
if (o) = ( 2/4) is a geodesic with respect the space-time connection V. Since
re ¢y = limy_oo NTe ¢»» e also conclude that the Riemannian geodesic equation for
the metric 4 on A x (0,T) (defined in subsection 2.1) limits to the ¢ = 2/7
reparametrization of the £-geodesic equation as N — oo.

4, AN ANALOGUE BETWEEN PERELMAN’S REDUCED VOLUME AND HUISKEN’S
MonNoToNICITY FORMULA

Given a 1-parameter family of metrics ¢ (¢), ¢ € Z, on a manifold M™ and
functions 3 (t) : M™ — R, we define the metric gz on M"™*! = M"™ x T by (see
[2])

g5 (2.1) = g (w.1) + B2 (2, ) dt?.
We consider the family of hypersurfaces given by the time slices M, = M"™ x {t} C
M"™*+1. A choice of unit normal vector field to M is

10

ot

The hypersurfaces M, parametrized by the maps X, : M™ — M"*! defined by
X¢ (x) = (z,t) are evolving by the flow
d

—X; = .
ot ¢ =—Pv
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This implies the metrics are evolving by
0
5% = ~20hij,

where h;; is the second fundamental form of M; C M"*+1. One way of seeing this
formula is from

Zhes = (Ta)0. = — = s = 2
/thj ( ﬂ)Zj 2 (gﬂ) axo (gﬂ)zj 2/62 atglj7
where 20 = ¢. Hence
(12) ﬁhz‘j = Rz‘j.

Consider the special case where §(£)> = R (t) is the scalar curvature of g (t).
Tracing (12) we get BH = R so that 3 = H and the hypersurfaces M; satisfy the
mean curvature flow: 2.X, = —Hw.

Now we consider the more general setting of hypersurfaces evolving in a Rie-
mannian manifold. Given (P"*!, g), let X, : M™ — P"*! ¢ € T, parametrize
a l-parameter family of hypersurfaces M, = X, (M™) evolving in their normal

directions

0
2X, =
ot t /81/7

where 3(t) : M™ — R are arbitrary functions. We consider the product metric
g + Ndt? on P! x . The space-time track is defined by

M = {(z,t):x€ My, t eI} Cc P"" x T.
We parametrize this by the map

X:M"xT— P x7T

defined by

Let V¢ denote the induced metric on M1, Its components

X 0X 0X, X

N A . t t

=573 = — N

Gab = <8x@’ 8xb> < e 5 8xb > + 5@051207
g+Ndt2 9

where a,b > 0 are given by

Ngii = gij, Naio =0, Ngoo = B8*+ N,
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where 7,5 > 1.

Now, following Perelman, we renormalize length function associated to the
metric (similar to what we did in section 2) on M™ x J (we switch from Z to 7
when we consider the time parameter to be 7 instead of ¢)

S(em) =)+ (5 )+ g ) dr

where fl—: = —1land g(7) = g(t(7)) is the pulled back metric on M"™ by X, of
the induced metric on M, = X, (M™) c P™*L. We may also think of this metric
as defined on an open subset of P"*1 by pushing forward by the diffeomorphism
(z,7)— X, (z). Lety:[0,79] — M™ be a path and define the path 7 : [0, o] —
Pn+1 by

V() = X5 (v (7)) € M-

so that (v (7),7) € M™ x J corresponds to the point 5 (7) € M, C P*"!. We

have
TO d")/ 2 9 N 1/2
L(Ng)('_Y):/O — + 6%+ — dr.

dr 9(7) 27
Again, motivated by carrying out the expansion of L~ (¥) in powers of N, and
considering highest order non-trivial term, we define the £-length of ~ by

uw#f”ﬁ<%w>

:/OTO\/; i

dr.
g

(The equality holds since t*g = g, where ¢ : M™ x J — P"*! is defined by

t(z,7) = X, (z).) Making the change of variables o = 2,/7, we have

uwafﬁ

This is the energy of the path 7 (o) and assuming that 7o, v (0) = p and v (79) = ¢
are fixed, £ () is minimized by a constant speed geodesic and

2

+52(7(7)77)>d7

g(7)

a3
%(7)

2
do.
g

dy
ar (o)

L(g ) =t (y) = Y@
) * in 0.0
Let £(g,70) = 5= L (4,70) - Then
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Recall that Perelman’s reduced volume for a solution to the backward Ricci
flow is defined by

(10) Vi(r)= /M (47TT)_”/2 e_z(m’T)dug(T) (),

where ¢ is defined in (8). From the above considerations, we see that Huisken’s
monotonicity formula for the mean curvature flow (see [4]) is the analogue of the
monotonicity of V (7). In particular, if P**! = R™*!, then Huisken’s monotone
quantity is

95\2

/ (477) /2 e_‘zl_rdu :/ (477) /2 e_zdu.
X n

Remark. The above can perhaps be seen more clearly and simply in the case
of a fixed Riemannian metric g on a manifold A/™. Define on M x 7, where 7 is
an interval, the metric

N
Ng(x,7) = g(2) + —dr*.
2T

Then given ~ : [11, 5] — M™", the length of 5 : [, 2] — M™ x J defined by

F(r) = (v(7),7)is

- 9 A\ Y2
Livey (7) = + — dr
) (7 /n ( o(r) 27)

1 2
=V (Vom -VER) + o [

dy
dr

dy 2
d

T

ar+0 (N792).

g(7)
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