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THE EXACT SOLUTIONS OF THE PROBLEMS
IN FORCED CAPILLARY-GRAVITY WAVES GENERATED
BY A PLANE WAVEMAKER UNDER HOCKING’S EDGE CONDITION

Nai-Sher Yeh

Abstract. The purpose of this paper is to construct solutions for the problems
when capillary-gravity waves are generated by a vertical plane wavemaker in
consideration of surface tension and the edge condition proposed by L. M.
Hocking [4]. The uniqueness of these solutions will also be proven here.

1. INTRODUCTION

The problem of forced capillary-gravity waves was first studied by Havlock
[3], who published a paper regarding the problem of forced surface waves under
gravity generated by a plane wave maker. Later Evans [1, 2] studied the problem
of a heaving cylinder in a fluid with the effect of surface tension included and
proposed an edge condition. Hocking [4] proposed another dynamic edge condition
that at a contact line the time derivative of the free surface is proportional to the
slope of the free surface. Both of these edge conditions have been studied for their
contributions to the solution of related problems. In general, Hocking’s model [4]
is considered more physically plausible than that of Evans’s. Rhodes-Robinson
[6] studied the problems of forced capillary-gravity waves generated by a plane or
cylindrical wavemaker under Evans’s edge condition. Mandal and Bandyopadhyay
[5] took a different approach to the same problems generated by a plane wavemaker
under Evans’s edge condition by adopting the method of Fourier transform. In
both Rhodes-Robinson’s and Mandal et al’s approaches, the case of finite depth
and the case of infinite depth were treated separately. However, the solutions under
Hocking’s edge condition were not considered in either of these papers.

Later Shen and Yeh [7] found the unique solution of forced capillary-gravity
waves in a circular basin under Hocking’s edge condition using Green’s function
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method. Here we incorporate the techniques due to Mandal et al. as well as Shen
et al. to find the desired Green’s function in order that the solution for Hocking’s
edge condition can be constructed.

In section 2, the solution of finite-depth plane wavemaker problem is constructed,
and its uniqueness is proven. The solution of infinite depth case and the proof of
its uniqueness are done in section 3.

2. SOLUTION OF THE FINITE DEPTH PROBLEM
2.1. Formulation

We consider the irrotational motion of an incompressible inviscid fluid due to a
harmonically oscillating vertical plane wave maker of infinite length under the action
of gravity and surface tension. We use a rectangular coordinate system in which
the y-axis is pointing vertically upwards, so that y = 0, x > 0 is the undisturbed
state. The fluid occupies the region z > 0 and —h < y < 0, and at equilibrium
it is of uniform depth h. The motion is two-dimensional and time-harmonic and is
described by a velocity potential ¥ (z, y, t). Then the linearized equations governing
the liquid motion are the following (Mandal et al. [5]):

(2.1) V23U = 0 in the fluid region V.

On the free surface S (y = 0,) we find

(2.2) vy, = 7y,
and
(2.3) U, +gZ =TV3Z,

where V3 V3(V3? = 8‘9—;2) represent two-dimensional and one-dimensional Lapla-
cian respectively, g is the gravitational constant, p'T is the surface tension constant,
p is the fluid density, and Z denotes free surface. At the wave maker M,

2.4) U, =u(y)e“t on M,
where w is the angular frequency. At the bottom B,
(2.5) v, =0 on y=—h,

The radiation condition that represents the behavior of outgoing waves at large
distance from the wave maker can be expressed as

(2.6) U — Coye! o=+ cosh kg (h + y) as & — oo,
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where a = kg is the unique positive real root of the equation (Rhodes-Robinson

[6]):
(2.7) Ap (o) =« (Ta2 + 1) sinh ah — w? cosh ah = 0.

Note that Cj is unknown and will be dealt with in the following sections.
Finally, Hocking’s edge condition [4] prescribing the free surface slope at the
wave maker associated with the effect of surface tension on the wave is given by

2.8) 2= \Za, (A= %) at z=0=y (I)
Let

(2.9) U (z,y,1) = (z,y) e,

and

(2.10) Z (z,t) = ¢ (x) ¥,

and then measure x, y, Z and ¢ in units of A, ¢ in units of (h/g) 3, ¥ and 1) in units
of gh?, w in units of (g/h)2, T in units of gh2, u (y) in units of (gh)2 and § in
units of (g/ h)%. In terms of ¢ and ¢, then we find that (2.1) to (2.8) become

(2.11) V3 =0inV,

(2.12) ¥, = iws and iw + g¢ = TVis on S,
(2.13) Yz =u(y) on M,

(2.14) 1y =0 on B,

(2.15) Y — Coe*0® cosh (ko (1 +y)) as z — oo,
and

(2.16) Ypy = WY, at I

2.2. Construction of the solution

To find the solution according to Hocking’s edge condition, let us consider first
a Green’s function G = G(z, y, {, n) satisfying the following equations:

(2.17) V3G = —6(x — €)d(y —n) in %8
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(2.18) ~w?*G+ G, —~TV3G,=0,n=0 on 5
(2.19) G,=0,n=-1 on B

(2.20) Ge=0,6=0 on M

(2.21) G — Cre™ cosh(ko(1+1n)) as € — oo;
(2.22) Gep=0,6=0=n at  T;

where V'3 and V'3(V'? = g—;) are the Laplacians with respect to £ and 7, C is
a constant. Such a Green’s function does exist, according to Rhodes-Robinson [6].
Now, by using Green’s identity, we find

o = GVEd — dVE2G)dedn = G, — ¢G,,)dA’
///( 2 2 ) £dn /Bv/( )
(2.23) = / (GO, —G,))der / (G, —dG,)de+ / (GPe—DGy)dn
S/ B/ M/

+/ (G‘I’g — (I)Gg)dn

Note that ®,, and GG,, are the normal derivatives of ® and G respectively. Moreover,

1 1
(224)  G=—(Gy— TV%G,) and &= —5 (P - TV#®,) in S
(2.25) ®,=0=G, on B,
(2.26) P =u(n) and Ge¢=0 on M
227 ®¢ — Cp(iko)e*0s cosh(ko(1 + 7)) and
' Ge — Oy (iko)e*¢ cosh(ko(1+1n)) as & — oo.
Hence
T o
(2.28) / (G, — @Gy)dE = — /0 (G, V'1®, — ®,V'IG,)d¢,
(229) / (G, — BG,)dE = 0,
B/

0
(2.30) /M/ (GPe — ©Ge)dn = /_1 Gle=ou(n)dn,
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0
/ (G®e — BGe)dn = / [C1Co (iko)e**0¢ cosh? (ko(1 + 7))
00 -1

(23D —Co O (iko) 2 € cosh? (ko(1 + n))ldn
and
T > 12 12 0
@ = — | (G0, -, ViG)dE+ [ Gleou(mdn
(2.32) 0 -1

T o [°
= E(Gnq’fn_ 0, Gen) _ o +/ Gle=ou(n)dn,
n=0 -1

where
(2.33) Deyle oo = Co(ikd)e o sinh(ko(1 + 7)),
and
(2.34) Genle—oo = C1(ik2)e*E sinh(ko(1 + 1)),
. T
61520 E(Gnq’fn — ©,Gen)n=o
T .

(2.35) = gli)r?o E[(—kg)ClCerIkog(coshko)(sinhko)

—(—k3)CoCre?*08 (sinh kg ) (cosh ko )]

= 0.
Then we have
0 T

(2.36) ¢ = /IG‘gou(n)dn — EGW(I)@”F/'

Evans [1, 2] suggested that at the contact line, the edge condition could be
(2.37) Zy =iwdoe*t  at T,
which can be reduced to
(2.38) @), =X at T,

where ¢! is the solution of (2.1) to (2.6) and (2.37). We note that, according to
(2.37), (2.36) becomes

0 TA
(239) ¢ = [ Glecoudn — Gyl
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while Hocking’s edge condition implies that (2.36) should be

0 iT§
(240) o = / Gk:oudn — TGW(I)W‘F/.
-1

It is obvious that by finding G, |1/, we may find the desired solution under Hocking’s
edge condition, and instead of finding G we will solve the equations for ¢ to
determine G,|rv. Now let

(2.41) @ = Coe™® cosh(ko(1 4+ y)) + o(x, y),

then

(2.42) Vip=0 in V,

(2.43) —wlp+ Oy — TV%apy =0 on S,
(2.44) py,=0 on B,

(2.45) v = v(y) = u(y) — iCoko cosh(ko(1+y)) on M,
(2.46) p—0 as T — 00,

(2.47) Quy = Ao — iCokdsinhky  at T,

By Fourier transforming ¢ with respect to x, we let

(2.48) x(y, &) = /OOO @ cosExde,

and x satisfies

(2.49) Xyy — Ex=uv(y), —-1<y<O0;

(2.50) —w?x + (1+TE)x, + T(Ao — iCokd sinh kg) = 0, y = 0;
(2.51) Xy =0, y=-1

To solve y, let us construct a Green’s function § = §(y, n) satisfying the fol-
lowing equations:

(2.52) g —Ea=06n—y), —1<n<0;

(2.53) —w?g+ (1+ TG, =0, n=0;
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(2.54) gn =0, n=—-1
From (2.52), we can write g as

g=C1e¥4D1e ", -1 <n<y <0
(2.55)

= Cuef4Doe 8, —1 < y<n<O0.
By continuity of § at y = n,
(2.56) (Cy — C1)etY + (Dy — Dy)e Y =0,
and the jump condition at y = n suggests
1
(2.57) (Cy — Cp)et¥ — (Dy —Dy)e Y = 2
From (2.56) and (2.57), (2.55) can be rewritten as
H(n —

(2.58) = (C1e" + Dye 87y + % sinh(£(n — y)).

where H is the Heaviside function. Using from (2.53) and (2.54), we find from
(2.58) that

et &(€°T + 1) coshéy + w?sinh &y

(2.59) Ci = BT X NG ;
et ¢(TE +1) coshéy + w?sinh &y

(2.60) D, = _f X NG )

and

(2.61) A(€) = £(€% + 1) sinh € — w? cosh €.

Finally, we obtain

§= _cosh(f(l +7))
EA(E)
H(n—y)

+f sinh(§(n —y)).

[f(Tf2 + 1) cosh &y + w?sinh &y
(2.62)

By Green’s identity,

0
/_ Xy =€) = 300 — €3}

0
_ / dudn + X = (i — 9x0)°
(2.63) 1

1 . . . .
= — [(14+TE)gyxn+Tgy(Ao—iCokg sinh ko) — (1+TE) Xngn] -0
w

T . . .
= E(AO — 1Cok8 sinh ko) gy |n=0,
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and we have

0
. T . . .
X = / gu(n)dn + E(AO — 1Cok8 sinh ko)gn\nzo
-1

_ _f(T52+1)COSh§y+w2sinh§y 1 0 ) ;
(2.64) - A(€) [,5 /_IUCOS (€1 +n))dn

0
WE()\O — iCok? sinh k) sinh ¢+ 2 /y sinh(¢(n — y))vdn
WE()\O — iCyk? sinh kg) cosh £y.
Let
0
(265) a(€) = [ ucosh(€(1 + m)dn,
-1
(2.66) / " (€@ — y))d
. usin )
\ £(n—y))dn
then
B _f(TfQ + 1) cosh &y + w? sinh £y
t A(©)
§ iCok .
[“fg) - 5(,130_22)«% — &) sinh(ko + €)
+(ko + &) sinh(kg — &)) + 22()\0 — iCok§ sinh ko) sinh |
(2.67) w

b(&y)  iCoko
§ §(kg — &)
—&(cosh(ko(1 +y)) (— cosh ko) (cosh&y)]

+

[ko(sinh ko) (sinh £y)

T
+— (Ao — iCokg sinh ko) (cosh &y).
w
From the identity in (2.7), it follows that
(2.68) w? = ko(Tk3 + 1) tanh ko.

By rearranging (2.67), we have
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£(TE? + 1) cosh &y + w?sinh &y fa(e) — iCoko(cosh ko)
EA(E) (62 — k§)(Tk§ + 1)
b(¢, y)

x <§(T§2 +1)sinh € — w? cosh ,5) n %fsinh ¢ + e

X ==

iCok
~ ey [S(comhko(1 +4) = (cosh ko) cosh&y)

. . T . :
(2.69) —ko(sinh ko) (sinh £y)] +E (AiCok? sinh ko) cosh &y

~ &(T€* + 1) cosh&y+w? sinh y B
- NG [+()
TXo, . b(&, iCok
+—Desinhe] + ('55 Y _ 5(;20_ 2 75 [Elcoshlho(1 +9)

—(cosh ko) (cosh &y))—ko(sinh ko) (sinh fy))]

iCQkQ cosh ko
(62— k3)(Thg+1)

A(8)

+25 (Ao — iCokf sinh k) cosh £y.

Since  is obtained from Fourier Transform, we should expect y without singularity
for £ € [0, 00]. As seen from (2.69), x can be expressed as

(2.70)  x = &i(§, y)+@ + R 2(¢&, y)+% (Ao — iCokg sinh ko) cosh &y,
2 2 o
A = - Dby
2.71) iCoko cosh kg T . .
I GETIC T e TR R
iCok
@7) Rao(&,y) = —5(5%;(02)[5(00811(%(1 +))

—(cosh ko) (cosh &y)) — ko(sinh ko) (sinh £y)],

where K; and R, may have singularities at £ = kg and £ = 0. Let us check the
following limits:

(2.73)
lime 0 R1(€,y) = lim—L (T€? + 1) cosh¢ +w2sinh§y
-0 RS, Y) = e00 Al Y
iCQkQ cosh ko T)\Q .
<o - @ a© + e
1 inh
= %1_)1% —m [(T§2 + 1) cosh&y + w2¥]
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iCQkQ cosh ko A(f) T}\Q .
X [a(f) T €t ko) TR+ 1) X £ ko +3 fSlnhf]
1+ w2y iCq cosh kg .
= _ NG [ (0) WMA(O)], exist.

(2.74)
— lim _f(TfZ + 1) cosh &y + w? sinh &y
£k EA(E)

iCQkQ cosh ko A(f)
" ["’“)‘ (ko) (TR+1) €~k

lime g, R1(€, )

TA
+—Lesinh ,5] .
w

For & (&, y) to have limit at £ = ko, we must have

iCykq cosh kg A(§) TAo ] —0

(2.75) glirilo [a(f) - E+ ko) (TR + 1) €= ko + 2 Esinh &

since
(2.76) A(§) =(E—ko)f(§)  and f(ko) ~0.

Using (2.75), and applying (2.68) again, we obtain

4i(Tk2 + 1)a(ko) + 4iTAg cosh kg
2ko(1 + TkE) + (1 + 3Tk2) sinh 2k¢

(2.77) Co =

Then look at

. . iCokg
lim K2(&,y) = lim — X
dm Ra(&y) = i — e )

{ £ [(cosh ko(1+y)) —(coshky)(cosh {y)]  ko(sinh ko) (sinh {y) }

€ —ko §—ko
_ _% « 513?0{’5 [(cosh ko(1 +y)) — (cosh ko)y(sinh ,gy)]
@78 +|(coshko(1+y)) — (cosh ko) (cosh ,gy)]
ko (sinh ko) (y cosh ,gy)}
iy

(ko + 1)(coshko(1 + y)) — koy(sinh ko(1 + y))

_%

—(cosh ko) (cosh koy)] ,
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which exists. And

. . 1Coko
lim Ky(&,y) = lim ———5<
€0 2(5 y) £—0 (52 - k%)
inh
(2.79) (coshko(1 +y)) — (cosh ko) (cosh&y) | — ko(sinh ko)sm &
£
iC
— lk 0 (cosh ko(1 +y)) — (cosh ko) (cosh koy) — koy(sinh ko) } .
0
Subsequently, ¢ can be determined as
2 [ 1 [ . s
o= —/ x cos&xdé = —/ X (€% 4+ e 6T de,
™ Jo ™ Jo
1 0 ||z - ||z 27“ i€z
(2.80) = [/ xelé! d£+/ xe'lé! dg] — > Res(xe)

&=ai,a>0

_ 2125 Res 1&;)7

where ki, ko, ks -kn,--- > 0, ky < kpt+1, Yn € N; x has only singularities
{kni}>2; on the upper-half complex plane and {Fk,i}5>, are the pure imaginary
roots for equation (2.7). Also note that x is considered as an even function when
extended to (—oo, 00). It follows from (2.80) and (2.70) to (2.72) that

n=1
- 21Z:§I_i)rinn Res[)(e1§X (& —ik )]
(2.81) o0 b(E, y)
= 21;:1 1_1}12”{ Ri1(&,y) + R y) -

+E(A — iCyk? sinh kg) cosh fy] e (€ — 1kn)}

Note that, aside from £ (£, y), none of the remaining terms in x has singularities
at ik,,; hence for each n,

Ra(&,y) + b(i’ v) + %(Ao — iCyk? sinh kg) cosh fy]

(2.82) §—>1kn
= (& — iky) "0,
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and then

o= 2y lim (€ y)e (€~ ikn)
n=1 "

. Ool i YT+ 1) czil% W2sinhéy
Jos - mbin ), T gk

_ _gii ikn (1= Thy) co?kiny tiw?sinky g,
I, [Z((?) - (521?0:§)i(;§:gki ) TA20£ Sm(z)'f ] (& — ikn)

o k(1= Tk2) cos kyy + w? sin by,
. TMAgcos k, L ik
2. TR 1] e

1
= —212 . [kn(l — Tk2) cos kpy+kn(Tk2 —1)(tan k,, ) (sin kny)] e kne

« | aikn) + TAgcos k, " —2cosk,
" —Tk2+1] " i[(1 — 3Tk2) sin 2k, + 2k, (1 — Tk2)]

= 4§:(1 — Tk?)
n=1

. TX cos k,,
[a(lk) + TR 41 1]

(1= TE2)e % cosk, (1 +y) 0
4 1
Z k(1 — Tk2) + (1 — 3Tk2) sin 2k, /_1 u(n) coskn(L +m)dr

(cos ky)(cos kny) — (sinky,)(sin kny)] e kn

(1 — 3Tk2) sin 2k, + 2k, (1 — Tk2)

+T)\0 cos ky,
—Tk2 +1
where
0
(2.84) a(ik,) = / u(n) coskp (1 +n)dn.
-1

We also note that in the derivations given above, w? has been replaced by the identity
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in (2.68) as well as
(2.85) w? =k, (Tk2 — 1) tank,,,

since {iky }72  are also the roots of the equation (2.7).
Eventually, we find
@0 = @+ Coe*® cosh(ko(1 + 1))

(1 + Tk2)e*o? cosh(ko(1 + y))
2k0(1 + TkZ) + (1 + 3Tk3) sinh 2k

0 TAo(cosh ko)
h 1 d EEE—
(2.86) 8 [/_1“08 (ko1 +n))dn + 1+ Tk ]
—  (1— Tk
_42 kz)e " cos(ky(1 —|—.y))
2kn(1 — Tk2) ( — 3Tk2) sin 2k,
TAo(cos k)
n(1 dn+ ———5-1 -
x[/_lucos(k( +n))dn + - Tk ]

which is equivalent to the solution obtained by Rhodes-Robinson [6] and Mandal et
al. [5] using left-handed coordinate, while our result here is based on right-handed
coordinated system. Also by (2.39), we conclude that

0 1 T 2\ ,ikox h 1
/ Gle=oudn = —4{12k( + Th)e™” cosh(ko(1 + y))
1

o(1+ Tk2) + (1 + 3Tk3) sinh 2k

0
></ wcosh(ko(1 4+ n))dn
-1

2.87 00
(287) +Z (1 — Tk2)e % cos(kn (1 + y))
k(1 — Tk2) + (I — 3TA2) sin 2k,

X/ “COS(kn<1+n>>dn}
-1
and
mg‘ — AT i et0% (cosh ko) (cosh(ko(1 4+ 1)))
w2 T R00) T2ko(1+ ThZ) + (1 + 3TkD) sinh 2kq
(2.88)

e~ Fn(cos ky,) (cos(kn (1 +y)))
+Z (1 — Tk2) + (1—3Tk2)sin an}

since (2.87) is the term associated with integration of G|¢—ou and independent of
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Ao, while (2.88) is the term associated with A¢ and independent of u. So

9 etk (cosh ko) (cosh(ko(1 + y)))
Gyl = 4w?qi 5 o
2ko(1+ Tk§) + (14 3Tk) sinh 2k

+Z ~kn®(cos ky, ) (cos(kn (1 +y))) }

(2.89)

2k (1— Tk2 + (1 — 3Tk2) sin 2ky,

Now by (2.40), let us find the expression for ®,|r. First we differentiate both
sides of (2.40) by y, and set x = y = 0, to find

iTo
(2.90) Qyr = = </ Gle= oudn) — —G yn| T @1

It follows that

iTo d 0
(2.91) (1 + TGyn‘FF/> Pylr = y (/_1 G\goudn> ‘F7

and we obtain

o) 0 iTo
(2.92) (I)y‘r = (I)n‘r/ = [a—y </_1 G‘go’&dﬁ) ‘F] / <1 + TGyn‘FF/> s

where

o 0
i (], o) |

. ko(14+Tk})e*? sinh(ko(1+y)) /0
—4 h(ko(1+n))d
{l%o 1+ Tk2) + (14 3Tk2) sinh 2kg )4 % (ko(1+n))dn

(
(
s ( e*nTsin(k,(1+y)) [°
( +(1—3Tk2) sin 2k, /_lucos(k”(H”))d”}‘p

2 (1—Tk2
(2.93) +y T (L TR

\_/\—/ \_/\_/

bk ’
o { coshho / u cosh(ko(1+n))dn

2ko(14+Tk)+(1+3Tk2) sinh 2kg /4

- cos ky, 0
1
+Z 2k (1—Tk2)+ (1 — 3Tk2) sin 2k, /_lucos(kn( +?7))dn},
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and

iTé
14+ — /
< + w Gynh—‘l—‘ )

iTo o | . Kkoe*o%(cosh ko) (sinh(ko(1 + v)))
=14+ —(—4w*)Ki 5 5
2ko(1+ Tk§) + (1 4+ 3Tk) sinh 2k

kne % (cos ky,) (sin(k, (1 +y)))
2o 2k, (1 — Tk2 T (1 — 3Tk2) sin 2k, }‘

(2.94)
n=1

ko(cosh ko) (sinh k¢)
2ko(1 + TkE) + (1 + 3Tk3) sinh 2k

=1- 4iT(5w{i

_i kn(cos ky)(sin ky,)
= 2kp(1 = Tk) + (1 — 3Tk7) sin 2k, |

Finally, the solution ® is obtained as

. (1+Tk2)e*0% cosh(ko(1+y)) /0
= —4 h(ko(1+n))d
{ 2ko(1+The)+(1+3Tk2) sinh 2k |, (ko(14n))dn

= (1=TE2)e ™% cos(k,(1+y)) /0
1
?; 2kn(1—Tk2)+ (1 — 3Tk2) sin 2k, |, weos(kn(14n))dn

Ty 2>{' e/ho® (cosh o) (cosh(ko(1 + )
2k

w (1+ TkE) + (1 + 3Tk3) sinh 2kg

= e m®(cosky,) (cos(kn(1 + 1))
n n (I) ,
+Zl 2%kn(1 — Tk2) + (1 — 3Tk2) sin 2k, alr

_ 4 e” cosh(ko(1 + 1))
- 2k0(1 + Tko) (1 + 3Tk2) sinh 2k,

0

(2.95)

—(1+Tk§)/

-1

wcosh(ko(1 + n))dn + iTéw(cosh ko)fbn\p]

—knx

e " cos(kn(1+y))
+Z k(1 — TKZ) + (1 — 3TK2) sin 2k,

0
—(1 — Tk? wcos(kn(1+n))dn + iTéw(cos ky)@y|r | ¢,
n 1 n

where @, | is expressed by (2.92), (2.93) and (2.94).
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2.3. Green’s function and the uniqueness

As described before, the Green’s function G satisfying (2.17) to (2.22) does exist.
Now we use this result to show the uniqueness of the solution under Hocking’s edge
condition.

Consider ®( being the solution of the following equations:

(2.96) Vidg =0 in V;

(2.97) —w3®( + P, — TVI®p, =0 on S;
(2.98) ®p, =0 on DB;

(2.99) P9, =0 on M;

(2.100) dy — 0 as z— o0
(2.101) Poyy = iwdPo, at T.

Then, by (2.40) and (2.89), we obtain

iTo o | €*0(cosh kq)(cosh(ko(1 +y)))
Dy = [ —— ) (—4w?) |1 5 e
w 2ko(1 + Tk§) + (14 3Tkg) sinh 2k

+Z e Fn(cos ky,) (cos(kn(1+y)))
= 2kp(1 = Tk3) + (1 — 3Tk7) sin 2k,

(2.102)

On‘rv

We differentiate both sides with respect to y, let x = y = 0, and obtain that

ko(cosh ko) (sinh ko)
2ko(1 + TkZ) + (1 4+ 3TkE) sinh 2k

. kn(cos ky)(sin ky,)
@y -
+121 2%n (1 — Tk2) + (1 — 3Tk2) sin2k, | YIr

(I)Oy‘f‘ = —4Twé

(2.103)

It follows that

ko(cosh ko) (sinh ko)
2ko(1 + TkE) + (1 + 3TkE) sinh 2k

}:0

Since kg, k1, ko, -kpn, -+ > 0, and w,d are considered as real numbers, it is
obvious that for § > 0,

@Oy‘r{1 4 4Twé

(2.104)

o0

. kn(cos ky)(sin ky,)
D S TS 1 (1~ 3T sn ok,

n=1
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L 2ko(1 +li191(f(o;(;s—1: ]2)4(:: ?;lfgo))sinh 2k
(2.105) N |

+inZ:1 2kn(1 - %%C)Oik?f (—Slgf‘%) s | 70
By (2.104), we have
(2.106) %y‘r ~0,
and hence by (2.102),
(2.107) By=0 i V.

Thus the solution of homogeneous equations is zero, and we conclude that the
solution of (2.11) to (2.16) is unique.

3. SOLUTION OF THE INFINITE DEPTH PROBLEM
3.1. Formulation

Now let us consider the case of infinite depth. For the velocity potential ¥, =
U (z,y,t), the radiation condition representing the behavior of outgoing waves at
large distance from the wave maker is expressed as

(3.1) Uy — CoeFovellkortet)  ag 5 oo,

where C’o is a constant to be determined and kq is the positive root of the following
equation

(3.2) a(Ta? +1) —w? =0.

As for the remaining linearized governing equations for ¥, we find

(3.3) ViU, =0 in V ={(z,y)|zr € (0,00),y € (—o0,0)},
3.4) Vooy = Zoot and

(3.5) Voot + 8200 = TV2Z, on S,

(3.6) Uoow = u(y)et on M,

3.7 Voy — 0 as y— —o0,

(3.8) Zoot = Mooy at T,
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where we use Z, as the free surface. Then again to time-reduce the problem, we
set &, as the time-reduced potential, and (., as the time-reduced free surface.
Nondimensionalizing the variables as before, we obtain

(3.9) Vid, =0 in V,

(3.10) WP+ Py — TVIDoy =0 on S,
(3.11) Do =u(y) on M,

(3.12) Oy —0 as y— —oo,

(3.13) Bop — CoefoWtin)  as 2 oo,
(3.14) Doy = iwdPy, at T.

3.2. Construction of the solution

Similarly, we construct a Green’s function GG, satisfying the homogeneous
boundary conditions corresponding to (3.10), (3.11), and (3.12), together with

(3.15) Gooy — 0 as 1n— —oo,
(3.16) Goo — Creliétmko a5 ¢ oo,

and ¢, in terms of G, is given by
0 T =00
G17) P = - Goo|§:0u(n)dn+ o2 (Goop Pocg, — (bOOnGOOsn)n:o £=0 7

furthermore, we use the solution 7 for Evans’s edge condition to obtain Gogy|rv
in order to obtain ®.,. Since the construction is similar to that of G, |r, we may
assume that

3.18 ¢%y = oo + Coeko o),
xD
2 xD
(3.19) Voo = ;/ Xoo €O ExdE,
0

where ¢, and y~ are the functions similar to ¢ and x as in (2.41) and (2.70),
respectively.
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Let us consider y, first. We find

B19) o = Koy (€:0)+ T 4 Koy (€0) + 5000 — 1CoE) cost,
where
Ko (€)= T+ 1) Z(ﬁi,g(yé;u w? sinh &y

(3-2) 1CokoAso(€) TXo

" ["’“’(’5) BGECC A
(3.22) Aoo(§) =&(TE +1) -,
(3.23) oo (&) = / OOO uesdn,
(24 Ke(&y) = —%ﬁ?ﬂg)[ae’w ~ coshéy) — kosinh €y,

and b(&, y) is specified as in (2.66). Since &, should not have any singularity over
[0, oo, we find

, 1Coko Ao (€) Tho, |
(3.2) glirilo [a“’(’s) (@ —k)(TK2 +1) 2 & =0
then
(3.26) Co= —L[uﬁao@(lﬂo) + TkoAo).

ko(3Tk2 + 1)

Next, from (3.19),

Poo = %/_OO Xooe”g'mdg
1 [ b
(3.27) = ;/_OO [Km(&,y)Jr (i’ v)

Koo, (§y) + wlz()\o —iCok3) cosh&y | x ellélzde.

Now we rotate the integration contour along the positive imaginary axis for the inte-
gral involving €'¢*, and along the negative imaginary axis for the integral involving
e % and obtain
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1 [ -
o /_ Koy (€l

-1 /00 E(TE% +1) cosh &y + w? sinh &y

§Ax(§)
i1CokoA oo (€) T)‘O ol
o Ry Do

™ (—ia)[(—ia)(1 — Ta?) — w?]
iCokol(—ia)(1 = Ta?) —w?] TXo, . o ar

(3.28) - 0(0—[(22 _)]ig)(l +T)kg) I w20(—1a)}e d(ie)
-1 O (i) (1 — Ta?) cosay + (i)w? sin ay i
- L et T {“’( )

iCoko[(ie) (1 = Ta?) —w?] | Thg o L ar i
(Ca? R TR) T w2 )} d(ie)

+

2 O (1 — Ta?) cos ay + w?sinay
B _;/OO a?(1—Ta?)? + wt
0 .
y [/ ua(l — Ta?) cosan + w? smomdn 4+ T 0t dar
oo o
1 /0 b(& ) 1|§|a:d£
0 sm y)) :
[ /y ( dnd (i)
o0 0 ) sin(a(n —y))
(3.29) —|—/O e /y (o) dnd (i)
i [0 “sin(a(n —y))
;/y u(n [/OO o da
e sin(a(n — y) _
—|—/0 - da] dn =0,
1 [ .
[ Kt
(3.30)

_~Cv k o0 i|¢|x .
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. _iéoko /0 e
1 | Je (Ha)(—a? = K3)

X

(—ia)(eko¥ — cos ay) — (—i)kosin ay] da
[ i) (eFY — cos ay) — (—i)ko sinay | do
L G | y) = (~i)ko y]d }
=0,

and

1 >~ T s A i|&|x
;/ (% — iCoko)(cosh &y)e'tI7d¢

331 _ T(Ao—iCoko) [/0

5 e (cos ay)d(ia)—i—/ e (cos ay)d(icr)
W 0

o
— 0.
That is,
2 /OO a1 — Ta?) cos ay + w?sin ay
Poo = T 0 a?(1 —Ta?)? +wt
(3.32) .
[/0 ua(l — Ta?) cos an + w? smomdn LT e da.
oo a
Finally,
A = o+ CoeloliTHy)
2 /OO a(1 — Ta?) cos ay + w? sin ay
R a?(1—Ta?)? + w?
(3.33) ,
[/0 ua(l — Ta?) cosan + w? smomdn LT | e da
oo a
2i

A2 ko (iz+y)
wass (ko) + TkoAgle™ ,
ko(?)lk%—i—l)[ oo (ko) 0Aole

which agrees with the solution of Rhodes-Robinson [6] and of Mandal et al. [5].
By applying the same method, we find the solution ®.(z,y) for Hocking’s
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edge condition as

Poo(z,9)

a?(1—Ta?)? +uw?

3.34 .
(3.34) oo [/0 ua(l—Ta2) cos an+w? smomdn_

B 2{ 1 /OO a(1 — Ta?) cos ay + w? sin ay
0

—00 «Q

(iTwd) P, \F/] da

jeko(iz+y) ) 0 hom .
+m |:(1 + Tko) lm ue™° d’l] — (1Tw5)¢>oon\p/] s

where
o ([° iTo
(3.35) Poo, |1 = 8_y </_OO Goo\goudn) ‘F/ <1 + TGny‘FT) )
o 0
dy (/_oo GOOkOUdn) ‘F
1 0 e—oca:
= 92wl =
v {7T /0 a?(1—Ta?)? + wt
(3.36) .
X </ u(a(1 — Ta?) cos am + w?sin om)dn) da‘ B
+; /0 kon g
3T +1\J" [
and

1+3G, e = 1-2iTwd

(3.37) y w? /OO ae dooo+ koi
el ol.— —_— .
T Jo a?2(1-Ta?)2+w? v=0 3TkZ+1

3.3. Uniqueness of the infinite depth problem

The uniqueness of the solution follows from the fact that when v = 0, we obtain
the solution ®%_ (z,y) satisfying

@Y, Ir = (2iTwd)

w? /OO ae 9T do n ikg
- o7 —_—
T Jo a?2(1-Ta?)2+w? v=0 3TkZ+1

(3.38)

X o3, |,
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which implies that

2Twéky 2iTw3§ [ ae
339) @0 1 _ d ( 0,
(339) Ooy‘r{< +3Tk8—|—1> T /0 a?(1-Ta?)2+w? aa:o}

then

3.40 ®) Ir=0 andso DY (z,y)=0;
oY e o]

since for all kg > 0 and § > 0,

2Twdky 2iTwd§ [ e
3.41 1 — d 0.
(3-41) < - 3Tk8—|—1> T /0 a?(1—Ta?)? +w? oo 7

Thus we conclude that the solution obtained from (3.9) to (3.14) is unique.

Rhodes—Robinson [6] suggested that there exist certain forms of expansion for
the prescribed normal velocity at the wave maker. The results are stated as “ex-
pansion theorems,” yet no proof is given and the motivation for the expansions by
themselves is unclear. Yeh [8] gave a rigorous proof and presented a way of us-
ing the theorems to construct exact solutions to the same problems. Their solving
processes will be made available upon request to save space.
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