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BLOW-UP SOLUTIONS TO THE NONLINEAR SECOND
ORDER DIFFERENTIAL EQUATION u′′(t) = u(t)p(c1 + c2u

′(t)q) (I)

Meng-Rong Li

Abstract. In this paper we study the following initial value problem for the
nonlinear equation,{

u′′(t) = u(t)p(c1 + c2u
′(t)q), p, q ≥ 1, c1 ≥ 0, c2 ≥ 0,

u(0) = u0, u′(0) = u1.

We are interested in the properties of solutions of the above problem. We
have found blow-up phenomena and obtained some results on blow-up rates,
blow-up constants and life-spans.

0. INTRODUCTION

Consider the nonlinear equation{
u′′ = up(c1 + c2 (u′ (t))q),

u(0) = u0, u′(0) = u1,

where up and (u′)q are well-definded functions. We are interested in the properties
of solutions of the problem, particularly in phenomena on blow-up, blow-up rates,
blow-up constants and life-spans for p ≥ 1, q ≥ 1, c1 + c2 > 0, c1 ≥ 0, c2 ≥ 0.

To gain a rough estimate of the life-span of the solution for the initial value
problem (0.1) below, we reconsider the existence of the solutions of the nonlinear
equation:

(0.1)

{
u′′(t) = u(t)p(c1 + c2u

′(t)q), p ≥ 1, q ≥ 1, c2
1 + c2

2 �= 0,

u(0) = u0, u
′(0) = u1.
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For p ∈ Q, we say that p is odd (even, respectively) if p = r/s, r ∈ N, s ∈
2N + 1, (r, s) = 1 (common factor) and r is odd (even, respectively). Define

T ∗
1 = min

{
N − |u1|

K
,
− |u1|+

√
u2

1 − 4K (|u0| − M)
2K

}
,

T ∗
2 = min

{
T ∗

1 ,

√
1

k1 + k2

}
,

where N = |u1| + 1, M = |u0| + 1, K = Mp (|c1|+ |c2|N q) , k2 = qN q−1Mp,

k1 = pMp−1
(|c1| M2 + |c2| N q

)
and XT = {u ∈ H2 :‖ u ‖∞≤ M , ‖ u′ ‖∞

≤ N} , H2 := C2 [0, T ] .
By the standard arguments of existence of solutions to ordinary differential

equations, one can easily prove the following result:
For any initial values u0 and u1, there exists a constant T given as above such

that the problem (0.1) possesses exactly one solution u in X T .

In particular c2 = 0 < c1 we have u′′ = c1u
p and

(
c

1
p−1

1 u

)′′
=
(

c
1

p−1

1 u

)p

.

We make some notations

E1, p =c
2

p−1

1

(
u2

1−
2c1

p + 1
u0

p+1

)
, ā (t)=c

2
p−1

1 u (t)2 , v0 = c
1

p−1

1 u0, v1 =c
1

p−1

1 u1.

To estimate the life-span of the solution to the equation (0.1) , we separate this
section into three parts, E1, p < 0, E1, p = 0 and E1, p > 0. Here the life-span
T ∗ of u means that u is the solution of problem (0.1) and u exists only in [0, T ∗)
so that the problem (0.1) possesses the solution u ∈ H2 for T < T ∗. We have
considered the cases :

(i) E1, p < 0, ā′ (0) ≥ 0
(ii) E1, p < 0, ā′ (0) < 0
(iii) E1, p = 0, ā′ (0) > 0
(iv) E1, p > 0, ā′ (0)2 > 4ā (0)E1, p (v) E1, p > 0, ā′ (0)2 = 4ā (0)E1, p

and u1 > 0 (vi) E1, p > 0, ā′ (0)2 = 4ā (0)E1, p, u1 < 0 and p is odd
and obtained some results on the blow-up time, blow-up rate and blow-up constant
[1, 5] . Here we discuss the problem (0.1) in two parts: ”c1 = 0 < c2” and ”c1 >
0, 0 < c2”.

Part I. c1= 0 < c2

In this part we study the following initial value problem for the nonlinear equa-
tion,

(0.2)

{
u′′(t) = c2u

′(t)qu(t)p, p, q ≥ 1, c2 > 0,

u(0) = u0, u′(0) = u1.
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We are interested in properties of solutions of the problem, particularly in phe-
nomena on blow-up, blow-up rates, blow-up constants and life-spans. In next sec-
tion, we separate q into three parts, 1 ≤ q < 2, q = 2 and q > 2. And we find the
blow-up time, blow-up rate and blow-up constant of u. Define

T = min

{
1

|u1| ,
1

|c2|M qN p
,
− |u1| +

√
u2

1 + 2 |c2|M qN p

|c2|M qN p
,−1 +

√
1 +

1
α3

}
,

where N = |u0| + 1, M = |u1| + 1, α3 = |c2| qN pM q−1 and

XT =
{
u ∈ H2 :‖ u ‖∞≤ N and ‖ u′ ‖∞≤ M

}
.

By the standard arguments of existence of solutions to ordinary differential
equations, one can easily prove the following result:

Theorem 0.1. For any initial values u0 and u1, there exists a constant T given
as above such that the problem (1) possesses exactly one solution u in X T .

1. FUNDAMENTAL LEMMAS

For u1 = 0, the solution u of problem (1) must be constant. For u1 �= 0 and
t ∈ [0, T ∗), where T ∗ = inf{t > 0 : u′(t) = 0}, we have the relations between u(t)
and u′(t).

(1.1)




u′(t)2−q = (2− q)(
c2

p + 1
u(t)p+1 + E(0)) for q �= 2,

E(0) = u2−q
1

2−q − c2

p + 1
up+1

0

and

(1.2)




ln |u′(t)| = (
c2

p + 1
u(t)p+1 + E1(0)) for q = 2,

E1(0) = ln |u1| − c2

p + 1
up+1

0 .

Lemma 1.1. Suppose that f ∈ C1[t0,∞) ∩ C2(t0,∞), f(t0) > 0, f ′(t0) < 0
and f ′′(t) ≤ 0 for t > t0. Then there exists a finite positive number T > t 0 such
that f(T ) = 0.

Proof. Since f ∈ C1[t0,∞) and f ′′(t) ≤ 0 for t > t0, we obtain that f ′(t)
≤ f ′(t0) < 0 and f(t) ≤ f(t0) + f ′(t0)(t − t0). Hence there exists t1 > t0 such
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that f(t1) < 0. By the continuity of f in [t0,∞), there exists T ∈ (t0, t1) such that
f(T ) = 0.

Lemma 1.2. Suppose that u is the solution of (1). If u 0 ≥ 0, c2 > 0, u1 > 0,
then u(t) > 0, u′(t) > 0, u′′(t) > 0 for t ∈ [0, T ), where T is the life-span of u.

Proof. Suppose that there exists a positive number t0 such that u′(t0) ≤ 0.
Since u ∈ C2 and u1 > 0, there exists a positive number t1, defined by

t1 = inf{t ∈ (0, t0] : u′(t) = 0},
such that u′(t1) = 0 and u′(t) ≥ 0 for t ∈ [0, t1]. For t ∈ [0, t1], u′(t) ≥ 0, we
have u(t)p ≥ 0, u′′(t) ≥ 0. Therefore, u′(t1) ≥ u1 > 0. This result contradicts
with u′(t1) = 0; thus we conclude that u′(t) > 0 for t ∈ [0, T ). Together the
equation (1) and the continuities of u, u′ and u′′, the lemma follows.

By Theorem 0.1, there exists the unique solution to the (1) on [0, T ), where T
depends on the initial values as follows

T (u0, u1)=min

{
1

|u1| ,
1

|c2|M qN p
,
− |u1|+

√
u2

1+2 |c2|M qN p

|c2|M qN p
,−1+

√
1 +

1
α3

}

and N = |u0|+1, M = |u1|+1, α3 = |c2| qN pM q−1. The function T (u0, u1) has
the following monotonicity property.

Lemma 1.3. If u0 ≤ u∗
0 and u1 ≤ u∗

1, then T (u0, u1) ≥ T (u∗
0, u

∗
1).

Proof. Let N ∗ = |u∗
0| + 1, M∗ = |u∗

1| + 1, α∗
3 = |c2| qN ∗pM∗q−1.

(1) If T (u0, u1) =
1

|u1| , then by u1 ≤ u∗
1, T (u0, u1) ≥ 1

|u∗
1|

≥ T (u∗
0, u

∗
1).

(2) If T (u0, u1) = −1 +
√

1 + 1
α3
, using the fact that u1 ≤ u∗

1, p, q ≥ 1, we
have α∗

3 ≥ α3 ≥ 0,

T (u0, u1) ≥ −1 +

√
1 +

1
α∗

3

≥ T (u∗
0, u

∗
1).

(3) If T (u0, u1) =
1

| c2 | M qN p
, then by the conditions u0 ≤ u∗

0, u1 ≤ u∗
1 and

p ≥ 1, q ≥ 1, we obtain that M ∗q ≥ M q and N ∗p ≥ N p. Thus

T (u0, u1) ≥ 1
|c2|M∗qN ∗p ≥ T (u∗

0, u
∗
1).
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(4) If T (u0, u1) =
− | u1 | +

√
u2

1 + 2 | c2 | M qN p

| c2 | M qN p
, then from u0 ≤ u∗

0 and

u1 ≤ u∗
1, it follows that M ∗q ≥ M q, N∗p ≥ N p and

T (u0, u1) =
2

|u1| +
√

u1
2 + 2 |c2|M qN p

≥ 2

|u∗
1| +

√
u∗

1
2 + 2 |c2|M∗qN ∗p

≥ T (u∗
0, u

∗
1).

Lemma 1.4. Suppose that u is the solution of (1) for q ∈ [1, 2]. If u exists
locally and t∗1 is the life-span of u, then u blows up at t = t 1

∗.

Proof. Assume that limt→t∗1
− u(t) = M < ∞. By (1.1), (1.2) and q ∈ [1, 2],

we have

lim
t→t∗1

−
u′(t) =



(

(2− q)
(

c2

p + 1
Mp+1 + E(0)

)) 1
2−q

if 1 ≤ q < 2,

exp
(

c2

p + 1
Mp+1 + E1(0)

)
if q = 2.

Now we consider the following differential equation{
v′′(t) = c2v

′(t)qv(t)p),

v(0) = u(t∗1
−), v′(0) = u′(t∗1

−).

Let v(t) be the existing unique solution to the above equation on [0, Tv). Since
u(t∗1

−) and u′(t∗1
−) are finite, so Tv > 0. Let

U(t) =

{
u(t) if t ∈ [0, t∗1

−),

v(t − t∗1
−) if t ∈ [t∗1

−, t∗1
− + Tv),

the problem(1) can be solved beyond the time t1
∗, this contradicts with the assump-

tion of t1
∗. Therefore, u blows up at t = t1

∗.

We would use the following two lemmas can be proved in a similar way as
Lemma 5.1 and Lemma 6.1, for the fluquency for the writting, we postpone the
proofs to Lemma 5.1 and Lemma 6.1.

Lemma 1.5. Suppose that u is a positive solution of problem (1) and that
c2 > 0, u0 ≥ 0, u1 > 0. For 1 ≤ q ≤ 2, u(t) and u′(t) blow up simultaneously;
and so does u′′. For q > 2, u′(t) and u′′ blow up at the same time.
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Lemma 1.6. Suppose that u is the solution of (0.1). If u 0 ≥ 0, u1 > 0 and c2 >

0, then u(t) > 0, u′(t) > 0, u′′(t) > 0 for t ∈ [0, T ), where T is the life-span of u.

According to the similarity, the proof of the lemma 1.7 below will be postponed
to Theorem 8.1.

Lemma 1.7. For q > 2, if u is the solution of (0.1) and c 2 > 0, u0 ≥ 0, u1 >

0, then up+1 is bounded by up+1
0 + (p + 1)u2−q

1 / (q − 2) c2.

2. BLOW-UP PHENOMENA OF u

To discuss blow-up phenomena of u with u1 �= 0, we separate this subsection
into three parts 1 ≤ q < 2, q > 2 and q = 2. We have some blow-up results.

Theorem 2. Suppose that u is the positive solution of (1) and c 2 > 0, u0 ≥
0, u1 > 0. Then

(I) for q ∈ [1, 2), u blows up at finite time t = T 11 for some finite real number
T11 > 0; further, we have

lim
t→T−

11

(T − t)
2−q

p+q−1 u(t) =
(

p + q − 1
2 − q

)
− 2−q

p+q−1

(
(2 − q)

c2

p + 1

)
−1

p+q−1 .

(II) for q = 2, then u blows up logarithmically at finite time t = T 12 and

lim
t→T−

12

(
1

− ln (T12 − t)

)
1

p+1 u(t) =
(

c2

p + 1

)− 1
p+1

.

(III) for q > 2, if u is the positive solution of (1) and c 2 > 0, u0 ≥ 0, u1 > 0,
then u is bounded in [0, T ), where T is the life span of u.

Remark 2. If we don’t restrict ourself to the positiveness of the solution u to
the equation (1), then we also have the following blow-up results:
If u is the solution of equation (1), q ∈ [1, 2] and one of the followings is valid:

(1) p is even, q is odd, c2 > 0, u0 ≤ 0, u1 < 0, up
0 ≥ 0 ,

(2) p is odd, q is even, c2 > 0, u0 ≤ 0, u1 < 0, up
0 ≤ 0,

(3) p is even, q is even, c2 < 0, u0 ≤ 0, u1 < 0, up
0 ≥ 0,

(4) p is odd, q is odd, c2 < 0, u0 ≤ 0, u1 < 0, up
0 ≤ 0,

then u blows up in finite time.
For a given function u in this work we use the following abbreviations

a(t) = u(t)2, J(t) = a(t)−m, m =
1
2

(
1

2 − q
− 1
)

.
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Proof of Theorem 2. Suppose that u is a global solution of equation (1).
(I-1) For q = 1, u′′(t) = c2u

′(t)u(t)p, by (1.1) and lemma 1.6, we obtain that
∫ u(t)

u0

1
c2

p+1rp+1 + E(0)
dr = t for all t > 0

and
u(t) > u0 for t > 0.

Using the fact that c2
p+1rp+1 + E(0) > 0 for r ≥ u0, we get

∫ u(t)

u0

1
c2

p+1rp+1 + E(0)
dr ≤

∫ ∞

u0

1
c2

p+1rp+1 + E(0)
dr for all t > 0

and then∫ ∞

u0

1
c2

p+1rp+1 + E(0)
dr ≥ lim

t→∞

∫ u(t)

u0

1
c2

p+1rp+1 + E(0)
dr = lim

t→∞ t.

Since the integral
∫∞
u0

1
c2

p+1rp+1 + E(0)
dr is finite, this leads to a contradictory

conclusion with the above last estimate. Hence we can conclude that u only exists
on [0, T11), where T11 is the life-span of u. By Lemma 1.4, we obtain that u blows
up at t = T11.

(I-2) For 1 < q < 2, m = 1
2 ( 1

2−q − 1) > 0, and we claim that there exists a
finite time T11 > 0 such that J(T11) = 0. According to Lemma 1.5, we find that
u′ and u blow up simultaneously. Thus u ∈ C2[0, T ), where T is a blow-up time
of u. By (1) and Lemma 1.6,

u′(t)2−q = (2− q)
(

c2

p + 1
u(t)p+1 + E(0)

)
for all t > 0.

By direct computation, we obtain that

J ′(t) = −ma(t)−(m+1)a′(t) = −ma(t)−(m+1)2u(t)u′(t),

a′′(t) = 2u′(t)2 + 2c2u
′(t)qu(t)p+1

= 2
(

1 +
1

2 − q

)
a′(t)2 + 2u′(t)q

(
pc2

p + 1
u(t)p+1 − E(0)

)

and

a(t)a′′(t) =
1
2

(
1 +

1
2 − q

)
a′(t)2 + 2a(t)u′(t)q

(
pc2

p + 1
u(t)p+1 − E(0)

)
.
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Hence we have

J ′′(t) = −ma(t)−(m+2)
(
a(t)a′′(t) − (m + 1)a′(t)2

)
= −ma(t)−(m+2)2a(t)u′(t)q

(
pc2

p + 1
u(t)p+1 − E(0)

)
.

With the help of Lemma 1.6, u(t), u′(t), u′′(t) > 0 for all t > 0, and there exists a
finite time t1 > 0 such that

pc2

p + 1
u(t1)p+1 − E(0) ≥ 0.

Herewith, J(t1) > 0, J ′(t1) < 0 and J ′′(t) ≤ 0 for t ≥ t1. These and Lemma
1.1 imply that there exists a finite positive number T11 > t1 such that J(T11) = 0.
Thus u blows up in finite time. This leads to contradiction and we have shown that
u exists locally and by Lemma 1.4, u blows up in finite time.

(I-3) We estimate the blow-up rate and blow-up constant. Set i = p+q−1
2−q . By

some calculations on (1) using L. Hôpital’s rule we obtain

limt→T−
11

u−i

T11 − t
= limt→T−

11
i

(
(2 − q)( c2

p+1u(t)p+1 + E(0))
) 1

2−q

u(t)i+1

=
p + q − 1

2− q

(
(2 − q)

c2

p + 1

) 1
2−q

.

Thus

lim
t→T−

11

(T − t)
2−q

p+q−1 u(t) =
(

p + q − 1
2 − q

)
− 2−q

p+q−1

(
(2 − q)

c2

p + 1

)
−1

p+q−1 .

(II) For q = 2, assume that u is a global solution of (1). By (1.2) and Lemma
1.6,

ln
∣∣u′(t)

∣∣ =
c2

p + 1
u(t)p+1 + E1(0) for all t > 0.

Since u(t), u′(t) blow up simultaneously (by Lemma 1.5), u ∈ C2[0, T12), where
T12 is blow-up time of u.

Let K(t) = a(t)−1, then

K ′(t) = −a(t)−2a′(t) = −2a(t)−2u(t)u′(t)

and

K ′′(t)=−a(t)−3
(
a(t)a′′(t)−2a′(t)2

)
=−a(t)−3a′(t)2

(
1
2

(1 + c2u(t)u(t)p) − 2
)

.



Nonlinear Second Order Differential Equation u′′(t) = u(t)p(c1 + c2u
′(t)q) (I) 607

By Lemma 1.6, u(t), u′(t), u′′(t) > 0 for t > 0. Hence there exists t0 > 0 such

that u(t) ≥
(

3
c2

) 1
p + 1 for t ≥ t0 and 1

2 (1 + c2u(t)u(t)p)− 2 ≥ 0 for t ≥ t0. We
conclude that

K(t0) > 0, K ′(t) < 0 and K ′′(t) < 0 for t ≥ t0,

thus by Lemma 1.1 there exists positive number T12 such that K(T12) = 0 and u
blows up at time t = T12. This result contradicts with our assumption that u is a
global solution of problem (1). Therefore u can exist only locally. By Lemma 1.4,
u blows up in finite time. After some computations we get

limt→T−
12
− ln (T12 − t)u(t)−(p+1) = limt→T−

12

u(t)−pu′(t)−1

(p + 1)(T12 − t)

= limt→T−
12

pu(t)−(p+1)+u(t)−pu′(t)−2u′′(t)
p + 1

.

Using (1), we obtain u′′(t) = c2u
′(t)2u(t)p and

lim
t→T−

12

− ln (T12 − t)u(t)−(p+1) = lim
t→T−

12

pu(t)−(p+1) + c2

p + 1
=

c2

p + 1
.

(III) For q > 2, integrating the equation (1) from 0 to t,

u′(t)2−q

2 − q
− u2−q

1

2 − q
=

c2

p + 1
u(t)p+1 − c2

p + 1
up+1

0 .

For t ∈ [0, T ), by Lemma 1.6, u(t), u′(t) > 0 and

u
2−q
1

q − 2
>

c2

p + 1
u(t)p+1 − c2

p + 1
up+1

0 .

Since that c2 > 0 and u(t) > 0 for t ∈ [0, T ), u is bounded in [0, T ).

Proof of Remark 2. The arguments are similar to the proof of Theorem 2, we
only mention the case (1).
Let v(t) = −u(t). By the fact that p is even and q is odd, we have v(t)p = u(t)p

and v′(t)q = −u′(t)q. We get{
v′′(t) = −u′′(t) = −c2u

′(t)qu(t)p = c2v
′(t)qv(t)p,

v(0) = v0 = −u0, v
′(0) = v1 = −u1.

Since u0 ≤ 0, up
0 ≥ 0, u1 < 0 and p is even, we have v0 ≥ 0, v1 > 0 and

vp
0 = up

0 ≥ 0. By Theorem 2 and Theorem 3 below, v blows up, so does u.
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3. BLOW-UP PHENOMENA OF u′

In this subsection we come back to the consideration of blow-up phenomena of
u′.

Theorem 3. For q ≥ 1, if u is a positive solution of (1) and c 2 > 0, u0 ≥
0, u1 > 0, then u′ blows up at time t = T21. Further, we have

lim
t→T−

21

(T21 − t)
p+1

p+q−1 u′(t)

=

(
c2(p + q − 1)

p + 1

(
c2(2 − q)

p + 1

) −p
p+1

)−(p+1)
p+q−1

for 1 ≤ q < 2,

lim
t→T−

22

[− ln(T22 − t)]
p

p+1 (T22 − t)u′(t) = c
−1
p+1

2

(
1

p + 1

) p
p+1

for q = 2,

lim
t→T−

23

(T23 − t)
1

q−1 u′(t) = (c2(q − 1)u(T23)p)
1

1−q for q > 2.

Proof. We separate this proof into three parts: 1 ≤ q < 2, q = 2 and q > 2.
(I) For 1 ≤ q < 2, by Theorem 2 and Lemma 1.5, u and u′ blow up in finite

time simultaneously. According to (1), L. Hôpital’s rule and Theorem 2 we have

lim
t→T−

21

u′(t)
1−p−q
p+1

(T21−t)
= lim

t→T−
21

c2 (p+q−1)
p+1

(
(2 − q)

(
c2

p+1
u(t)p+1+E(0)

))
−p
p+1 u(t)p

=
c2(p + q − 1)

p + 1

(
c2(2− q)

p + 1

) −p
p+1

.

Thus

lim
t→T−

21

(T21 − t)
p+1

p+q−1 u′(t) =

(
c2(p + q − 1)

p + 1

(
c2(2 − q)

p + 1

) −p
p+1

)−(p+1)
p+q−1

.

(II) For q = 2, using Theorem 2 and Lemma 1.5, then u and u′ blow up in
finite time simultaneously. By (1), L. Hôpital’s rule and Theorem 2 we have

lim
t→T−

22

[− ln(T22 − t)]
p

p+1 (T22 − t)u′(t)

= lim
t→T−

22

p
p+1 [− ln(T22 − t)]

−1
p+1 (T22 − t) − [− ln(T22 − t)]

p
p+1

−c2u(t)p

= c
−1
p+1

2 (
1

p + 1
)

p
p+1 .
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(III) In the case q > 2, let

b(t) = u′(t)2, L(t) = b(t)−α, α =
1
2
(q − 1),

we have L′(t) = −αb(t)−(α+1)b′(t) = −2αb(t)−(α+1)u′(t)u′′(t) and

L′′(t) =−αb(t)−(α+2)

((
1
2
(1 + q)−(α + 1)

)
b′(t)2 + 2c2pb(t)u(t)p−1u′(t)q+2

)
= −2pc2αb(t)−(α+1)u(t)p−1u′(t)q+2.

From Lemma 1.6, u(t) > 0, u′(t) > 0 and u′′(t) > 0 for t > 0, we obtain that
L′(t), L′′(t) < 0 for t > 0. Now we need to check that u doesn’t blow up earlier
than u′. By Lemma 1.7, u is bounded. Using Lemma 1.1, there exists a finite
number T21 such that L(T21) = 0. Since q > 2, we α > 0, we obtain that u′ blows
up at finite time t = T21.

For q > 2, by (1) and L. Hôpital’s rule we have

lim
t→T−

23

u′(t)1−q

(T23 − t)
= lim

t→T−
23

(1 − q)u′(t)−qu′′(t)(−1) = c2(q − 1)u(T23)p.

Thus

lim
t→T−

23

(T23 − t)
1

q−1 u′(t) = (c2(q − 1)u(T23)p)
1

1−q .

3. BLOW-UP PHENOMENA OF u′′

We want to calculate blow-up rate and blow-up constant of u′′ in the this sub-
section.

Theorem 4. Under the conditions in Theorem 3 suppose that u is a positive
solution of (1). For q ≥ 1, then u ′′ blows up at time t = T31 for some T31 > 0.
Furthermore, for

(I) q ∈ [1, 2), the blow-up rate of u′′ is q(p+1)
p+q−1 + p(2−q)

p+q−1 and the blow-up constant
is

c
−1

p+q−1

2 (2− q)
p

p+q−1 (p + 1)
p+q

p+q−1 (p + q − 1)
−(2p+q)
p+q−1 .

(II) q = 2, then u′′ blows up logarithmically at time t = T 32 for some T32 > 0 and

limt→T−
32

{
(− ln(T32 − t))

p
p+1 (T32 − t)

}q {
(− ln (T32 − t))

−1
p+1

}p
u′′(t)

= c
1−q
p+1

2 (p + 1)
p(1−q)

p+1 .
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(III) q > 2, then u′′ blows up at time t = T33 for some T33 > 0, the blow-up rate
of u′′ is q

q−1 and the blow-up constant is

(q − 1)
q

1−q (c2u(T33)p)
1

1−q .

Proof. According to Theorem 3 and Lemma 1.5, u′ and u′′ blow up at the
same time t = T31.

(I) For 1 ≤ q < 2, by Lemma 1.5, u, u′ and u′′ possess the same blow-up time
. Using (1.1), Theorem 2 and Theorem 3, we conclude that

lim
t→T−

31

(T31 − t)
q(p+1)
p+q−1

+p(2−q)
p+q−1 u′′(t)

= lim
t→T−

31

c2(T31 − t)
q(p+1)
p+q−1 u′(t)q(T31 − t)

p(2−q)
p+q−1 u(t)p

= c
−1

p+q−1

2 (2 − q)
p

p+q−1 (p + 1)
p+q

p+q−1 (p + q − 1)
−(2p+q)
p+q−1 .

(II) For q = 2, using Lemma 1.5, u, u′ and u′′ have the same blow-up time.
Thus T3 is also blow-up time of u and u′. By (1.1), Theorem 2 and Theorem 3,
we conclude that

lim
t→T−

32

{[− ln(T32 − t)]
p

p+1 (T32 − t)}q{[− ln (T32 − t)]
−1
p+1 }pu′′(t)

= lim
t→T−

32

c2{[− ln(T32 − t)]
p

p+1 (T32 − t)}qu′(t)q{[− ln (T32 − t)]
−1
p+1 }pu(t)p

= c
1−q
p+1

2 (p + 1)
p(1−q)

p+1 .

(III) For q > 2, by Lemma 1.5, u′′ and u′ blow up contemporaneously in finite
time. Thanks to Lemma 1.6 we have u(t) > 0 and u(t)p ≥ 0. Since c2 > 0,
c2u(t)p > 0. By (1) and Theorem 3, we conclude that

lim
t→T−

33

(T33 − t)
q

q−1 u′′(t) = lim
t→T−

33

c2(T33 − t)
q

q−1 u′(t)qu(t)p

= (q − 1)
q

1−q (c2u(T33)p)
1

1−q .

5. ESTIMATIONS FOR THE LIFE-SPANS

To estimate the life-span of the solution of the equation (1), we separate this
section into two parts, 1 ≤ q < 2 and q = 2. Here the life-span T of u means
that u is the solution of problem (1) and the existence interval of u is contained
only in [0, T ) so that the problem (1) has the solution u ∈ C2[0, T ). We have the
following results.
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Lemma 5.1. Suppose that u is a positive solution of problem (1) and that
c2 > 0, u0 ≥ 0, u1 > 0. For 1 ≤ q ≤ 2, u(t) and u′(t) blow up simultaneously;
and so does u′′. For q > 2, u′(t) and u′′ blow up at the same time.

Proof. (I) For 1 ≤ q < 2, by (1) we have

u′(t)2−q = (2− q)(
c2

p + 1
u(t)p+1 + E(0)).

(1) First, we claim that if u blows up in finite time, then so does u ′. According
to Theorem 2.1, u blows up at time t = T11. Since limt→T−

11

1
u(t) = 0, we

have

lim
t→T−

11

1
u′(t)2−q

= limt→T−
11

1
(2− q)( c2

p+1u(t)p+1 + E(0))

= lim
t→T−

11

1
u(t)p+1

(2− q)( c2
p+1 + E(0)

u(t)p+1 )
= 0.

Therefore, limt→T−
11

1
u′(t)

= 0. Thus, u′ blows up at the same finite time.
(2) We claim that if u′ blows up in finite time, then so does u. With the help

of Theorem 8.3 below, u′ blows up at time t = T21. Assume that u doesn’t
blow up at time t = T21. Let limt→T−

21
u(t) = M < ∞. Then

lim
t→T−

21

u′(t)2−q = limt→T−
21

(2− q)(
c2

p + 1
u(t)p+1 + E(0))

= (2− q)(
c2

p + 1
Mp+1 + E(0)) < ∞.

This result contradicts with the fact that u ′(t) blows up at time t = T21. It
deduces that u blows up at time t = T21. Combining 1) with 2), we conclude
that u and u′ blow up simultaneously.

(II) For the case q = 2, by (1.2), we have

ln
∣∣u′(t)

∣∣= c2

p + 1
u(t)p + E1(0).

(3) We claim that if u blows up in finite time, then so does u ′. By Theorem 2.2
and lemma 6.1 below, u blows up at time t = T12 and u(t), u′(t) > 0 for
0 ≤ t < T12. Since that c2 > 0 and u blows up toward positive direction,
ln |u′| also blows up toward positive direction. Thus u′ blows up at time
t = T12.



612 Meng-Rong Li

(4) We now prove that u′ blows up then so does u. Using Theorem 3.1 and
Lemma 1.6, u′ blows up at time t = T21 and u(t), u′(t) > 0 for 0 ≤ t < T12.
Assume that u doesn’t blow up at time t = T21. Set

lim
t→T−

21

u(t) = M < ∞.

Then
lim

t→T−
21

ln
∣∣u′(t)

∣∣ = limt→T−
21

(
c2

p + 1
u(t)p+1 + E1(0)

)

= (2 − q)
(

c2

p + 1
Mp+1 + E1(0)

)
< ∞.

This result is contradictory to the fact that u′ blows up in finite time. It
deduces that u blows up at time t = T21. Together 3) and 4), we conclude
that u and u′ blow up simultaneously. Since that u and u′ blow up toward
positive direction at the same time and c2 > 0, u′′ blows up toward positive
direction.

(III) Under q > 2, according to Theorem 8.3 below, u′ blows up at time
t = T21. By Lemma 1.7, we obtain that u is bounded in [0, T21), and,
by Lemma 1.6, we have u′(t) > 0 for t ∈ [0, T21). Thus the limit exists,
limt→T−

21
c2u(t)p. Since u0 ≥ 0 and u′(t) > 0 for t ∈ [0, T21), we have

limt→T−
21

c2u(t)p > 0. From u′′(t) = c2u
′(t)qu(t)p, it deduces that u′ and u′′

blow up simultaneously.

We have the following estimates for the life-span of solution to the equation (1).

Theorem 5.2. Suppose that u is the positive solution of (1) and T is life-span
of u and that T ∗

11 is blow-up time of u. Under the same conditions as in Theorem
2.1, T is bounded. For 1 ≤ q < 2, we have the estimation

T ≤ T ∗
11 = (2 − q)

1
q−2

∫ ∞

u0

(
c2

p + 1
rp+1 + E(0))

1
q−2 dr.

For q = 2, we have

T ≤ T ∗
12 :=

∫ ∞

u0

1
exp ( c2

p+1rp+1 + E1(0))
dr,

where E1(0) = ln |u1| − c2
p+1up+1

0 .

Proof. (I) For 1 ≤ q < 2, using the fact

u′(t) =
(

(2− q)
(

c2

p + 1
u(t)p+1 + E(0)

)) 1
2−q

> 0 for t ∈ [0, T ∗
11),
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we have

(5.1)
∫ u(t)

u0

1(
c2

p+1rp+1 + E(0)
) 1

2−q

dr = (2 − q)
1

2−q t.

We claim that T ∗
11 < ∞. By u0 ≥ 0 and

c2

p + 1
rp+1 + E(0) =

u2−q
1

2 − q
+
∫ r

u0

(c1 + c2s
p) ds,

we obtain that c2
p+1rp+1 + E(0) > 0 for r ≥ u0. And it is continuous on [u0, a] for

a ≥ u0. Therefore the function
(

c2
p+1rp+1 + E(0)

) −1
2−q is integrable and positive

on [u0, a] for a ≥ u0. Thus T ∗
11 is bounded and T ≤ T ∗

11.

(II) For q = 2, by (1.2), ln |u′(t)| =
c2

p + 1
u(t)p+1 +E1(0). Seeing that u′(t) >

0, we have ∫ u(t)

u0

1

exp
(

c2
p+1rp+1 + E1(0)

)dr = t.

We next claim that T ∗
12 < ∞. Set f(r) =

c2

p + 1
rp+1 + E1(0). Then f ′(r) ≥ 0

for rp ≥ 0 and f ′′(r) ≥ 0 for r ≥ 0. So there exists r0 > 0, rp
0 ≥ 0, such that

f(r) > 0 for r ≥ r0. We calculate∫ ∞

u0

1

exp
(

c2
p+1rp+1 + E1(0)

)dr

=
∫ r0

u0

1

exp
(

c2
p+1rp+1 + E1(0)

)dr +
∫ ∞

r0

1

exp
(

c2
p+1rp+1 + E1(0)

)dr

Since 1

exp
(

c2
p+1

rp+1+E1(0)
) is a continuous function on [u0, r0], the first integrand

is bounded. From exp
(

c2

p + 1
rp+1 + E1(0)

)
>

c2

p + 1
rp+1 + E1(0) > 0 for r ≥

r0, we obtain that
1

exp
(

c2
p+1rp+1 + E1(0)

) <
1

c2
p+1rp+1 + E1(0)

for r ≥ r0. By

∫∞
r0

1
c2

p+1
rp+1+E1(0)

dr < ∞ and the comparison test, the second integrand is bounded.
Therefore, T∗

12 is bounded and T ≤ T ∗
12.
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Part II. c1>0,c2>0

6. BLOW-UP PHENOMENA FOR 1 ≤ q < 2

In this section we study the blow-up phenomena of the solution to the initial
value problem (0.1).

Lemma 6.1. Suppose that u is the solution of (0.1). If u 0 ≥ 0, u1 > 0, c1 >
0 and c2 > 0, then u(t) > 0, u′(t) > 0, u′′(t) > 0 for t ∈ [0, T ), where T is the
life-span of u.

Proof. We only prove lemma 6.1. Suppose that there exists a positive number
t0 such that u′(t0) ≤ 0. Since u ∈ C2 and u1 > 0, there exists a positive number
t1, defined by

t1 = inf{t ∈ (0, t0] : u′(t) ≤ 0},
then u′(t1) = 0, u′ (t) > 0, u (t) > 0 and u′′(t) > 0 for t ∈ [0, t1). Therefore,
u′(t1) ≥ u1 > 0. This result contradicts with u ′(t1) = 0; thus we conclude that

u′(t) > 0 for t ∈ [0, T ),

where T is the life-span of u. Together the equation (0.1) and the continuities of
u, u′ and u′′, the lemma follows.

For a given function u in this work we use the following abbreviations

a(t) = u(t)2, J̄(t) = a(t)−k, k =
p − 1

4
.

Using lemma 6.1 one can easily obtain the following lemmas after some com-
putations:

Lemma 6.2. Suppose that u is the solution of (0.1) and that T ∗
31 is the life-span

of u, then for every c ∈ R,

lim
t→T 31

∗−

u′ (t)2−q

u (t)p+1
= lim

t→T 31
∗−

(
(u (t) + c)′

)2−q

(u (t) + c)p+1
;

further, for u0 >0, u1>0 and c1>0, c2>0, then limt→T 31
∗−

∫ t

0
u (r)p u′ (r)1−q dr

u (t)p+1

= 0 for q > 1 and

(6.1) lim
t→T 31

∗−

u′ (r)2−q

u (t)p+1 =
2− q

p + 1
c2 for q ∈ (1, 2) .
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Lemma 6.3. Suppose that u is the solution of (0.1) and that T ∗
31 is the life-span

of u, then for t ∈ [0, T 31
∗) we have:

(6.2) E2 (t) = u′ (t)2 − 2c1

p + 1
u (t)p+1 − 2c2

∫ t

0
u (r)p u′ (r)1+q dr = E2 (0) ,

(6.3) a′ (t)2 = 4E2 (0) a (t) +
8c1

p + 1
u (t)p+3 + 8c2a

∫ t

0
u (r)p u′ (r)1+q dr,

(6.4)
a′′ (t) = 2E2 (0) + 2u (t)p+1

(
p + 3
p + 1

c1 + 2c2u
′ (t)q

)

+4c2

∫ t
0 u (r)p u′ (r)1+q dr

(6.5)
J̄ ′′ (t) =

p2 − 1
4

E2 (0) a (t)−
p+3
4 − p − 1

2
c2a (t)−

p+3
4

(
u (t)p+1 u′ (t)q + (p + 5)

∫ t

0
u (r)p u′ (r)1+q dr

)

To discuss blow-up phenomena of u with u1 �= 0, we separate this subsection
into three parts 1 ≤ q < 2, q = 2 and q > 2.
For 1 ≤ q < 2, we have blow-up results.

Theorem 6.4. Suppose that q ∈ [1, 2) and u is the solution of (0.1) with
E2 (0) ≤ 0, u0 ≥ 0, u1 > 0, c2 > 0, then u blows up at finite time T ∗

31 ≤
2u0

(p−1)u1
and the blow-up rate α1 and blow-up constant β1 for u are 2−q

p+q−1 and(
p+q−1
2−q

(
2−q
p+1c2

) 1
2−q

) q−2
p+q−1

respectively.

Proof.

Step 1. We prove there exists a bounded positive real number T such that
J (T ) = 0.

By lemma 6.1, 6.3 and E2 (0) ≤ 0, we get that u (t) , u′ (t) , u′′ (t) are all
positive for t ∈ [0, T ∗

1 ) , and

J̄ ′ (t) < 0, J̄ ′′ (t) < 0 for t ∈ [0, T ∗
31) .

Using lemma 1.1, there exists T such that J̄ (T ) = 0 and J̄ (T ) ≤ J̄ (0) +
J̄ ′ (0)T,

T ∗
31 ≤

2u0

(p − 1)u1
.
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Step 2. We compute the blow-up rate and blow-up constant for u.

For q = 1, u′′(t) = u(t)p(c1 + c2u(t)), α1 = 1
p ; using lemmas 6.2, 6.3, we

obtain that

lim
t→T 3∗−1

(T ∗
1 − t)−1 u (t)−

1
α1 = lim

t→T 3∗−1

u′ (t)

α1u (t)1+ 1
α1

= lim
t→T ∗−

31

u (t)p (c1 + c2u
′ (t))

(1 + α1)u (t)
1

α1 u′ (t)
=

p

p + 1
c2.

For q �= 1, α1 = 2−q
p+q−1 , inducing lemma 6.2, we conclude that

lim
t→T ∗−

31

(T ∗
31 − t)−1 u (t)−

1
α1 = lim

t→T ∗−
31

u′ (t)

α1u (t)1+ 1
α1

=
1
α1

(
2 − q

p + 1
c2

) 1
2−q

.

This means,

lim
t→T ∗−

31

(T ∗
31 − t)α1 u (t) =

(
p + q − 1

2 − q

(
2− q

p + 1
c2

) 1
2−q

) q−2
p+q−1

.

To estimate the blow-up rate of u′ and u′′, we need the following lemma:

Lemma 6.5. Under the condition of Theorem 6.4 then u ′ and u′′ blow up at
the same finite T ∗−

31 .

Proof. According to (6.3) and Theorem 6.4 we obtain

0 <
1

u′ (t)2
≤ 1

E2 (0) + 2
p+1c1u (t)p+1 ∀t ∈ [0, T ∗

31) ,

0 ≤ lim
t→T ∗−

31

1
u′ (t)2

≤ lim
t→T ∗−

31

1
E2 (0) + 2

p+1c1u (t)p+1
= 0

and

0 ≤ lim
t→T ∗−

31

1
u′′ (t)

= lim
t→T ∗−

31

1
u (t)p (c1 + c2u′ (t)q)

≤ lim
t→T ∗−

31

1
2

p+1c1u (t)p+1 = 0.

Due to this lemma, we have results concerning blow-up rate and blow-up con-
stant for u′ and u′′.
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Theorem 6.6. Under the condition of Theorem 6.4, then the blow-up rate α 2

and blow-up constant β2 of u′ are p+1
p+q−1and

(
p+q−1

p+1

(
p+1
2−q c2

) p
p+1

) −p−1
p+q−1

; and the

blow-up rate α3 and blow-up constant β3 of u′′ are 2p+q
p+q−1and c

pq−p
p+q−1

2 (2 − q)
p

p+q−1

(p + 1)
p+q

p+q−1 (p + q − 1)
−2p−q
p+q−1 respectively.

Proof. By lemmas 6.2 and 6.5, u′ blows up at T ∗
31 and

lim
t→T ∗−

31

(T ∗
1 − t)−1 u′ (t)−

1
α2 = limt→T ∗−

31

u′′ (t)

α2u (t)1+ 1
α2

=
1
α2

(
2 − q

p + 1
c2

) −p
p+1

,

lim
t→T ∗−

31

(T ∗
31 − t)α2 u′ (t) =

(
p + q − 1

p + 1

(
p + 1
2 − q

c2

) p
p+1

) −p−1
p+q−1

.

Using lemmas 6.3, 6.5 and Theorem 6.4, we obtain

lim
t→T ∗−

31

(T ∗
31 − t)α3 u′′ (t)

= lim
t→T ∗−

31

u (t)p (c1 + c2u
′ (t)q) = lim

t→T ∗−
31

c2u (t)p u′ (t)q

=
(
cpq−p
2 (2 − q)p (p + 1)p+q (p + q − 1)−2p−q

) 1
p+q−1

.

Remark 6.7. The life-span T ∗
31 := T ∗

31(p, q, c1, c2)of the solution to equation
(0.1) is still unknown under the condition of Theorem 6.4 and it would has the
properties:

(i) T ∗
31(p, q, c1, c2) ≤ min{T ∗

11 (q, c2) , T ∗
31(p, 0, 0, c1)}

(ii) T ∗
31(p, q, c1, c2) → T ∗

11(q, c2) as c1 → 0.

(iii) T ∗
31(p, q, c1, c2) → T ∗

31(p, 0, 0, c1) as c2 → 0.

7. BLOW-UP PHENOMENA FOR q = 2

In the particular case of q = 2, we obtain an interesting blow-up result and
special blow-up constant.

Lemma 7.1. Suppose q = 2 and u is the solution of (0.1) with E 2 (0) ≤
0, u0 ≥ 0, u1 > 0, c2 > 0, then

(7.1) u′ (t)2 =
c1 + c2u

2
1

c2
e

2c2
p+1 (up+1−up+1

0 )− c1
c2 ,
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u, u′ and u′′ blow up at the same T ∗
32; further,

(7.2) T ∗
32 =

∫ ∞

u0

dr√
c1+c2u2

1
c2

e
2c2
p+1 (rp+1−up+1

0 )− c1
c2

.

Proof. By (0.5) , then

ln

∣∣∣∣∣c1 + c2u
′ (t)2

c1 + c2u2
1

∣∣∣∣∣ =
2c2

p + 1

(
u (t)p+1 − up+1

0

)

and (7.1) follows. Inducing lemma 6.1, u, u′ and u′′ are all large than 0; by (6.5)
and (7.1) , u blows up in finite time and also

u′ (t)√
c1+c2u2

1
c2

e
2c2
p+1(up+1−up+1

0 )− c1
c2

= 1

and then (7.2) is obtained. Using (7.1) and (0.5) again, u′ and u′′ blow up at the
same T ∗

32.

Theorem 7.2. Under the assumption of Lemma 10.1, we have

(7.3) lim
t→T ∗−

32

( −1
ln (T ∗

32 − t)

) 1
p+1

u(t) =
(

c2

p + 1

)− 1
p+1

,

(7.4) lim
t→T ∗−

32

(− ln (T ∗
32 − t))

p
p+1 (T ∗

32 − t)u′(t) =
1

c1 + c2u
2
1

(
c2

p + 1

) p
p+1

and

(7.5) lim
t→T ∗−

32

(− ln (T ∗
32 − t))

p
p+1 (T ∗

32 − t)2 u′′(t) =
(

1
c1 + c2u2

1

)2( c2

p + 1

) p
p+1

.

Proof. By lemma 6.1 and (7.1), u, u′ and u′′ are all large than 0; after some
computations we obtain

lim
t→T ∗−

32

− ln (T ∗−
32 − t)u(t)−(p+1) = lim

t→T ∗−
32

u(t)−pu′(t)−1

(p + 1)(T ∗−
32 − t)

= lim
t→T ∗−

32

pu(t)−(p+1) + u(t)−pu′(t)−2u′′(t)
p + 1

=
c2

p + 1
.
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Using (7.3) and lemma 1.1 , we have

lim
t→T ∗−

2

(− ln (T ∗
2 − t))

p
p+1 (T ∗

2 − t)u′(t)

= lim
t→T ∗−

2

2 (− ln (T ∗
2 − t))

p
p+1

(p + 1)u(t)p

p + 1
2
(
c1 + c2u

2
1

) =
1

c1 + c2u
2
1

(
c2

p + 1

) p
p+1

.

Inducing (7.3) and (7.4) , we conclude

lim
t→T ∗−

32

(− ln (T ∗
32 − t))

p
p+1 (T ∗

32 − t)2 u′′(t)

= lim
t→T ∗−

32

(− ln (T ∗
32 − t))

p
p+1 (T ∗

32 − t)2
(
c1u (t)p + c2u (t)p u′ (t)q)

=
(

1
c1 + c2u

2
1

)2( c2

p + 1

) p
p+1

.

8. BLOW-UP PHENOMENA FOR q > 2

Under q > 2 we have the boundedness. for the solution u and estimate for the
blow-up rate and blow-up constant for u′ and u′′.

Theorem 8.1. For q > 2, if u is the solution of (0.1) and c 1 > 0, c2 >
0, u0 ≥ 0, u1 > 0, then up+1 is bounded by up+1

0 + (p + 1)u2−q
1 / (q − 2) c2.

Proof. By lemma 6.1 and c1 > 0, c2 > 0, u′ > 0, u′′ > 0, we have

u
2−q
1 − u′ (t)2−q

(q − 2) c2
=
∫ t

0

u′ (r)u′′ (r)
c2u′ (r)

dr ≥
∫ t

0

u′ (r)u′′ (r)
c1 + c2u′ (r)

dr =
u (t)p+1 − u

p+1
0

p + 1

and then
u

2−q
1

(q − 2) c2
≥ u(t)p+1

p + 1
− u

p+1
0

p + 1
.

After some computations one can easily obtain the following lemma used below
to estimate the blow-up rate and blow-up constant for u′ and u′′.

Lemma 8.2. Suppose u is the solution for the problem (1.1) and b (t) =
u′ (t)2 , I (t) = b (t)−

q−2
4 . Then we have

(8.1) b′ (t)2 = 4b (t) u (t)2p (c1 + c2u
′ (t)q)2 ,
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b′′ (t) = 2u (t)2p
(
c2
1 + (2 + q) c1c2u

′ (t)q + c2
2 (1 + q)u′ (t)2q

)
+pu (t)p−1 u′ (t)2 (c1 + c2u

′ (t)q) ,

(8.3)
I ′′ (t) = −q − 2

4
b−

q+2
4

(
q
(
c2
2u

′ (t)2 − c2
1

)
+ 2pu (t)p−1 u′ (t)2 (c1 + c2u

′ (t)q)
)

.

Theorem 8.3. Under the assumption of Theorem 8.1 and c 2u1 ≥ c1, then u′

and u′′ blow up at some finite time t = T ∗
33. Further, the blow-up rate and blow-up

constant for u ′ are 1
q−1 and ((q − 1) c2u (T ∗

33)
p)

1
1−q respectively; and the blow-up

rate and blow-up constant for u ′′ are q
q−1 and

(
(q − 1)q cq+1

2 u (T ∗
33)

p(1+q)
) q

1−q

respectively, where u (T ∗
33) is given by

u (T ∗
33)

p+1 = u
p+1
0 + (p + 1)

∫ ∞

u1

rdr

c1 + c2rq
.

Proof. From lemma 6.1, u(t) > 0, u′(t) > 0 and u′′(t) > 0 for t > 0. For
c2u1 ≥ c1, using (8.3) we obtain that I ′(t), I ′′(t) < 0 for t > 0; thus there exists
a finite number T ∗

33 so that I (T ∗
33) = 0 and

0 ≤ lim
t→T ∗−

33

1
u′′ (t)

= lim
t→T ∗−

33

1
u (t)p (c1 + c2u′ (t)q)

≤ lim
t→T ∗−

33

1
c2u (t)p u′ (t)q = 0, lim

t→T ∗−
33

(T ∗
33 − t) u′ (t)1−q

= lim
t→T ∗−

33

(q − 1)u′′ (t) u′ (t)−q

= lim
t→T ∗−

33

(q − 1)u (t)p u′ (t)−q (c1 + c2u
′ (t)q) = (q − 1) c2u (T ∗

33)
p

and

lim
t→T ∗−

33

(T ∗
33 − t)

q
q−1 u′′ (t) = lim

t→T ∗−
33

(T ∗
33 − t)

q
q−1 u (t)p (c1 + c2u

′ (t)q)
= lim

t→T ∗−
33

c2 (T ∗
33 − t)

q
q−1 u (t)p u′ (t)q

=
(
(q − 1)q cq+1

2 u (T ∗
33)

p(1+q)
) q

1−q
.

Remark 8.4. The life-span T ∗
33 := T ∗

33(p, q, c1, c2)of u′ is still unknown under
the condition of Theorem 8.1 and it would has the properties:
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(i) T ∗
33(p, q, c1, c2) ≤ min{T ∗

21 (q, c2) , T ∗
33(p, 0, 0, c1)}

(ii) T ∗
33(p, q, c1, c2) → T ∗

21(q, c2) as c1 → 0.

(iii) T ∗
33(p, q, c1, c2) → T ∗

33(p, 0, 0, c1) as c2 → 0.
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