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RECOGNIZING HINGE-FREE LINE GRAPHS AND TOTAL GRAPHS

Jou-Ming Chang and Chin-Wen Ho

Abstract. In this paper, we characterize line graphs and total graphs that

are hinge-free, i.e., there is no triple of vertices x, y, z such that the distance
between y and z increases after x is removed. Based on our characterizations,
we show that given a graph G with n vertices and m edges, determining its

line graph and total graph to be hinge-free can be solved in O(n + m) time.
Moreover, characterizations of hinge-free iterated line graphs and total graphs

are also discussed.

1. INTRODUCTION

All graphs considered in this paper are undirectedwithout self-loops and multiple

edges. The vertex set and the edge set of a graph G are denoted by V (G) and E(G),
respectively. We call V (G)∪E(G) the set of elements of G, and write n = |V (G)|
to be the order of G and m = |E(G)| to be the size of G. Two elements are said to

be associated if they are either adjacent or incident. The distance dG(x, y) of two
elements x, y ∈ V (G)∪E(G) is the length (i.e., the number of edges) of a shortest
path joining x and y in G, but not including x and y (if x ∈ E(G) or y ∈ E(G)).
A shortest path joining x and y is called an x-y geodesic.

A vertex u in a graph G is called a hinge vertex if there exist two other vertices

x and y such that dG−u(x, y) > dG(x, y), where G − u denotes the subgraph of
G induced by the vertex set V (G)\{u}. That is, u is a hinge vertex if and only

if every x-y geodesic in G must pass through u. Graphs without hinge vertices
are called hinge-free graphs. The study of hinge-free graphs arises naturally from

network design [5, 6, 9]. Because many interconnection networks can be constructed

using line (di)graph iterations, such as Kautz networks [10], de Bruijn networks
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[4] and Imase-Itoh networks [13], this provides with a motivation for us to study

characterizations of hinge-free (iterated) line graphs.

The line graph of G, denoted by L(G), is the intersection graph whose vertices
correspond to the edges of G, and two vertices of L(G) are joined by an edge
if and only if the corresponding edges in G are adjacent. A natural extension of

line graphs is the total graph. The total graph T (G) is the graph whose vertex
set is the set of all elements of G, and two vertices are adjacent if and only if the

corresponding elements are associated in G. For example, Figure 1 shows a graph
G and its line graph and total graph. More generally, the iterated line graphs and

total graphs are defined as follows: L1(G) = L(G) (resp. T 1(G) = T (G)) and
Li(G) = L(Li−1(G)) (resp. T i(G) = T (T i−1(G))) for i ≥ 2.

In this paper, we characterize hinge-free line graphs and total graphs. Moreover,

we extend these results to iterated line graphs and total graphs. Two interesting

results acquired from our study are these:

Theorem 1. The line graph L(G) is hinge-free if and only if G is P4-free.

Theorem 2. The total graph T (G) is hinge-free if and only if G is both hinge-

free and P4-free.

A graph is Pk-free if it contains no induced path of length k − 1. For the
case k = 4, many structural and algorithmic properties of P4-free graphs have been

discovered (see e.g. [7, 8, 14]). A familiar synonym of P4-free graph is complement

reducible graph (abbreviated to cograph). Corneil et al. [8] showed that cographs

can be recognized in O(n + m) time by constructing a unique tree representation.
Therefore, our first result indicates that if the line graph model (i.e., the root graph)

G is given, determining whether its line graph is hinge-free or not can be solved in

the same time complexity.
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Due to the fact that T (G) always contains both G and L(G) as induced sub-
graphs, if T (G) is Pk-free then G and L(G) are also Pk-free, but the converse is

not true. The second result seems to be not intuitive since, unlike the Pk-free prop-

erty, the hinge-free property is not hereditary, i.e., not every induced subgraph of a

hinge-free graph is hinge-free. It is well-known that cographs are properly contained

in a class of graphs called distance-hereditary graphs, i.e., graphs in which every

pair of vertices has the same distance in every connected induced subgraph contain-

ing them. Distance-hereditary graphs were first introduced by Howorka [12] and

further characterized by Bandelt and Mulder [1]. It is obvious from the definition

that every hinge vertex in a distance-hereditary graph must be a cut vertex. Thus,

the depth-first search algorithm on graphs (see e.g. [3]) can be used for finding all

hinge vertices of a distance-hereditary graph (cograph). An immediate consequence

obtained from Theorem 2 is that the hinge-free total graph recognition problem can

be solved in linear time once its root graph is given.

2. PRELIMINARIES

Throughout the rest of this paper, we assume that a graph G is connected and

nontrivial. For a vertex u ∈ V (G), the neighborhoodNG(u) is the set of all vertices
of G adjacent to u. When no ambiguity arises, the subscriptG can be omitted. Note

that the term “path” always refers to a simple path, i.e., no vertex appears more than

once. In particular, a path is called trivial if it has a single vertex. Two nontrivial

paths joining x and y are vertex-disjoint (resp. edge-disjoint) if they have no vertices
(resp. edges), excluding x and y, in common. Notations and terminologies not given
here may be found in any standard textbook on graphs.

A point of view proposed in [6] showed that to identify a hinge vertex of an

arbitrary graph, we only need to inspect the neighborhood of this vertex instead of

examining the distances among all the vertex-pairs. Based on this property, linear-

time algorithms for finding all hinge vertices for some special graphs were found

[5, 11].

Lemma 1. (Chang et al. [6]) A vertex v in a graph G is a hinge vertex if and

only if there exist two nonadjacent vertices x, y ∈ N(v) such that N(x)∩N(y) =
{v}.

An undirected graph G is k-connected if the removal of at least k vertices is
necessary to disconnect G or reduce it to a single vertex. In [9], Entringer et al.

defined that a graph G is k-geodetically connected (k-GC for short) if G is k-
connected and the removal of at least k vertices is required to increase the distance
of at least two vertices. That is, the structure of k-GC graphs can tolerate any k−1
vertices failures without increasing the distance among all the remaining vertices.
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In fact, the class of hinge-free graphs is identical to the class of 2-GC graphs. A
necessary and sufficient condition for a graph to be hinge-free (see Lemma 2) was

proved in [5]. This result suggests that a hinge-free graph recognition algorithm can

easily be implemented in O(nm) time. Indeed, a characterization which generalizes
the result of Lemma 2 for k-GC graphs, k ≥ 2, was also provided in [5].

Lemma 2. (Chang and Ho [5]) A graphG is hinge-free if and only if every pair

of nonadjacent vertices in G are joined by at least two vertex-disjoint geodesics.

3. HINGE-FREE LINE GRAPHS

It is well-known that a line graph does not contain K1,3 (claw) as an induced

subgraph. A complete list of the forbidden induced subgraphs for the family of line

graphs was characterized by Beineke [2]. In this section, we characterize hinge-free

(iterated) line graphs.

We first give some observations which can easily be derived from the definition

of a line graph. For an arbitrary graph G, there is a one-to-one correspondence

between the nontrivial paths of G and the induced paths of L(G); i.e., if G contains

a path P = v0v1 . . . vk of length k ≥ 1 which consists of edges ei = vi−1vi, then

the corresponding vertices of ei in L(G) form an induced path P ′ = e1e2 . . .ek of

length k − 1, and vice versa. Further, P is a v0-vk geodesic in G if and only if P ′

is an e1-ek geodesic in L(G), and two geodesics in G are edge-disjoint if and only

if the corresponding induced geodesics in L(G) are vertex-disjoint. Thus, we have
the following properties.

Proposition 1. The line graph L(G) is Pk-free if and only if G contains no

path of length k.

Proposition 2. Let G be a graph and l ≥ 2 be an integer. Two vertices of L(G)
are joined by k vertex-disjoint geodesics of length l if and only if the corresponding
edges in G are joined by k edge-disjoint geodesics of length l − 1.

Proof of Theorem 1. By Lemma 2, if L(G) is hinge-free then every pair of
nonadjacent vertices in L(G) are joined by at least two vertex-disjoint geodesics. It
follows from Proposition 2 that every pair of nonadjacent edges in G is joined by

at least two edge-disjoint geodesics. Let wxyz be any path of G. Since edges wx

and yz are joined by at least two edge-disjoint geodesics, at least one of edges wy,
wz, and xz must exist. Thus G contains no induced P4.

Conversely, suppose that w is a hinge vertex of L(G). By Lemma 1, there exist
two nonadjacent vertices x, y ∈ NL(G)(w) such that NL(G)(x)∩ NL(G)(y) = {w}.
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That is, xwy is the unique x-y geodesic in L(G). Let x = ab and y = cd be two

such corresponding edges of G. Since ab and cd are nonadjacent, by Proposition 2,
they are joined by only one edge w. Hence, in G, w must be one of the following:

ac, bd, ad, or bc. Therefore, a, b, c, d induce a P4 in G.

Given a connected graph G, we write kG for the graph with k components each
isomorphic with G. For two vertex-disjoint graphs G1 and G2, the union of G1

and G2, denoted by G1 ∪ G2, is the graph having V (G1 ∪ G2) = V (G1)∪ V (G2)
and E(G1∪G2) = E(G1)∪E(G2). The join of G1 and G2, denoted by G1 + G2,

is the graph consisting of the union G1 ∪ G2 together with {uv : u ∈ V (G1) and
v ∈ V (G2)}. Define Hk as the star K1,k+2 with one additional edge added, i.e.,

Hk
∼= K1 + (kK1 ∪ K2). Note that H0

∼= K3 and each Hk for k ≥ 2 contains a
claw as an induced subgraph.

In what follows, the hinge-free iterated line graphs will be characterized. Ob-

viously, for every graph G of order n < 3, Li(G), i ≥ 2, does not exist. By
Proposition 1 and Theorem 1, L2(G) is hinge-free if and only if every path of G

has length at most 3. Thus, if G has order 4 or less, L2(G) is trivially hinge-free.

Theorem 3. Let G be a graph of order at least 5. Then L2(G) is hinge-free if
and only if G is a tree of diameter at most 3 or one of the graphs Hk for k ≥ 2.

Proof. Clearly, if G is a tree of diameter no more than 3 then G contains no path

of length 4. We now consider the graphs with order at least 5 and containing a cycle.

Let G be a graph of order n ≥ 5 and let C be a longest cycle of G (without induced).
Since G is connected and n ≥ 5, if |V (C)| ≥ 4 then G contains a path of length 4.

For |V (C)| = 3, it is easy to verify that if G 6∈ {Hk : k = 2, 3, . . .}, thenG contains
an induced subgraph isomorphic to W1, W2 or W3 (see Figure 2), and in each case

G always contains a path of length 4. On the contrary, if G ∈ {Hk : k = 2, 3 . . .}
then G has no path of length 4. Thus, the graphs L2(Hk) for k ≥ 2 are hinge-free.

From above, the family of graphs with order n ≥ 3 containing no path of length
4 is precisely {T : T is a tree of diameter 2 or 3} ∪ {Hk : k = 0, 1, 2, . . .} ∪
{C4, K4, K4−e}, where K4−e is a 4-vertex complete graph by deleting any edge.u
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Furthermore, by Proposition 1 and Theorem 1, L3(G) is hinge-free if and only
if L(G) contains no path of length 4. Thus, we can characterize L3(G) to be
hinge-free by considering those graphs whose corresponding line graphs appear in

the above family.

Obviously, not every graph containing no path of length 4 is the line graph

of some graph. Note that, except for K1,3, every forbidden induced subgraph of

a line graph (provided by Beineke [2]) contains a path of length 4. Thus, we

only need to restrict our attention to the K1,3 inspection in the above family when

we consider line graphs without a path of length 4. Since a line graph that is a

tree must be a path if it has no claw, and since each Hk for k ≥ 2 contains an
induced claw, we characterize L3(G) to be hinge-free as follows: L(P4) ∼= P3,

L(P5) ∼= P4, L(K3) ∼= L(K1,3) ∼= K3
∼= H0, L(Y ) ∼= H1 (see Figure 3 for the

graph Y ), L(C4) ∼= C4, L(K1,4) ∼= K4 and L(H1) ∼= K4 − e. Therefore, we have
the following theorem.

Theorem 4. L3(G) is hinge-free if and only if G ∈ {P4, P5, K3, K1,3, Y , C4,

K1,4, H1}.

4. HINGE-FREE TOTAL GRAPHS

In this section, the hinge-free and Pk-free properties for total graphs are con-

sidered. Let P be an induced path of T (G). We say that P is vertex-unified (resp.

edge-unified) if all the corresponding elements of the vertices in P are vertices (resp.
edges) of G. For convenience, we say that P is unified if it is either vertex-unified

or edge-unified. Clearly, every trivial path is unified. If P is not unified, then

it can be divided into maximal unified subpaths such that vertex-unified subpaths

and edge-unified subpaths alternate along P . The following properties are directly

obtained from the fact that T (G) contains G (resp. L(G)) as an induced subgraph.

Proposition 3. Let P be a vertex-unified induced path in T (G) of length l.

Then V (P ) induces a path of the same length in G.
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Proposition 4. Let P be an edge-unified induced path in T (G) of length l.

Then the corresponding edges of V (P ) constitute a path of length l + 1 in G.

Let P be an induced path of T (G) having L1, . . . , Lj as its maximal unified

subpaths. By Propositions 3 and 4, for each Li, there is a corresponding path L′
i in

G. Since P is an induced path, the collection of paths L′
i in G still forms a path.

For instance, we consider an induced path P = abfg of T (G) in Figure 1. Then
P can be divided into ab and fg maximal unified subpaths. The vertex set {a, b}
in G induces a path of length 1 and the edge set {f = bc, g = cd} in G yields a

path of length 2. Consequently, the elements a, b, f, g in G produce a path abcd

of length 3. We now prove three geodetic properties related to the graphs G and

T (G), which are helpful to establish the main result for hinge-free total graphs.

Lemma 3. Two nonadjacent vertices of a graph G are joined by k vertex-

disjoint geodesics of length l if and only if their corresponding vertices in T (G)
are joined by k vertex-disjoint geodesics with the same length.

Proof. The “only if” part follows immediately from the fact that G is an induced

subgraph of T (G). Conversely, we show that for any two nonadjacent vertices x

and y in G, every x-y geodesic in T (G) must be vertex-unified. Thus the result
follows from Proposition 3.

Let P be an x-y geodesic of length l in T (G). Suppose that P is not vertex-

unified. Then P contains at least one maximal edge-unified subpath. We may

assume that P = x · · ·v0e1e2 · · ·ejvj · · ·y, where v0, vj ∈ V (G), ei = vi−1vi ∈
E(G) and j ≥ 1. This means that e1 · · ·ej is a maximal edge-unified subpath of

P . It is easy to see that x · · ·v0v1 · · ·vj−1vj · · ·y forms another path in T (G) of
length l − 1. This contradicts the fact that P is an x-y geodesic in T (G).

Lemma 4. Two nonadjacent edges of a graph G are joined by k edge-disjoint

geodesics of length l if and only if their corresponding vertices in T (G) are joined
by k vertex-disjoint geodesics of length l + 1.

Proof. The “only if” part follows immediately from the fact that L(G) is an
induced subgraph of T (G). Conversely, a similar proof of Lemma 3 can show that
every x-y geodesic in T (G) is edge-unified, where x and y are any two nonadjacent
edges in G. Thus the result follows from Proposition 4.

Lemma 5. For any two nonassociated elements x ∈ V (G) and y = uv ∈ E(G),
the corresponding vertices of x and y in T (G) are joined by at least two vertex-
disjoint geodesics.
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Proof. Since G is connected, without loss of generality, we may assume that

P = w1w2 · · ·wk is an x-y geodesic of G where w1 = x, wk = u and k ≥ 2.
Let ei = wiwi+1. Then we can find two vertex-disjoint paths of length k joining x

and y in T (G), namely, P ′ = w1w2w3 · · ·wky and P ′′ = w1e1e2 · · ·ek−1y. Also,
if T (G) contains another x-y path of length less than k, then P cannot be an x-y

geodesic in G. Thus P ′ and P ′′ are vertex-disjoint geodesics in T (G).

Now, we complete the proof of Theorem 2.

Proof of Theorem 2. Suppose that T (G) is hinge-free. By Lemma 2, every pair
of nonadjacent vertices in T (G) are joined by at least two vertex-disjoint geodesics.
Since two vertices x, y ∈ V (G) are nonadjacent if and only if the corresponding
vertices of x and y in T (G) are also nonadjacent, it follows from Lemma 3 that every
two nonadjacent vertices of G are joined by at least two vertex-disjoint geodesics.

Thus, by Lemma 2, G is hinge-free. To show that G is P4-free, by Theorem 1

it suffices to show that L(G) is hinge-free. Let x and y be nonadjacent vertices
in L(G). Since T (G) contains L(G) as an induced subgraph, x and y are also

nonadjacent in T (G). Since T (G) is hinge-free, there exist at least two vertex-
disjoint geodesics joining x and y in T (G). By Lemma 4, the corresponding edges
of x and y in G are joined by at least two edge-disjoint geodesics. Thus, by

Proposition 2 and Lemma 2, we conclude that L(G) is hinge-free.

Conversely, let G be a P4-free and hinge-free graph and assume that T (G)
contains a hinge vertex w. By Lemma 1, there exist two nonadjacent vertices

x, y ∈ NT (G)(w) such thatNT (G)(x)∩NT (G)(y) = {w}. That is, the corresponding
elements of x and y in G are nonassociated, and the induced path xwy in T (G) is
the unique x-y geodesic. We now consider all possible cases about the elements x
and y to be either vertices or edges of G as follows.

Case 1: x and y are nonadjacent vertices of G. Since xwy is the unique x-y
geodesic in T (G), by Lemma 3, there is only one geodesic with length 2 between
x and y in G. Thus, by Lemma 2, G is not hinge-free, a contradiction.

Case 2: x = ab and y = cd are nonadjacent edges of G. Since xwy is the
unique x-y geodesic in T (G), by Lemma 4, ab and cd in G must be joined by only

one edge. Thus, G contains an induced P4, a contradiction.

Case 3: x ∈ V (G) and y ∈ E(G) or x ∈ E(G) and y ∈ V (G) are nonassociated
elements. By Lemma 5, x and y in T (G) are joined by at least two vertex-disjoint
geodesics. This violates the fact that xwy is the unique x-y geodesic in T (G).

As immediate consequences, we obtain the following corollaries.
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Corollary 1. The total graph T (G) is hinge-free if and only if both G and L(G)
are hinge-free.

Corollary 2. The following statements are equivalent for a graph G:

(1) T (L(G)) is hinge-free.

(2) L(G) is both hinge-free and P4-free.

(3) Both G and L(G) are P4-free.

(4) G is P4-free and every path of G has length at most 3.

(5) G ∈ {C4, K4, K4 − e} ∪ {Hk : k = 0, 1, 2, . . .} ∪ {K1,n : n = 1, 2, 3, . . .}.

Proof. The equivalences of statements (1), (2), (3) and (4) are established by

Theorems 2, 1 and Proposition 1. (4)⇔(5) can be proved similarly to Theorem 3
by restricting G without an induced P4.

In what follows, we present some properties of total graphs without induced Pk

and then use these properties to characterize the hinge-free iterated total graphs. Let

P be an induced path of a total graph T (G). We first show that the number of
maximal unified subpaths with respect to P has a bound.

Lemma 6. Every induced path of length k − 1 in T (G) can be divided into at
most bk

2 c + 1 maximal unified subpaths.

Proof. Let P = x1x2 · · ·xk be an induced path of T (G) which consists of j

maximal unified subpaths L1, . . . , Lj . Consider three consecutive vertices xi, xi+1

and xi+2 in P , where i = 1, . . . , k − 2. Clearly, if the corresponding elements of
these three vertices in G satisfy xi, xi+2 ∈ V (G) and xi+1 ∈ E(G) or xi, xi+2 ∈
E(G) and xi+1 ∈ V (G), then xi and xi+2 are two associated elements of G
(corresponding to two adjacent vertices of T (G)). This implies that P is not an

induced path of T (G). Thus, each subpath Li, excluding L1 and Lj , contains at

least two vertices. So P has k ≥ 2(j − 2)+ 2 vertices. Since j must be an integer,

we have j ≤ bk
2c + 1.

Theorem 5. Let G be a graph and let k ≥ 2. Then T (G) is Pk-free if G
contains no path of length d3k

4 e − 1.

Proof. We will show that if T (G) is not Pk-free, thenG contains a path of length

at least d3k
4 e − 1. Assume that there is an induced path P = x1x2 · · ·xk of length

k−1 in T (G) which is divided into L1, . . . , Lj maximal unified subpaths such that

x1 ∈ V (L1) and xk ∈ V (Lj). For i = 1, . . . , j, let L′
i be the corresponding path

of Li in G. By Propositions 3 and 4, the length of L′
i can be determined by the
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length of Li. Let P ′ be the path in G that is constituted from the set of subpaths

L′
1, . . . , L′

j . Then |P ′| =
∑j

i=1 |L′
i|, where |P ′| denotes the length of P ′. We claim

that |P ′| ≥ d3k
4 e− 1. Consider elements x1 and xk to be either vertices or edges of

G by the following three cases:

Case 1: x1, xk ∈ V (G). In this case, j is odd and each subpath Li for i even
(resp. odd) is edge-unified (resp. vertex-unified). Thus we have

|P ′| =

j+1
2∑

i=1

(|V (L2i−1)| − 1) +

j−1
2∑

i=1

|V (L2i)| =
j∑

i=1

|V (Li)| −
j + 1

2
= k − j + 1

2
.

Case 2: x1, xk ∈ E(G). In this case, j is odd and each subpath Li for i even
(resp. odd) is vertex-unified (resp. edge-unified). Thus we have

|P ′| =

j−1
2∑

i=1

(|V (L2i)| − 1) +

j+1
2∑

i=1

|V (L2i−1)| = k − j − 1
2

.

Case 3: x1 ∈ V (G) and xk ∈ E(G) or x1 ∈ E(G) and xk ∈ V (G). In
this case, j is even. Without loss of generality, we assume that x1 ∈ V (G) and
xk ∈ E(G). Thus we have

|P ′| =

j
2∑

i=1

(|V (L2i−1)| − 1) +

j
2∑

i=1

|V (L2i)| = k − j

2
.

Since j ≤ bk
2c+1 by Lemma 6, the length of P ′ in the above three cases is at least

k − j + 1
2

≥ k −
bk

2c
2

− 1 ≥ 3k

4
− 1.

Thus, G contains a path of length d3k
4 e − 1.

A necessary condition for T (G) to be Pk-free can readily be made as follows.

Since T (G) contains both G and L(G) as induced subgraphs, if T (G) is Pk-free

then both G and L(G) are Pk-free. By Proposition 1, this implies that G contains

no path of length k and no induced path of length k − 1. The following theorem
improves this bound.

Theorem 6. Let G be a graph and let k ≥ 2. If T (G) is Pk-free, then

(1) G contains no path of length k − 1, and

(2) G contains no induced path of length d3k−2
4 e.
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Proof. (1) Assume that G contains a path v1v2 · · ·vk of length k − 1. For
i = 1, . . . , k − 1, let ei = vivi+i. Then e1 · · ·ek−1vk forms an induced path of

length k − 1 in T (G). Thus, T (G) is not Pk-free.

(2) Assume that G has an induced path P = v0v1 · · ·vp with p ≥ d3k−2
4 e. We

will show that T (G) is not Pk-free. Let ei = vi−1vi for i = 1, . . . , p and let

S = {v0, e1, v1, e2, . . . , vp−1, ep, vp} be the set of elements of P . Denote GS as

the subgraph of T (G) induced by the corresponding vertices of the elements of S.

We claim that GS contains an induced path of length at least k − 1.

To simplify the description, we use f(i) for i = 1, 2, . . . , 2p + 1 to denote the
vertices of GS , where

f(i) =

{
v i−1

2
if i is odd,

e i
2

if i is even.

Since P is an induced path of G, distinct vertices f(i) and f(j) in GS are adjacent

for |i− j| ≤ 2, and are nonadjacent for |i− j| ≥ 3. Let X = x0, x1, . . . , xh be an

increasing sequence from the set {1, 2, . . . , 2p + 1}. Obviously, if xi+1 − xi ≤ 2
for all i = 0, . . . , h − 1, then f(x0) · · ·f(xh) forms a path of length h in GS .

Moreover, if additional conditions xi+2 −xi ≥ 3 hold for all i = 0, . . . , h− 2, then
f(x0) · · ·f(xh) is an induced path of length h in GS .

Let q = d2p+1
3 e and r = (2p + 1) mod 3. We now consider a v0-vp induced

path P ′ in GS that is constructed from an increasing sequence X such that all the

terms of X satisfy the conditions:

xi+1 − xi ≤ 2 and xi+2 − xi ≥ 3.

Case 1: r = 0. In this case, we have 2p + 1 = 3q and p ≡ 1 (mod 3). We
select X = 1, 3, 4, 6, 7, 9, . . . , 3q − 2, 3q. Then |P ′| = 2q − 1 = 4p−1

3 .

Case 2: r = 1. In this case, we have 2p + 1 = 3q − 2 and p ≡ 0 (mod 3).
Select X = 1, 3, 4, 6, 7, 9, . . . , 3q − 5, 3q − 3, 3q − 2. Then |P ′| = 2q − 2 = 4p

3 .

Case 3: r = 2. In this case, we have 2p+1 = 3q−1 and p ≡ 2 (mod 3). Select
X = 1, 2, 4, 5, 7, 8, . . . , 3q− 5, 3q− 4, 3q− 2, 3q− 1. Then |P ′| = 2q− 1 = 4p+1

3 .

In the above three cases, the length of P ′ can be expressed in term d4p−1
3 e by

considering the congruence of p. Since p ≥ d3k−2
4 e ≥ 3k−2

4 , we have

d4p − 1
3

e ≥ 4p − 1
3

≥ k − 1.

From the above argument, we obtain that the induced subgraphGS of T (G) contains
an induced path of length at least k − 1. Thus, T (G) is not Pk-free.
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Corollary 3. The following statements are equivalent for a graph G:

(1) T (G) is P4-free.

(2) L(T (G)) is hinge-free.

(3) T (G) is both hinge-free and P4-free.

(4) T 2(G) is hinge-free.

Moreover, the only connected graph G for which T (G) is P4-free are K2 and K3.

Proof. The equivalences (1)⇔(2) and (3)⇔(4) follow directly from Theorems 1
and 2, respectively. (3)⇒(1) is trivial. We prove (1)⇒(3) as follows.

By Theorem 6, if T (G) is P4-free then G has no path of length 3. The nontrivial
connected graphs containing a path of length at most 2 are K2, K3, P3, and K1,n

for n ≥ 3. Clearly, T (P3) is not P4-free. Since every T (K1,n) for n > 3 contains
T (P3) as an induced subgraph, it is not P4-free. Also, it is easy to check that

T (K2) and T (K3) are both P4-free and hinge-free.
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