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REGULAR VECTOR-FIELDS IN BANACH SPACES

Simeon Reich and Alexander J. Zaslavski

Abstract. It is known that regular vector-fields generate convergent discrete
and continuous descent methods for minimizing functions. In this note we
present necessary and sufficient conditions for regularity of descent vector-
fields associated with convex and Lipschitz functions defined on general Ba-
nach spaces.

1. INTRODUCTION AND STATEMENT OF RESULTS

Descent methods are an important topic in optimization theory and in dynamical
systems; see, for example, [1, 2, 4, 7-12]. Given a continuous convex function f
on a Banach space X , we associate with f a complete metric space A of mappings
V : X → X such that f 0(x, V x) ≤ 0 for all x ∈ X . Here f0(x, u) is the right-
hand derivative of f at x in the direction of u ∈ X . We call such mappings descent
vector-fields (with respect to f ). In [10] we identified a regularity property of
such vector-fields and showed that regular vector-fields generate convergent discrete
descent methods. This has turned out to be true for continuous descent methods
as well [12]. Such results are significant because most of the elements in A are,
in fact, regular [10]. Here by “most” we mean an everywhere dense Gδ subset of
A (cf., for example, [5, 6, 9-11, 13]). Thus it is important to know when a given
descent vector-field V : X → X is regular. In this paper we establish necessary
and sufficient conditions for regularity: see Theorems 1.1-1.4 below.

More precisely, let (X, || · ||) be a Banach space and let (X∗, || · ||∗) be its dual.
For each g : X → R1, set inf(g) := inf{g(z) : z ∈ X}.
Let U be a nonempty, open subset of X and let f : U → R1 be a locally

Lipschitz function.
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For each x ∈ U , let

(1.1) f0(x, h) = lim sup
t→0+,y→x

[f(y + th) − f(y)]/t, h ∈ X,

be the Clarke derivative of f at the point x, and let

(1.2) ∂f(x) = {l ∈ X∗ : f0(x, h) ≥ l(h) for all h ∈ X}
be the Clarke subdifferential of f at x.

For each x ∈ U , set [14]

(1.3) Ξf (x) := inf{f0(x, u) : u ∈ X, ||u|| ≤ 1}.
Clearly, Ξf (x) ≤ 0 for all x ∈ X and Ξf (x) = 0 if and only if 0 ∈ ∂f(x).

For each x ∈ U , set [11]

(1.4) Ξ̃f (x) := inf{f0(x, h) : h ∈ X, ||h|| = 1}.
Let x ∈ U . Clearly, Ξ̃f (x) ≥ Ξf (x) and 0 ∈ ∂f(x) if and only if Ξ̃f (x) ≥ 0.
In Section 2 we will prove the following two propositions.

Proposition 1.1. Let x ∈ U . If Ξ̃f (x) ≥ 0, then Ξf (x) = 0. If Ξ̃f (x) < 0,
then Ξf (x) = Ξ̃f (x).

Proposition 1.2. For each x ∈ U ,

(1.5) Ξf (x) = − inf{||l||∗ : l ∈ ∂f(x)}.
Assume now that f : X → R1 is a continuous and convex function which is

bounded from below. It is known that f is locally Lipschitz. It is also known [3,
Ch. 2, Sec. 2] that in this case

f0(x, h) = lim
t→0+

[f(x + th) − f(x)]/t, x, h ∈ X.

A mapping V : X → X is called regular [10] if V is bounded on every bounded
subset of X , f0(x, V x) ≤ 0 for all x ∈ X , and if for any natural number n, there
exists a positive number δ(n) such that for each x ∈ X satisfying ||x|| ≤ n and
f(x) ≥ inf(f) + 1/n, we have

f0(x, V x) ≤ −δ(n).

Theorem 1.1. Let f : X → R1 be a convex and continuous function which is
bounded from below, let x̄ ∈ X satisfy

(1.6) f(x̄) = inf{f(z) : z ∈ X},
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and let the following property hold:
(P1) for every sequence {yi}∞i=1 ⊂ X satisfying limi→∞ f(yi) = f(x̄), limi→∞ yi

= x̄ in the norm topology.
For each natural number n, let φn : [0,∞) → [0,∞) be an increasing function

such that φn(0) = 0 and the following property holds:
(P2) for each ε > 0, there exists δ := δ(ε, n) > 0 such that for each t ≥ 0

satisfying φn(t) ≤ δ, the inequality t ≤ ε holds.
If V : X → X is bounded on bounded subsets of X ,

(1.7) f0(x, V x) ≤ 0 for all x ∈ X,

and if for each natural number n and each x ∈ X satisfying ||x|| ≤ n, we have

(1.8) f0(x, V x) ≤ −φn(−Ξf (x)),

then V is regular.

Theorem 1.2. Assume that f : X → R1 is a convex and continuous function,
x̄ ∈ X ,

f(x̄) = inf(f),

property (P1) holds and the following property also holds:
(P3) if {xi}∞i=1 ⊂ X converges to x̄ in the norm topology, then lim i→∞ Ξf (xi)

= 0.
Assume that V : X → X is regular and let n ≥ 1 be an integer. Then there

exists an increasing function φn : [0,∞) → [0,∞) such that φn(0) = 0, property
(P2) holds, and for each x ∈ X satisfying ||x|| ≤ n, we have

f0(x, V x) ≤ −φn(−Ξf (x)).

Assume now that f : X → R1 is merely locally Lipschitz. In this case a
mapping V : X → X is called regular [11] if V is bounded on every bounded
subset of X ,

(1.9) f0(x, V x) ≤ 0 for all x ∈ X,

and for any natural number n, there exists δ(n) > 0 such that for each x ∈ X
satisfying ||x|| ≤ n and Ξf (x) ≤ −1/n, we have f0(x, V x) ≤ −δ(n).

Theorem 1.3. Let f : X → R1 be a locally Lipschitz function. For each
natural number n, let φn : [0,∞) → [0,∞) be an increasing function such that
φn(0) = 0 and property (P2) holds.

Assume that V : X → X is bounded on every bounded subset of X ,

f0(x, V x) ≤ 0 for all x ∈ X,
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and for each natural number n and each x ∈ X satisfying ||x|| ≤ n, we have

(1.10) f0(x, V x) ≤ −φn(−Ξf (x)).

Then V is regular.

Theorem 1.4. Assume that the function f : X → R1 is locally Lipschitz and
that V : X → X is regular.

Then for each natural number n, there exists an increasing function φ n :
[0,∞) → [0,∞) such that (P2) holds and for each natural number n and each
x ∈ X satisfying ||x|| ≤ n, (1.10) holds.

2. PROOFS OF PROPOSITIONS 1.1 AND 1.2

Proof of Proposition 1.1. Assume that Ξ̃f (x) ≥ 0. Then 0 ∈ ∂f(x) and
Ξf (x) = 0. Assume that Ξ̃f (x) < 0. Then by definition (see (1.4)),

(2.1) inf{f0(x, h) : h ∈ X, ||h|| = 1} = Ξ̃f (x) < 0.

By (2.1) and the homogeneity of f0(x, ·),

(2.2) f0(x, h) ≥ Ξ̃f (x)||h|| for all h ∈ X.

By (2.1), (1.4), (1.3) and (2.2),

0 > Ξ̃f (x) ≥ Ξf (x) = inf{f0(x, h) : h ∈ X, ||h|| ≤ 1}

≥ inf{Ξ̃f(x)||h|| : h ∈ X, ||h|| ≤ 1} = Ξ̃f (x).

This implies that
Ξ̃f (x) = Ξf (x),

as claimed. Proposition 1.1 is proved.
We precede the proof of Proposition 1.2 with the following lemma.

Lemma 2.1. Let x ∈ U and c > 0. Then the following are equivalent:

(i) Ξf (x) ≥ −c; (ii) Ξ̃f (x)≥−c; (iii) there is l∈∂f(x) such that ||l||∗≤c.

Proof. By Proposition 1.1,

Ξf (x) ≥ −c if and only if Ξ̃f (x) ≥ −c.
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We have by (1.4) that Ξ̃f (x) ≥ −c if and only if

f0(x, h) ≥ −c for all h ∈ X satisfying ||h|| = 1,

which is, in its turn, equivalent to the following relation:

f0(x, h) ≥ −c||h|| for all h ∈ X.

Rewriting this last inequality as

f0(x, h) + c||h|| ≥ 0 for all h ∈ X,

we see that it is equivalent to the inclusion

0 ∈ ∂f(x) + c{l ∈ X∗ : ||l||∗ ≤ 1}.
Thus we have proved that (ii) is equivalent to (iii). This completes the proof of
Lemma 2.1.

Proof of Proposition 1.2. Clearly, equality (1.5) holds if either one of its sides
equals zero. Therefore we need to prove (1.5) only in the case where

(2.3) Ξf (x) < 0 and inf{|l||∗ : l ∈ ∂f(x)} > 0.

Assume that (2.3) holds. By Lemma 2.1, there is l̄ such that

(2.4) l̄ ∈ ∂f(x) and ||l̄||∗ ≤ −Ξf (x).

Hence

(2.5) − inf{||l||∗ : l ∈ ∂f(x)} ≥ −||l̄||∗ ≥ Ξf (x).

Let ε be any positive number. There is lε ∈ ∂f(x) such that

(2.6) ||lε||∗ ≤ inf{||l||∗ : l ∈ ∂f(x)}+ ε

By (2.6) and Lemma 2.1,

Ξf (x) ≥ −ε − inf{||l||∗ : l ∈ ∂f(x)}.
Since ε is any positive number, we conclude that

Ξf (x) ≥ − inf{||l||∗ : l ∈ ∂f(x)}.
Together with (2.5), this completes the proof of Proposition 1.2.
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3. AN AUXILIARY RESULT

Proposition 3.1. Let g : X → R1 be a convex continuous function, x̄ ∈ X ,

(3.1) g(x̄) = inf{g(z) : z ∈ X},

and let the following property hold:
(P4) for any sequence {yi}∞i=1 ⊂ X satisfying limi→∞ g(yi) = g(x̄), we have

limi→∞ ||yi − x̄|| = 0.
Assume that {xi}∞i=1 ⊂ X ,

(3.2) sup{||xi|| : i = 1, 2, . . .} < ∞ and lim
i→∞

Ξg(xi) = 0.

Then limi→∞ ||xi − x̄|| = 0.

Proof. By (3.2) and Proposition 1.2, there exists a sequence {li}∞i=1 ⊂ X∗ such
that

(3.3) lim
i→∞

||li||∗ = 0 and li ∈ ∂g(xi) for all integers i ≥ 1.

Choose a number M > 0 such that

(3.4) ||xi|| ≤ M for all integers i ≥ 1

and let i ≥ 1 be an integer. By (3.3),

(3.5) g(z)− li(z) ≥ g(xi)− li(xi) for all z ∈ X.

It follows from (3.5), (3.4) and (3.3) that

g(x̄) − g(xi) = g(x̄) − li(x̄) − (g(xi) − li(xi)) + li(x̄ − xi)

≥ li(x̄ − xi) ≥ −||li||||x̄− xi|| ≥ −||li||(M + ||x̄||) → 0 as i → ∞
and therefore

lim inf
i→∞

(g(x̄) − g(xi)) ≥ 0.

Together with (P4) this implies that limi→∞ ||xi − x̄|| = 0. Proposition 3.1 is
proved.

4. PROOF OF THEOREM 1.1

To show that V is regular, let n be a natural number. We have to find a positive
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number δ = δ(n) such that for each x ∈ X satisfying ||x|| ≤ n and f(x) ≥
inf(f) + 1/n,

f0(x, V x) ≤ −δ.

Let us assume the contrary. Then for each natural number k, there exists xk ∈ X

satisfying

(4.1) ||xk|| ≤ n, f(xk) ≥ inf(f) + 1/n,

and

(4.2) f0(xk, V xk) > −1/k.

It follows from (4.2), (4.1) and (1.8) that for each natural number k,

−k−1 < f0(xk, V xk) ≤ −φn(−Ξf (xk))

and hence φn(−Ξf (xk)) < k−1.

Together with (P2) this inequality implies that limk→∞ Ξf (xk) = 0. When com-
bined with Proposition 3.1 and (4.1), this convergence implies that limk→∞ ||xk −
x̄|| = 0. Since f is continuous,

lim
k→∞

f(xk) = f(x̄) = inf(f).

This, however, contradicts (4.1). The contradiction we have reached proves that V
is indeed regular, as required.

5. PROOF OF THEOREM 1.2

In what follows we make the convention that the infimum over the empty set is
infinity. Set φn(0) = 0 and let t > 0. Put

(5.1) φn(t) = min{inf{−f0(x, V x) : x ∈ X, ||x|| ≤ n and Ξf (x) ≤ −t}, 1}.

Clearly, φn : [0,∞) → [0, 1] is well-defined and increasing.
We show that for each x ∈ X satisfying ||x|| ≤ n,

(5.2) f0(x, V x) ≤ −φn(−Ξf (x)).

Let x ∈ X with ||x|| ≤ n. If Ξf (x) = 0, then it is obvious that (5.2) holds.
Assume now that

(5.3) Ξf (x) < 0.
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Then by (5.1), (5.3) and the inequality ||x|| ≤ n,

φn(−Ξf (x)) = min{inf{−f0(y, V y) : y ∈ X, ||y|| ≤ n and Ξf (y) ≤ Ξf (x)}, 1}

≤ min{1,−f0(x, V x)} ≤ −f0(x, V x)

and hence
f0(x, V x) ≤ −φn(−Ξf (x)).

Thus (5.2) holds for each x ∈ X satisfying ||x|| ≤ n.
Next we show that (P2) holds. To this end, let ε > 0. We will show that there

is δ > 0 such that for each t ≥ 0 satisfying φn(t) ≤ δ, the inequality t ≤ ε holds.
Assume the contrary. Then for each natural number i, there exists ti ≥ 0 such

that

(5.4) φn(ti) ≤ (4i)−1, ti > ε.

By (5.4) and (5.1), for each natural number i, there exists a point xi ∈ X such that

(5.5) ||xi|| ≤ n, Ξf (xi) ≤ −ti < −ε,

and

(5.6) f0(xi, V xi) ≥ −(2i)−1.

Now it follows from (5.5), (5.6) and the definition of regularity that

lim
i→∞

f(xi) = f(x̄).

Together with (P1) this implies that limi→∞ ||xi − x̄|| = 0. When combined with
(P3), this inequality implies that limi→∞ Ξf (xi) = 0. This, however, contradicts
(5.5). The contradiction we have reached proves Theorem 1.2.

6. PROOF OF THEOREM 1.3

Let n be a natural number. We need to show that there exists δ > 0 such that
for each x ∈ X satisfying

(6.1) ||x|| ≤ n and Ξf (x) < −1/n,

we have
f0(x, V x) ≤ −δ.
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Let us assume the contrary. Then for each natural number k, there exists xk ∈ X

such that

(6.2) ||xk|| ≤ n, Ξf (xk) ≤ −1/n,

and
f0(xk, V xk) > −1/k.

By (6.2) and (1.10),

−1/k < f0(xk, V xk) ≤ −φn(−Ξf (xk))

and

(6.3) φn(−Ξf (xk)) ≤ 1/k.

It now follows from (6.3) and property (P2) that

lim sup
k→∞

(−Ξf (xk)) = 0

and
lim

k→∞
Ξf (xk) = 0.

The last equality contradicts (6.2) and this contradiction proves Theorem 1.3.

7. PROOF OF THEOREM 1.4

Set φn(0) = 0 and let t > 0. Define

(7.1) φn(t) = min{inf{−f0(x, V x) : x ∈ X, ||x|| ≤ n, Ξf (x) ≤ −t}, 1}.

Clearly, φ : [0,∞) → [0, 1] is well-defined and increasing.
We show that for each x ∈ X satisfying ||x|| ≤ n,

(7.2) f0(x, V x) ≤ −φn(−Ξf (x)).

Let x ∈ X with

(7.3) ||x|| ≤ n.

If Ξf (x) = 0, then (7.2) clearly holds. Assume now that

(7.4) Ξf (x) < 0.
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Then by (7.1), (7.2), (7.3) and (7.4),

φn(−Ξf (x)) = min{inf{−f0(y, V y) : y ∈ X, ||y|| ≤ n, Ξf (y) ≤ Ξf (x)}, 1}
≤ min{1,−f0(x, V x)} ≤ −f0(x, V x)

and hence (7.2) holds for all x ∈ X satisfying ||x|| ≤ n, as claimed.
Now we show that property (P2) also holds. To this end, let ε be positive.
We claim that there is δ > 0 such that for each t ≥ 0 satisfying φn(t) ≤ δ, the

inequality t ≤ ε holds.
Let us assume the contrary. Then for each natural number i, there exists ti ≥ 0

such that

(7.5) φ(ti) ≤ (4i)−1, ti > ε.

Let i be a natural number. By (7.5) and (7.1), there exists xi ∈ X such that

(7.6) ||xi|| ≤ n, Ξf (xi) ≤ −ti < −ε,

and
−f0(xi, V xi) ≤ (2i)−1.

Clearly,

(7.7) f0(xi, V xi) ≥ −(2i)−1.

Choose a natural number p such that

(7.8) p > n and 1/p < ε.

Since V is regular, there is δ > 0 such that

(7.9) if x ∈ X, ||x|| ≤ p and Ξf (x) < −1/p, then f 0(x, V x) < −δ.

Choose a natural number j such that

(7.10) 1/j < δ.

Then for all integers i ≥ j, it follows from (7.6) and (7.8) that

Ξf (xi) < −ε < −1/p and ||xi|| ≤ p.

Together with (7.9) and (7.10), this implies that for all integers i ≥ j,

f0(xi, V xi) < −δ < −j−1 < −(i)−1.

Since this contradicts (7.7), the proof of Theorem 1.4 is complete.
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