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ON THE Lp-VERSION OF THE PETTY’S CONJECTURED
PROJECTION INEQUALITY AND APPLICATIONS

Weidong Wang and Gangsong Leng

Abstract. Petty’s conjectured projection inequality is a famous open problem
in convex bodies theory. In this paper, it is shown that a Lp-version of the
Petty’s conjectured projection inequality. As its applications, we give a reverse
of the Blaschke-Santaló inequality and consider the monotony of volumes for
convex body and its Lp- Petty projection body, respectively. Otherwise, we
also give the reverses of the Lp-Petty projection inequality.

1. INTRODUCTION

Let Kn denote the set of convex bodies(compact, convex subsets with non-
empty interiors) in Euclidean space R

n, for the set of convex bodies containing the
origin in their interiors and the set of origin-symmetric convex bodies in R

n, we
respectively write Kn

o and Kn
s . Let Sn−1 denote the unit sphere in R

n, denote by
V (K) the n−dimensional volume of body K , for the standard unit ball B in R

n,
denote ωn = V (B).

The classical projection bodies were introduced at the turn of the previous cen-
tury by Minkowski. He showed that corresponding to each K ∈ Kn, the projection
body of K, ΠK, is aunique origin-symmetric convex body, which can be defined:
the length of the image of the orthogonal projection of ΠK onto 1-dimensional
subspace l of R

n, to the (n-1)-dimensional volume of the image of the orthogonal
projection of K onto the codimension 1 subspace l⊥. Interest in projection bodies
was rekindled by Bolker ([5]), Petty ([25]) and Schneider ([29]). During the past
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three decades, projection bodies have received considerable attention (for example
see articles [1, 2, 4, 6, 9, 11, 14, 23, 26, 32, 34] or books [10, 13, 31]).

The fundamental inequality for projection bodies in the field of affine isoperi-
metric inequalities is the Petty projection inequality (see [26]): If K ∈ Kn, then

(1.1) V (K)n−1V (Π∗K) ≤ (
ωn

ωn−1
)n,

with equality if and only if K is an ellipsoid. Where Π ∗K denote the polar of the
projection body ΠK, rather than (ΠK)∗. The reverse of Petty projection inequality
was established by Zhang (see [34]), it is called the Zhang projection inequality.

One of the outstanding unsolved problems in the field of affine isoperimetric
inequalities is Petty’s conjecture for the volume of projection bodies. In 1971, Petty
in [26] conjectured that: If K ∈ Kn, is it true that

(1.2) V (ΠK)V (K)1−n ≥ ωn
n−1ω

2−n
n ,

with equality if and only if K is an ellipsoid? Petty’s conjecture is called the Petty’s
conjectured projection inequality in [10]. Petty’s conjectured projection inequality
has been studied by Lutwak [16], Schneider [30] and Brannen [8].

Recently, Petty projection inequality has been studied extensively (for example
see [17-20, 24, 33]). In particular, Lutwak, Yang and Zhang in [19] have extended
the Petty projection inequality to the Lp-projection body.

In [19] the authors showed the notion of Lp-projection body as follows: For
K ∈ Kn

o and real number p ≥ 1, the Lp-projection body, ΠpK, of K is origin-
symmetric convex body whose support function is given by

(1.3) hΠpK(u) = [
1

nωncn−2,p

∫
Sn−1

| u · v |p dSp(K, v)]
1
p ,

for all u ∈ Sn−1, where u · v denotes the standard inner product of u and v, and

(1.4) cn,p = ωn+p/ω2ωnωp−1.

Sp(K, ·) is a positive Borel measure on Sn−1, called the Lp-surface area measure
of K, S1(K) is just the classical surface area measure, S(K, ·), of K. It turns out
that the measure Sp(K, ·) is absolutely continuous with respect to the surface area
measure S(K, ·) of K, and has Radon-Nikodym derivative

(1.5)
dSp(K, ·)
dS(K, ·) = h(K, ·)1−p.

Regarding the study of the Lp-projection body also see [15, 28].
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Remark 1. The unusual normalization of definition (1.3) is chosen so that
for the unit ball, B, we have ΠpB = B. In particular, for p = 1 and K ∈ Kn,
then the convex body Π1K is the classical projection body ΠK of K under the
normalization of definition (1.3), and ΠB = B (rather than the classical ωn−1B,
see [19]).

Further, Lutwak, Yang and Zhang in [19] established the Lp-Petty projection
inequality: If K ∈ Kn

o , and p ≥ 1, then

(1.6) V (K)(n−p)/pV (Π∗
pK) ≤ ωn/p

n ,

with equality if and only if K is an ellipsoid centered at the origin. Where Π ∗
pK

denote the polar of the projection body ΠpK, rather than (ΠpK)∗. The Petty
projection inequality for Lp-mixed projection body was obtained by Wang and Leng
(see [33]).

Remark 2. For p = 1 and K ∈ Kn, we adopt the normalization of definition
(1.3), then Petty projection inequality (1.1) can be rewritten as follows (see [19]):
If K ∈ Kn, then

V (K)n−1V (Π∗K) ≤ ωn
n ,

with equality if and only if K is an ellipsoid. This is just the form of inequality
(1.6) for p = 1.

Remark 3. Under the normalization of definition (1.3), Petty’s conjecture (1.2)
can be rewritten that: If K ∈ Kn, is it true that

(1.7) V (ΠK)V (K)1−n ≥ ω2−n
n ,

with equality if and only if K is an ellipsoid?
Now a nature question is: if K ∈ Kn

o , what is the largest lower bound of the
affine invariant

(1.8) fp(K) = V (ΠpK)V (K)(p−n)/p

for p ≥ 1? When p = 1 and K ∈ Kn, Petty conjecture that fp(K) is minimized by
ellipsoids.

In this paper, we shall study this question. Our main woke is to find a lower
bound of fp(K), i.e., we give a Lp-version of the Petty’s conjectured projection
inequality. it can be stated:

Theorem 1. If K ∈ Kn
o , then for 1 ≤ p ≤ 2,

(1.9) fp(K) = V (ΠpK)V (K)(p−n)/p ≥ (ncn−2,p)−n/pω(2p−n)/p
n ;
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for 2 ≤ p ≤ ∞,
(1.10) fp(K) = V (ΠpK)V (K)(p−n)/p ≥ n−n/2(cn−2,p)−n/pω(2p−n)/p

n .

with equality in inequality (1.9) if and only if p = 2 and K is an ellipsoid centered
at the origin, with equality in inequality (1.10) for p �= 2 if and only if n = 1 and
K is an origin-symmetric segment or for p = 2 if and only if K is an ellipsoid
centered at the origin.

Let p = 1 in inequality (1.9), we immediately obtain a right form of the Petty’s
conjectured projection inequality as follows:

Corollary 1. If K ∈ Kn
o , then

(1.11) V (ΠK)V (K)1−n ≥ (2ωn−1)−nω2
n.

Compare with the Petty’s conjectured projection inequality (1.7) and inequality
(1.11), Petty’s conjecture (1.7) is stronger than inequality (1.11).

In the section 2 of this paper, for each K ∈ Kn
s , we give the definition of Π∞K.

From this, let p −→ ∞ in inequality (1.10), we obtain that

Corollary 2. If K ∈ Kn
s , then

(1.12) V (K)V (K∗) ≥ n−n/2ω2
n,

with equality if and only if n = 1 where K is an origin-symmetric segment and K ∗

denotes the polar of K.

Inequality (1.12) is of interest. It not only is just a reverse of the well-known
Blaschke-Santaló inequality (see [10, 31]) but also may be regarded as an analogy
form of the well-known Bourgain-Milman inequality (see [7]).

If K ∈ Kn
s , we also give a upper bound of fp(K) in (1.8) as follows:

Theorem 2. If K ∈ Kn
s , 1 ≤ p ≤ ∞, then

(1.13) fp(K) = V (ΠpK)V (K)(p−n)/p ≤ (cn−2,p)−n/pω(2p−n)/p
n ,

with equality for 1 ≤ p < ∞ if and only if n = 1 and K is an origin-symmetric
segment, for p = ∞ if and only if K is an ellipsoid centered at the origin.

Applying Theorem 1 and Theorem 2, we further study the monotony of volumes
for convex body K and its Lp- projection body ΠpK in the section 4 (Theorem 3
and Theorem 4).

Analogy to the proof method of Theorem 1, together with the results of Lutwak,
Yang and Zhang (see [21, 22]), we also obtain two reverses of theLp-Petty projection
inequality (Theorem 5 and Theorem 6) in the last section.
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2. PRELIMINARIES

2.1. Support Function, Radial Function and Polar Body

If K ∈ Kn, then its support function, hK = h(K, ·) : R
n −→ (0,∞), is defined

by (see [10, 27])

h(K, x) = max{x · y : y ∈ K}, x ∈ R
n,

where x · y denotes the standard inner product of x and y.
If K is a compact star-shaped (about the origin) in R

n, its radial function,
ρK = ρ(K, ·) : R

n\{0} −→ [0, +∞), is defined by (see [10, 27])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ R
n\{0}.

If ρK is positive and continuous,K will be called a star body (about the origin). Let
Sn

o denote the set of star bodies (about the origin) in R
n. Two star bodies K and L

are said to be dilates (of one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1.
From the definition of radial function, we know that for λ > 0, ρK(u) ≤ λρL(u)

for any u ∈ Sn−1 if and only if K ⊆ λL.
If K ∈ Kn

o , the polar body of K , K∗, is defined by (see [10, 31])

(2.1) K∗ = {x ∈ R
n : x · y ≤ 1, y ∈ K}.

Obviously, we have (K∗)∗ = K.
Regard to K ∈ Kn

o and its polar body, the well-known Blaschke-Santaló in-
equality can be stated that (see [10]): If K is an origin-symmetric convex body,
then

(2.2) V (K)V (K∗) ≤ ω2
n,

with equality if and only if K is an ellipsoid.
From the definition (2.1), we also know that: If K ∈ Kn

o , then the support and
radial functions of K∗, the polar body of K , are defined respectively by

(2.3) hK∗ =
1

ρK
and ρK∗ =

1
hK

.

If K, L ∈ Kn
o , λ > 0, then

(2.4) K ⊆ λL ⇐⇒ K∗ ⊇ 1
λ

L∗.

In particular,

(2.5) K = λL ⇐⇒ K∗ =
1
λ

L∗.
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2.2. Lp John Ellipsoid and the Body Γ−pK

The notion of Lp John ellipsoid is shown by Lutwak, Yang and Zhang in [22].
Suppose K ∈ Kn

o and 0 < p ≤ ∞, for each origin-symmetric ellipsoid E , the
unique ellipsoid EpK that solves the constrained maximization problem

V (EpK) = maxV (E) subject to V̄p(K, E) ≤ 1,

is called the Lp John ellipsoid of K. Where V̄p(K, L) = (Vp(K, L)/V (K))1/p,
Vp(K, L) is the Lp-mixed volume of K, L ∈ Kn

o .
When p = 2, the E2K is just the new ellipsoid Γ−2K (see [22]) which be

posed by Lutwak, Yang and Zhang in [21]; When p = ∞, the E∞K is just the
well-known classical John ellipsoid (see [22]).

For the Lp John ellipsoid, EpK, of K, the authors in [22] proved that: If
K ∈ Kn

o , 1 ≤ p ≤ ∞, then
(2.6) V (K) ≥ V (EpK),

with equality for p = 1 if and only if K is an ellipsoid, and equality for p > 1 if
and only if K is an ellipsoid centered at the origin.

Obviously, let p = 2 in inequality (2.6), we have that: If K ∈ Kn
o , then

(2.7) V (K) ≥ V (Γ−2K),

with equality if and only if K is an ellipsoid centered at the origin. The inequality
(2.7) first was established by Lutwak, Yang and Zhang in [21].

Lutwak, Yang and Zhang in [22] also showed the notion of body Γ−pK as
follows: If K ∈ Kn

o and p > 0, then body Γ−pK is an origin-symmetric body
whose radial function is given by

(2.8) ρ−p
Γ−pK(u) =

1
V (K)

∫
Sn−1

| u · v |p dSp(K, v),

for all u ∈ Sn−1. Where Sp(K, ·) is the Lp-surface area measure of K.
Note for p ≥ 1 the body Γ−pK is an origin-symmetric convex body (see [22]).

In particular, for p = 2, we have

ρ−2
Γ−2K(u) =

1
V (K)

∫
Sn−1

| u · v |2 dS2(K, v),

for all u ∈ Sn−1. This is just the definition of the new ellipsoid Γ−2K (see [21]).
Using (1.5), then definition (2.8) may be rewritten that

n
− 1

p ρ−1
Γ−pK(u) = [

1
nV (K)

∫
Sn−1

(
| u · v |
hK(v)

)phK(v)dS(K, v)]
1
p ,
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for all u ∈ Sn−1. Thus for p = ∞, define Γ−∞K by (see [22])

(2.9) Γ−∞K = lim
p−→∞Γ−pK

and
ρ−1

Γ−∞K(u) = max{| u · v |
hK(v)

: v ∈ suppS(K, ·)},

for all u ∈ Sn−1. From this, if K is an origin-symmetric convex body, then

(2.10) Γ−∞K = K.

2.3. The Definition of Π∞K

Analogous to the definition of Γ−∞K, we now give the definition of Π∞K.
From the definition (1.3) of ΠpK , together with (1.5) and (2.3), the definition

(1.3) may be rewritten as follows: For K ∈ Kn
o and p ≥ 1, then

(cn−2,pωnV (K))−
1
p ρ−1

Π∗
pK(u) = (cn−2,pωnV (K))−

1
p hΠpK

=
[

1
nV (K)

∫
Sn−1

( |u·v|
hK (v)

)p
hK(v)dS(K, v)

]1
p
,

for all u ∈ Sn−1. Thus for p = ∞, we define Π∗∞K by

(2.11) Π∗
∞K = lim

p−→∞Π∗
pK

and
ρ−1

Π∗∞K(u) = max{| u · v |
hK(v)

: v ∈ suppS(K, ·)}

for all u ∈ Sn−1. But using equality (1.4), we know

(2.12) lim
p−→∞(cn−2,p)1/p = 1.

Hence, if K ∈ Kn
s , then Π∗∞K = K, namely

(2.13) Π∞K = K∗.

2.4. Jensen’s Inequality

Suppose p �= 0, µ is a finite Borel measure in a set X , and f is a nonnegative
µ-integrable function on X . The pth mean Mpf of f is

Mpf =
[

1
µ(X)

∫
X

f(x)pdµ(x)
] 1

p

,
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lim
p−→∞Mpf = max{f(x) : x ∈ X}

and
lim

p−→0
Mpf = exp[

1
µ(X)

∫
X

logf(x)dµ(x)].

Jensen’s inequality may be stated that (see [12]):
If p ≤ q and Mqf exists, then

(2.14) Mpf ≤ Mqf,

with equality for p �= q if and only if f is a constant or if and only if p = q.

3. THE PROOFS OF THEOREM 1 AND THEOREM 2

In the section, we shall prove the Theorem 1 and Theorem 2. In order to prove
the two Theorems, the following Lemmas are essential.

Lemma 1. If K ∈ Kn
o , 0 < p ≤ q ≤ ∞, then

(3.1) n
1
q Γ−qK ⊆ n

1
p Γ−pK,

with equality for p �= q if and only if n = 1 and K is an origin-symmetric segment
or if and only if p = q.

Proof. From definition (2.8) and formula (1.5), together with Jensen’s inequality
(2.14), it follows that for 0 < p ≤ q < ∞,

ρ−1
Γ−pK(u) =

(
1

V (K)

∫
Sn−1

| u · v |p dSp(K, v)
)1

p

=
(

1
V (K)

∫
Sn−1

| u · v |p h1−p
K (v)dS(K, v)

)1
p

= n
1
p

(
1

nV (K)

∫
Sn−1

(
| u · v |
hK(v)

)phK(v)dS(K, v)
)1

p

≤ n
1
p

(
1

nV (K)

∫
Sn−1

(
| u · v |
hK(v)

)qhK(v)dS(K, v)
)1

q

= n
1
p
− 1

q

(
1

V (K)

∫
Sn−1

| u · v |q dSq(K, v)
)1

q

= n
1
p
− 1

q ρ−1
Γ−qK(u),

for all u ∈ Sn−1. From this, we get

n
1
q ρΓ−qK(u) ≤ n

1
p ρΓ−pK(u),
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for all u ∈ Sn−1. Further, we have

n
1
q Γ−qK ⊆ n

1
p Γ−pK,

this is just (3.1). For case q = ∞ follows from the real case together with definition
(2.9).

According to the condition of equality holds in Jensen’s inequality, we know
the equality holds in (3.1) for p �= q if and only if | u · v | /hK(v), for any give
u ∈ Sn−1 and all v ∈ Sn−1, is a constant or if and only if p = q, i.e., for p �= q if
and only if n = 1 and K is an origin-symmetric segment or if and only if p = q.

From (3.1), we immediately obtain that:

Lemma 2. If K ∈ Kn
o , then for 1 ≤ p ≤ 2,

(3.2) n
1
p Γ−pK ⊇ n

1
2 Γ−2K;

for 2 ≤ p ≤ ∞,

(3.3) n
1
p Γ−pK ⊆ n

1
2 Γ−2K.

In each inequality, with equality for p �= 2 if and only if n = 1 and K is an
origin-symmetric segment or if and only if p = 2.

Lemma 3. [22] If K ∈ Kn
o , then for 1 ≤ p ≤ 2,

(3.4) Γ−pK ⊆ EpK;

for 2 ≤ p ≤ ∞,

(3.5) Γ−pK ⊇ EpK.

In each inequality, with equality if and only if p = 2.

Lemma 4. If K ∈ Kn
o , 1 ≤ p ≤ ∞, then

(3.6) Γ∗
−pK = (

ncn−2,pωn

V (K)
)

1
p ΠpK.

Proof. According to definition (1.3), equality (2.3) and definition (2.8), we
respectively have that for 1 ≤ p < ∞,

ρ−p
Π∗

pK(u) = hp
ΠpK(u) =

1
nωncn−2,p

∫
Sn−1

| u · v |p dSp(K, v)
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and
ρ
−p
Γ−pK(u) =

1
V (K)

∫
Sn−1

| u · v |p dSp(K, v),

for all u ∈ Sn−1. Thus

ρ−p
Γ−pK(u) =

ncn−2,pωn

V (K)
ρ−p

Π∗
pK(u),

for all u ∈ Sn−1, hence

(3.7) Γ−pK = (
V (K)

ncn−2,pωn
)

1
p Π∗

pK.

Combining with (2.5) and (3.7), we immediately obtain (3.6).
For p = ∞, using definition (2.9) and (2.11), and together with equality (2.10),

(2.12) and (2.13), we easily know equality (3.6) and (3.7) are true.

Proof of Theorem 1. For 1 ≤ p ≤ 2, using (2.4) and (3.4), we get

(3.8) Γ∗
−pK ⊇ E∗

pK.

Because of the Lp John ellipsoid EpK is an origin-symmetric ellipsoid, together
with the condition of equality holds in the Blaschke-Santaló inequality (2.2), we
have

(3.9) V (EpK)V (E∗
pK) = ω2

n.

From (3.8) and (3.9), combining with inequality (2.6), we obtain that

(3.10) V (Γ∗
−pK) ≥ V (E∗

pK) =
ω2

n

V (EpK)
≥ ω2

n

V (K)
.

But equality (3.6) immediately gives that for 1 ≤ p ≤ ∞,

(3.11) V (Γ∗
−pK) = (

ncn−2,pωn

V (K)
)

n
p V (ΠpK).

Thus (3.10) can be rewritten by

(
ncn−2,pωn

V (K)
)

n
p V (ΠpK) ≥ ω2

n

V (K)
,

namely,
V (ΠpK)V (K)(p−n)/p ≥ (ncn−2,p)−n/pω(2p−n)/p

n ,
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this is just inequality (1.9). According to the conditions of equality hold in (2.6)
and (3.4), we see with equality in inequality (1.9) if and only if p = 2 and K is an
ellipsoid centered at the origin.

For 2 ≤ p ≤ ∞, according to (3.3) in Lemma 2, and using (2.4), we have

(3.12) n
− 1

p Γ∗
−pK ⊇ n− 1

2 Γ∗
−2K.

Analogy with the Lp John ellipsoid EpK, the volume of the new ellipsoid Γ−2K

satisfy (3.9). From this, together with (3.12) and inequality (2.7), then

n
−n

p V (Γ∗
−pK) ≥ n−n

2 V (Γ∗
−2K) =

n−n
2 ω2

n

V (Γ−2K)
≥ n−n

2 ω2
n

V (K)
.

Using (3.11), above inequality may be rewritten as follows:

n−n/p(
ncn−2,pωn

V (K)
)n/pV (ΠpK) ≥ n−n/2ω2

n

V (K)
,

thus
V (ΠpK)V (K)(p−n)/p ≥ n−n/2(cn−2,p)−n/pω(2p−n)/p

n .

Hence, inequality (1.10) is obtained. Together with the cases of equality hold in
(3.3) and (2.7), we know with equality in inequality (1.10) for p �= 2 if and only if
n = 1 and K is an origin-symmetric segment or for p = 2 if and only if K is an
ellipsoid centered at the origin.

To sum up, the proof of Theorem 1 is completed.

Proof of Corollary 1. Taking p = 1 in inequality (1.9), then

V (ΠK)V (K)1−n ≥ (ncn−2,1)−nω(2−n)
n ,

using (1.5), we know

ncn−2,1 = (n + 1)cn,1 =
2ωn−1

ωn
.

From this, inequality (1.11) of Corollary 1 is given.

Proof of Corollary 2. From inequality (1.10), together with definition (2.11),
equality (2.12) and (2.13), we immediately obtain inequality (1.12) of Corollary 2
when K ∈ Kn

s . The case of equality holds in inequality (1.10) immediately gives
that with equality in inequality (1.12) if and only if n = 1 and K is an origin-
symmetric segment.

The proof of Theorem 2 require the following a Lemma.
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If K ∈ Kn
s , let q = ∞ in Lemma 1, using (3.1) and together with definition

(2.9) and equality (2.10), we immediately get that

Lemma 5. If K ∈ Kn
s , 1 ≤ p ≤ ∞, then

(3.13) K ⊆ n
1
p Γ−pK,

with equality for 1 ≤ p < ∞ if and only if n = 1 and K is an origin-symmetric
segment or if and only if p = ∞.

Proof of Theorem 2. From (3.13), together with (2.4), then

n
− 1

p Γ∗
−pK ⊆ K∗,

thus
n
−n

p V (Γ∗
−pK) ≤ V (K∗),

using the Blaschke-Santaló inequality (2.2), we have

n−n
p V (Γ∗

−pK)V (K) ≤ V (K)V (K∗) ≤ ω2
n.

Above inequality together with (3.11) immediately give that

n
−n

p (
ncn−2,pωn

V (K)
)

n
p V (ΠpK)V (K) ≤ ω2

n,

namely,
V (ΠpK)V (K)(p−n)/p ≤ (cn−2,p)−n/pω(2p−n)/p

n ,

this is just inequality (1.13). According to the conditions of equality hold in inequal-
ity (3.13) and (2.2), we easily see with equality in inequality (1.13) for 1 ≤ p < ∞
if and only if n = 1 and K is an origin-symmetric segment, for p = ∞ if and only
if K is an ellipsoid centered at the origin. Theorem 2 is proven.

4. THE APPLICATIONS OF THEOREM 1 AND THEOREM 2

As the applications of Theorem 1 and Theorem 2, we give the monotony of
volumes of K and ΠpK in this section .

Theorem 3. IfK ∈ Kn
o , L ∈ Kn

s , and V (ΠpK) ≤ V (ΠpL), then for 1 ≤ p ≤ 2
and n > p,

(4.1) V (K) ≤ n
n

n−p V (L);
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for 2 ≤ p ≤ ∞ and n > p,

(4.2) V (K) ≤ n
np

2(n−p) V (L);

for 2 ≤ p ≤ ∞ and 2 ≤ n < p,

(4.3) V (K) ≥ n
np

2(n−p) V (L).

Theorem 4. Suppose K ∈ Kn
o , L ∈ Kn

s , if V (K) ≥ V (L) and n > p, then
for 1 ≤ p ≤ 2,

(4.4) V (ΠpK) ≥ n−n/pV (ΠpL),

for 2 ≤ p ≤ ∞,
(4.5) V (ΠpK) ≥ n−n/2V (ΠpL);

if V (K) ≤ V (L), then for 2 ≤ p ≤ ∞ and 2 ≤ n < p,

(4.6) V (ΠpK) ≥ n−n/2V (ΠpL).

Proof of Theorem 3. For 1 ≤ p ≤ 2, since K ∈ Kn
o , using inequality (1.9) of

Theorem 1, then

(4.7) V (K)(n−p)/p ≤ (ncn−2,p)n/pω(n−2p)/p
n V (ΠpK),

but V (ΠpK) ≤ V (ΠpL), thus

(4.8) V (K)(n−p)/p ≤ (ncn−2,p)n/pω(n−2p)/p
n V (ΠpL).

Because of L ∈ Kn
s , together with inequality (1.13) of Theorem 2, we have

(4.9) V (ΠpL) ≤ (cn−2,p)−n/pω(2p−n)/p
n V (L)(n−p)/p.

From inequalities (4.8) and (4.9), we obtain

V (K)(n−p)/p ≤ nn/pV (L)(n−p)/p.

Hence when n > p, we get inequality (4.1).
For 2 ≤ p ≤ ∞, since K ∈ Kn

o , then using inequality (1.10) of Theorem 1, we
give

(4.10) V (K)(n−p)/p ≤ nn/2(cn−2,p)n/pω(n−2p)/p
n V (ΠpK).
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According to the condition V (ΠpK) ≤ V (ΠpL) and (4.10), we get

(4.11) V (K)(n−p)/p ≤ nn/2(cn−2,p)n/pω(n−2p)/p
n V (ΠpL),

since L ∈ Kn
s , then using inequalities (4.9) and (4.11), we have

V (K)(n−p)/p ≤ nn/2V (L)(n−p)/p.

From this, when n > p, we obtain inequality (4.2); when 2 ≤ n < p, we get
inequality (4.3).

To sum up, the proof of Theorem 3 is completed.

Proof of Theorem 4. For 1 ≤ p ≤ 2, since L ∈ Kn
s , V (K) ≥ V (L) and n > p,

then using (4.9), we have that

(4.12)
V (ΠpL) ≤ (cn−2,p)−n/pω(2p−n)/p

n V (L)(n−p)/p

≤ (cn−2,p)−n/pω(2p−n)/p
n V (K)(n−p)/p,

but K ∈ Kn
o , thus inequality (4.7) and inequality (4.12) immediately give that

V (ΠpL) ≤ nn/pV (ΠpK),

hence inequality (4.4) is obtained.
For 2 ≤ p ≤ ∞ and n > p, since L ∈ Kn

s , V (K) ≥ V (L), then using (4.9),
we have inequality (4.12), but K ∈ Kn

o , then together with (4.10) and inequality
(4.12), we obtain

V (ΠpL) ≤ nn/2V (ΠpK),

namely inequality (4.5) is true.
For 2 ≤ p ≤ ∞ and 2 ≤ n < p, since V (K) ≤ V (L), thus

V (K)(n−p)/p ≥ V (L)(n−p)/p.

But K ∈ Kn
o , then using (4.10), we have

V (ΠpK) ≥ n−n/2(cn−2,p)−n/pω(2p−n)/p
n V (K)(n−p)/p

≥ n−n/2(cn−2,p)−n/pω(2p−n)/p
n V (L)(n−p)/p.

Because of L ∈ Kn
s , then using (4.9) and above inequalities, we obtain

V (ΠpK) ≥ n−n/2V (ΠpL),

this is inequality (4.6).
From this, we complete the proof of Theorem 4.
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5. THE REVERSES OF Lp-PETTY PROJECTION INEQUALITY

Now, analogy to the proof method for Theorem 1, we give two reverses of the
Lp-Petty projection inequality:

Theorem 5. If K ∈ Kn
s , then for 1 ≤ p ≤ 2,

(5.1) V (Π∗
pK)V (K)(n−p)/p ≥ 2−nnn/2(cn−2, p)n/pω(n+p)/p

n ;

for 2 ≤ p ≤ ∞,

(5.2) V (Π∗
pK)V (K)(n−p)/p ≥ 2−nnn/p(cn−2, p)n/pω(n+p)/p

n .

With equality in inequality (5.1) for p �= 2 if and only if n = 1 and K is an origin-
symmetric segment, for p = 2 if and only if K is a parallelotope, with equality in
inequality (5.2) if and only if p = 2 and K is a parallelotope.

Theorem 6. If K ∈ Kn
o , is positioned so that its John point is at the origin,

then for 1 ≤ p ≤ 2,

(5.3) V (Π∗
pK)V (K)(n−p)/p ≥ n!(cn−2, p)n/p

(n + 1)(n+1)/2
ω(n+p)/p

n ;

for 2 ≤ p ≤ ∞,

(5.4) V (Π∗
pK)V (K)(n−p)/p ≥ n!nn/p(cn−2, p)n/p

nn/2(n + 1)(n+1)/2
ω(n+p)/p

n .

With equality in inequality (5.3) for p �= 2 if and only if n = 1 and K is an
origin-symmetric segment, for p = 2 if and only if K is a simplex, with equality in
inequality (5.4) if and only if p = 2 and K is a simplex.

Here, we establish the following lemmas:

Lemma 6. If K ∈ Kn
o , then for 1 ≤ p ≤ 2,

(5.5) V (Π∗
pK)V (K)(n−p)/p ≥ nn/2(cn−2,p)n/pωn/p

n

V (Γ−2K)
V (K)

;

for 2 ≤ p ≤ ∞,

(5.6) V (Π∗
pK)V (K)(n−p)/p ≥ (ncn−2,p)n/pωn/p

n

V (EpK)
V (K)

.
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With equality in inequality (5.5) for p �= 2 if and only if n = 1 and K is an
origin-symmetric segment or if and only if p = 2, with equality in inequality (5.6)
if and only if p = 2.

Proof. For 1 ≤ p ≤ 2, using (3.2) of Lemma 2, then

nn/pV (Γ−pK) ≥ nn/2V (Γ−2K),

from (3.7), we get

(5.7) V (Γ−pK) = (
V (K)

ncn−2,pωn
)

n
p V (Π∗

pK),

thus
n

n
p (

V (K)
ncn−2,pωn

)
n
p V (Π∗

pK) ≥ n
n
2 V (Γ−2K),

this inequality immediately gives inequality (5.5). According to the case of equality
holds in (3.2), we know with equality in (5.5) for p �= 2 if and only if n = 1 and
K is an origin-symmetric segment or if and only if p = 2.

For 2 ≤ p ≤ ∞, from (3.5), we have

V (Γ−pK) ≥ V (EpK),

this inequality together with (5.7), we obtain

(
V (K)

ncn−2,pωn
)

n
p V (Π∗

pK) ≥ V (EpK).

From this, inequality (5.6) is obtained. The condition of equality holds in inequality
(5.6) is the same as (3.5).

Regard to the Lp John ellipsoid EpK, Lutwak, Yang and Zhang (see [22])
proved the following result.

Lemma 7. If K ∈ Kn
s , then for 0 < p ≤ ∞,

(5.8) V (EpK) ≥ 2−nωnV (K),

with equality if and only if K is a parallelotope. In particular, for E 2K = Γ−2K,
inequality (5.8) has been proven in [21].

Proof of Theorem 5. For 1 ≤ p ≤ 2, taking p = 2 in inequality (5.8), then

(5.9) V (Γ−2K) ≥ 2−nωnV (K),
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with equality if and only if K is a parallelotope. This inequality together with
inequality (5.5) give inequality (5.1). According to the conditions of equality hold
in (5.5) and (5.9), we easily see with equality in (5.1) for p �= 2 if and only if n = 1
and K is an origin-symmetric segment (1-dimensional parallelotope), for p = 2 if
and only if K is a parallelotope.

For 2 ≤ p ≤ ∞, again using inequality (5.8), and combining with (5.6), in-
equality (5.2) is immediately given. Obviously, with equality in (5.2) if and only if
p = 2 and K is a parallelotope by the cases of equality hold in (5.6) and (5.8).

The proof of Theorem 6 also require several Lemmas.

Lemma 8. [22] If K ∈ Kn
o , 0 < p ≤ q ≤ ∞, then

(5.10) V (EqK) ≤ V (EpK).

Lemma 9. [3] If K is positioned so that its John points at the origin, then
there exists an ellipsoid E ⊆ K, centered at the origin, such that

(5.11) V (E) ≥ n!ωn

nn/2(n + 1)(n+1)/2
V (K).

with equality if and only if K is a simplex.

Using Lemma 8 and Lemma 9, we may obtain the following result:

Lemma 10. If K ∈ Kn
o , is positioned so that its John points at the origin,

0 < p ≤ ∞, then

(5.12) V (EpK) ≥ n!ωn

nn/2(n + 1)(n+1)/2
V (K),

with equality if and only if K is a simplex.

When p = 2, the proof of Lemma 10 by Lutwak, Yang and Zhang (see [21]).

Proof. Because of E∞K is just the John’s ellipsoid, write EJK, of convex
body K (see [22]), then inequality (5.10) in Lemma 8 gives that

V (EpK) ≥ V (EJK).

Since each convex body K, its John’s ellipsoid EJK is a unique ellipsoid of
maximal volume contained in K. Thus together with inequality (5.11), we imme-
diately obtain inequality (5.12). According to the condition of equality holds in
(5.11), we know with equality in (5.12) if and only if K is a simplex.
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Proof of Theorem 6. For 1 ≤ p ≤ 2, taking p = 2 in inequality (5.12) and using
inequality (5.5), we get inequality (5.3). Because of an origin-symmetric segment
may be regarded as a 1-dimensional simplex, thus together with the conditions of
equality hold in (5.5) and (5.12), we see with equality in (5.3) for p �= 2 if and only
if n = 1 and K is an origin-symmetric segment, for p = 2 if and only if K is a
simplex.

For 2 ≤ p ≤ ∞, inequalities (5.6) and (5.12) immediately give inequality (5.4),
and with equality in (5.4) if and only if p = 2 and K is a simplex.

The proof of Theorem 6 is over.
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