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A-STATISTICAL CONVERGENCE OF SEQUENCES
OF CONVOLUTION OPERATORS

Oktay Duman

Abstract. In this paper, using the concept of A−statistical convergence we
are concerned with the Korovkin type approximation theory for a sequence of
positive convolution operators defined on C[a, b], the space of all real valued
continuous functions on [a, b].We also study rates ofA−statistical convergence
of these operators.

1. INTRODUCTION

In this paper, we are concerned with the Korovkin type approximation theory for
positive convolution operators via statistical convergence. The study of the Korovkin
type approximation theory is a well-established area of research, which deals with the
problem of approximating a function f by means of a sequence {Ln(f)} of positive
linear operators. Statistical convergence, while introduced over nearly fifty years
ago, has only recently become an area of active research. Especially it has made an
appearance in approximation theory [11] (see also [5, 6). Recall that approximation
theory has important applications in various areas of functional analysis, and in
numerical solutions of differential and integral equations [1, 4, 15].

The first section of this paper introduces some basic ideas related to statistical
convergence while the second section describes some Korovkin type approximation
theorems for a sequence of positive convolution operators defined on the space of
all real valued continuous functions on an interval [a, b]. The third section addresses
some problems concerning rates of statistical convergence of the sequence of con-
volution operators. In the last section, we consider positive convolution operators
on C∗, the space of all 2π−periodic and continuous functions on the whole real
axis, and give an A−statistical approximation result.
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We now turn to introducing some notation and basic definitions used in this
paper.

Let A = (ajn) be an infinite summability matrix. For a given sequence x :=
(xn), the A−transform of x, denoted by Ax := ((Ax)j), is given by (Ax)j =∑∞

n=1 ajnxn provided the series converges for each j. We say that A is regular if
limAx = L whenever limx = L [12]. Assume now that A is a non-negative regular
summability matrix and K is a subset of N, the set of all natural numbers. The
A−density of K, denoted by δA(K), is defined by δA(K) := limj

∑∞
n=1 ajnχK(n)

provided the limit exists, where χK is the characteristic function of K. If x = (xn)
is a sequence such that xn satisfies a property P for all n except a set of A−density
zero, then we say that xn satisfies P for “almost all n”, and we abbreviate this
by “a. a. n”. A sequence x = (xn) is said to be A−statistically convergent to a
number L if, for every ε > 0, δA{n ∈ N : |xn − L| ≥ ε} = 0; or equivalently

lim
j

∑
n: |xn−L|≥ε

ajn = 0.

We denote this limit by stA−limx = L [8] (see also [2, 3, 13, 14 17). For A = C1,
the Cesáro matrix, A−statistical convergence reduces to statistical convergence [7,
9, 10]. Taking A = I, the identity matrix, A−statistical convergence coincides
with the ordinary convergence. We note that if A = (ajn) is a regular summability
matrix for which limj maxn |ajn| = 0, then A−statistical convergence is stronger
than convergence [14]. It should be also noted that the concept of A−statistical
convergence may also be given in normed spaces (see [13] for details).

2. A-STATISTICAL APPROXIMATION BY CONVOLUTION OPERATORS

As usual, C[a, b] denotes the space of all real valued continuous functions de-
fined on [a, b]. Then C[a, b] is a Banach space with the usual norm ‖·‖C[a,b] defined
by

‖f‖ := ‖f‖C[a,b] = sup
x∈[a,b]

|f(x)| , f ∈ C[a, b].

Let L be a linear operator from C[a, b] into C[a, b]. Then we say that L is positive
linear operator provided that f ≥ 0 implies L(f) ≥ 0. Also, we denote the value of
L(f) at a point x ∈ [a, b] by L(f ; x).

We now consider the following convolution operators defined on C[a, b] :

(2.1) Ln(f ; x) =

b∫
a

f(y)Kn(y − x)dy, n ∈ N, x ∈ [a, b] and f ∈ C[a, b],

where a and b are two real numbers such that a < b.
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Throughout the paper we assume thatKn is a continuous function on [a−b, b−a]
and also that Kn(u) ≥ 0 for all n ∈ N and for every u ∈ [a− b, b−a]. Note that if
x, y ∈ [a, b] then u := y−x ∈ [a− b, b−a]. In this case our convolution operators
Ln given by (2.1) are positive and linear.

Recently, Srivastava and Gupta [18] have studied on approximation properties
of a certain family of summation-integral type operators in the classical sense. How-
ever, in this section we obtain a Korovkin type approximation theorem for positive
convolution operators via the concept of A−statistical convergence which is a more
general and stronger method than the ordinary convergence.

We first recall that Gadjiev and Orhan [11] proved the following Korovkin type
result for any sequence of positive linear operators defined on C[a, b] by using the
concept of statistical convergence.

Theorem A. [11]. Let {Ln} be a sequence of positive linear operators from
C[a, b] into C[a, b]. If

st − lim
n

‖Ln(fi) − fi‖ = 0 with fi(y) = yi, i = 0, 1, 2,

then, for all f ∈ C[a, b], we have

st − lim
n

‖Ln(f)− f‖ = 0.

Assume now that A = (ajn) is a non-negative regular summability matrix. Then
Theorem A works for A−statistical convergence. Furthermore, using the function
ϕ on [a, b] defined by ϕ(y) := (y − x)2 for each x ∈ [a, b] we have the following
result that we need in proving the main result of this section. Note that if Ln is a
positive and linear, then Ln(ϕ; x) = Ln(f2; x)− 2xLn(f1; x) + x2Ln(f0; x) with
fi(y) = yi (i = 0, 1, 2) since ϕ ∈ C[a, b].

Theorem 2.1. Let A = (ajn) be a non-negative regular summability matrix
and let {Ln} be a sequence of positive linear operators from C[a, b] into C[a, b].
If

stA − lim
n

‖Ln(f0)− f0‖ = 0 with f0(y) = 1

and
stA − lim

n
‖Ln(ϕ)‖ = 0,

then, for all f ∈ C[a, b], we have

stA − lim
n

‖Ln(f) − f‖ = 0.
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Proof. Let f ∈ C[a, b] and x ∈ [a, b]. Since f is continuous on [a, b], for every
ε > 0 there exists a real number δ > 0 such that |f(y) − f(x)| < ε for y satisfying
|y − x| ≤ δ. Letting Iδ := [x − δ, x + δ] ∩ [a, b], we can write that

(2.2)
|f(y)− f(x)| = |f(y) − f(x)|χIδ

(y) + |f(y) − f(x)|χ[a,b]\ Iδ
(y)

≤ ε + 2M δ−2(y − x)2

whereM := ‖f‖ . Using (2.2), positivity and linearity of the operators Ln, we have

|Ln(f ; x)− f(x)| ≤ Ln(|f(y) − f(x)| ; x)

+ |f(x)| |Ln(f0; x)− f0(x)|

≤ εLn(f0; x) +
2M

δ2
Ln(ϕ; x)

+M |Ln(f0; x)− f0(x)|
≤ ε + α {|Ln(f0; x)− f0(x)|+ Ln(ϕ; x)}

where α := max
{

ε + M,
2M

δ2

}
. This implies that

(2.3) ‖Ln(f)− f‖ ≤ ε + α {‖Ln(f0)− f0‖ + ‖Ln(ϕ)‖} .

Given r > 0, choose ε > 0 such that ε < r. Define

D : = {n : ‖Ln(f)− f‖ ≥ r} ,

D1 : =
{

n : ‖Ln(f0)− f0‖ ≥ r − ε

2α

}
,

D2 : =
{

n : ‖Ln(ϕ)‖ ≥ r − ε

2α

}
.

Then it follows from (2.3) that D ⊆ D1 ∪ D2. So we get, for all j ∈ N, that

(2.4)
∑
n∈D

ajn ≤
∑

n∈D1

ajn +
∑

n∈D2

ajn.

Letting j → ∞ in (2.4) and using the hypotheses we have

lim
j

∑
n∈D

ajn = 0,

which yields the proof.
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Let δ be a positive real number so that δ < b−a
2 , and let

‖f‖δ := sup
a+δ≤x≤b−δ

|f(x)| , f ∈ C[a, b].

In order to give our main result we need the following lemmas.

Theorem 2.2. Let A = (ajn) be a non-negative regular summability matrix.
Assume that δ is a fixed positive number such that δ < b−a

2 . If the conditions

(2.5) stA − lim
n

δ∫
−δ

Kn(y)dy = 1

and

(2.6) stA − lim
n

(
sup
|y|≥δ

Kn(y)

)
= 0

hold, then for the operators Ln given by (2.1), we have

stA − lim
n

‖Ln(f0) − f0‖δ = 0 with f0(y) = 1.

Proof. Fix 0 < δ < b−a
2 and let x ∈ [a + δ, b − δ]. Then it is easy to see that

(2.7) −(b − a) ≤ a − x ≤ −δ

and

(2.8) δ ≤ b − x ≤ b − a.

It follows from (2.1) that, for all n ∈ N,

(2.9) Ln(f0; x) =

b∫
a

Kn(y − x)dy =

b−x∫
a−x

Kn(y)dy.

Taking into consideration (2.7), (2.8) and (2.9) we have

(2.10)
δ∫

−δ

Kn(y)dy ≤ Ln(f0; x) ≤
b−a∫

−(b−a)

Kn(y)dy.

Hence (2.10) and (2.7) imply that

(2.11) ‖Ln(f0) − f0‖δ ≤ un
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where

un := max



∣∣∣∣∣∣

δ∫
−δ

Kn(y)dy − 1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

b−a∫
−(b−a)

Kn(y)dy − 1

∣∣∣∣∣∣∣

 .

Note that since condition (2.5) holds for all δ > 0 such that δ < (b − a)/2, it is
clear that

(2.12) stA − lim
n

un = 0.

Now, for a given ε > 0, we get from (2.11) that

D := {n : ‖Ln(f0) − f0‖δ ≥ ε} ⊆ {n : un ≥ ε} =: D′.

Then, for all j ∈ N, we have

(2.13)
∑
n∈D

ajn ≤
∑
n∈D′

ajn.

Taking limit as j → ∞ in (2.13) and using (2.12) we immediately conclude the
result.

Lemma 2.3. Let A = (ajn) be a non-negative regular summability matrix. If
(2.5) and (2.6) hold for a fixed δ > 0 such that δ < b−a

2 , then for the operators
Ln given by (2.1), we have

stA − lim
n

‖Ln(ϕ)‖δ = 0 with ϕ(y) := (y − x)2.

Proof. For a fixed 0 < δ < b−a
2 , let x ∈ [a + δ, b − δ]. Note that, for

x ∈ [a + δ, b − δ], since ϕ(y) = y2 − 2xy + x2, it is obvious that ϕ ∈ C[a, b]
for each x ∈ [a + δ, b − δ]. So we can compute Ln(ϕ; x). Actually, Ln(ϕ; x) =
Ln(f2; x) − 2xLn(f1; x) + x2Ln(f0; x) with fi(y) = yi (i = 0, 1, 2). Then using
(2.1), (2.7) and (2.8) we get, for all n ∈ N, that

(2.14) Ln(ϕ; x) =

b−x∫
a−x

y2Kn(y)dy ≤
b−a∫

−(b−a)

y2Kn(y)dy.

Since the function f2 is continuous at y = 0, given ε > 0 there exists η > 0 such
that y2 < ε for all y satisfying |y| ≤ η. Here we have two cases such that η ≥ b−a

or η < b − a.
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Case 1. Let η ≥ b − a. Then it follows from (2.14) that

0 ≤ Ln(ϕ; x) ≤ ε2

b−a∫
−(b−a)

Kn(y)dy,

and hence, by (2.5) the proof is completed.
Case 2. Now let η < b − a. Then we can write from (2.14) that

Ln(ϕ; x) ≤
∫

|y|≥η

y2Kn(y)dy +
∫

|y|≤η

y2Kn(y)dy

and hence we obtain, for all n ∈ N, that

(2.15) ‖Ln(ϕ)‖δ ≤ an

(
(b − a)3 − η3

3

)
+ ε2bn,

where
an : = sup

|y|≥η

Kn(y) and bn : =
∫

|y|≤η

Kn(y)dy.

Observe that conditions (2.5) and (2.6) yield stA−lim
n

an = 0 and stA−lim
n

bn = 1,

respectively. Taking M : = max
{

(b − a)3 − η3

3
, ε2

}
in (2.15), we conclude, for

all n ∈ N, that

(2.16) ‖Ln(ϕ)‖δ ≤ ε2 + M (an + |bn − 1|) .

Given r > 0, choose ε > 0 such that ε2 < r. Define the following sets:

D := {n : ‖Ln(ϕ)‖δ ≥ r} ,

D1 :=
{

n : an ≥ r − ε2

2M

}
,

D2 :=
{

n : |bn − 1| ≥ r − ε2

2M

}
.

Then, by (2.16) we immediately get D ⊆ D1 ∪ D2. Hence, for all j ∈ N, we have

(2.17)
∑
n∈D

ajn ≤
∑

n∈D1

ajn +
∑

n∈D2

ajn.

Since stA−lim
n

an =stA−lim
n

|bn−1| , letting j→∞ in (2.17) the proof follows.
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Now the following main result follows from Theorem 2.1, Lemmas 2.2 and 2.3
at once.

Theorem 2.4. Let A = (ajn) be a non-negative regular summability matrix
and let {Ln} be a sequence of convolution operators given by (2.1). If conditions
(2.5) and (2.6) hold for a fixed δ > 0 such that δ < b−a

2 , then for all f ∈ C[a, b],
we have

(2.18) stA − lim
n

‖Ln(f) − f‖δ = 0.

If we take A = I, the identity matrix, we then get the following

Corollary 2.5. Assume that δ is a fixed positive number such that δ < b−a
2 . If

the conditions

lim
n

δ∫
−δ

Kn(y − x)dy = 1 and lim
n

(
sup
|y|≥δ

Kn(y)

)
= 0

hold, then for all f ∈ C[a, b], we have

lim
n

‖Ln(f) − f‖δ = 0,

i.e., for all f ∈ C[a, b], the sequence {Ln(f)} is uniformly convergent to f on the
interval [a + δ, b − δ].

Remark. We now exhibit a sequence of positive convolution operators for
which Corollary 2.5 does not apply but our Theorem 2.4 does.

Let A = (ajn) be a non-negative regular summability matrix for which limj

maxn{ajn} = 0. In this case A−statistical convergence is stronger than ordinary
convergence [14]. So we can choose a sequence (dn) which is A−statistically null
but non-convergent. Without loss of generality we may assume that (dn) is non-
negative. Otherwise we would replace (dn) by (|dn|). Now let the operators Ln on
C[a, b] be defined by

(2.19) Ln(f ; x) =
n(1 + dn)√

π

b∫
a

f(y)e−n2(y−x)2dy.

If we choose

(2.20) Kn(y) =
n(1 + dn)√

π
e−n2y2

,
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then the operators Ln given by (2.19) have form of the convolution operators as in
(2.1).

Observe that the functions Kn given by (2.20) do not satisfy the hypotheses of
Corollary 2.5. However, we now show that each function Kn in (2.20) satisfies
conditions (2.5) and (2.6). Indeed, for every δ > 0 such that δ < b−a

2 , we have

δ∫
−δ

Kn(y)dy =
n(1 + dn)√

π




∞∫
−∞

e−n2y2
dy −

∫
|y|≥δ

e−n2y2
dy




=
2(1 + dn)√

π


 ∞∫

0

e−y2
dy −

∞∫
δ.n

e−y2
dy


 .

Since
∞∫
0

e−y2
dy =

√
π

2
< ∞, it is clear that lim

n

∞∫
δ.n

e−y2
dy = 0. Also, since

stA − lim
n

(1 + dn) = 1, we immediately get

stA − lim
n

δ∫
−δ

Kn(y)dy = 1,

which gives (2.5).
On the other hand, we have

sup
|y|≥δ

Kn(y) =
n(1 + dn)√

π
sup
|y|≥δ

e−n2y2

≤ n(1 + dn)
en2δ2 .

Since lim
n

n

en2δ2 = 0 and stA − lim
n

(1 + dn) = 1, we conclude that

stA − lim
n

(
sup
|y|≥δ

Kn(y)

)
= 0,

hence (2.6) holds. Therefore, by Theorem 2.4, the operators Ln given by (2.19)
satisfy condition (2.18) for all f ∈ C[a, b].

3. RATES OF A-STATISTICAL CONVERGENCE

In this section, using the modulus of continuity we study rates of A− statistical
convergence in Theorem 2.4.
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The concepts of the rates of A−statistical convergence have been introduced in
[5] as follows:

Let A = (ajn) be a non-negative regular summability matrix and let (an) be
a positive non-increasing sequence of real numbers. Then a sequence x = (xn) is
A−statistically convergent to a number L with the rate of o(an) if for every ε > 0,

lim
j

1
aj

∑
n:|xn−L|≥ε

ajn = 0. In this case we write xn−L = stA−o(an), (as n → ∞).

If for every ε > 0, sup
j

1
aj

∑
n:|xn|≥ε

ajn < ∞, then x is A−statistically bounded with
the rate of O(an) and it is denoted by xn = stA − O(an), (as n → ∞). In the
above two definitions the “rate” is more controlled by the entries of the summability
method rather than the terms of the sequence x = (xn). For instance, when one
takes the identity matrix I, if ann = o(an) then xn − L = stA − o(an) for any
convergent sequence (xn−L) regardless of how slowly it goes to zero. To avoid such
an unfortunate situation we may consider the concept of convergence in measure
from measure theory to define the rate of convergence as follows: x = (xn) is
A−statistically convergent to L with the rate of om(an), denoted by xn − L =
stA − om(an), (as n → ∞), if for every ε > 0, lim

j

∑
n:|xn−L|≥εan

ajn = 0. Finally,

the sequence x = (xn) is A−statistically bounded with the rate of Om(an) provided
that there is a positive number M such that lim

j

∑
n:|xn|≥Man

ajn = 0. In this case we

write xn = stA − Om(an), (as n → ∞).
Let f ∈ C[a, b]. The modulus of continuity (see, for instance, [15]), denoted by

w(f, α), is defined to be

w(f, α) = sup
|y−x|≤α

|f(y) − f(x)| .

The modulus of continuity of the function f in C[a, b] gives the maximum oscillation
of f in any interval of length not exceeding α > 0. It is well-known that if f ∈
C[a, b], then

lim
α→0

w(f, α) = w(f, 0) = 0,

and that for any constants c > 0, α > 0,

(3.1) w(f, cα) ≤ (1 + [c]) w(f, α),

where [c] is defined to be the greatest integer less than or equal to c.
Hence we get the following

Theorem 3.1. Let A = (ajn) be a non-negative regular summability matrix
and let {Ln} be a sequence of convolution operators given by (2.1). Assume further
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that (an) and (bn) are two positive non-increasing sequences. If, for a fixed δ > 0
such that δ < b−a

2 ,

(3.2) ‖Ln(f0)− f0‖δ = stA − o(an), (as n → ∞),

and

(3.3) w(f, αn) = stA − o(bn), (as n → ∞),

where αn :=
√‖Ln(ϕ)‖δ, then for all f ∈ C[a, b], we have

‖Ln(f) − f‖δ = stA − o(cn), (as n → ∞),

where cn := max{an, bn}. Similar results hold when little “o” is replaced by big
“O”.

Proof. Let 0 < δ < b−a
2 , f ∈ C[a, b] and x ∈ [a + δ, b − δ]. By positivity and

linearity of the operators Ln and using inequality (3.1), we get, for any α > 0, that

|Ln(f ; x)−f(x)|≤Ln (|f(y)− f(x)| ; x) + |f(x)| |Ln(f0; x)− f0(x)|

≤Ln

(
w

(
f, α

|y − x|
α

)
; x
)

+ |f(x)| |Ln(f0; x)− f0(x)|

≤w(f, α)Ln

(
1 +

[ |y − x|
α

]
; x
)

+ |f(x)| |Ln(f0; x)− f0(x)|

≤w(f, α)
{
Ln(f0; x)+

1
α2

Ln(ϕ; x)
}

+|f(x)| |Ln(f0; x)−f0(x)|.

This yields that, for all n ∈ N,

(3.4) ‖Ln(f)− f‖δ ≤ w(f, α)
{
‖Ln(f0)‖δ +

1
α2

‖Ln(ϕ)‖δ

}
+M1 ‖Ln(f0)− f0‖δ

where M1 := ‖f‖δ . Now letting α := αn =
√‖Ln(ϕ)‖δ in (3.4), we have

‖Ln(f) − f‖δ ≤ w(f, αn) {‖Ln(f0)‖δ + 1} + M1 ‖Ln(f0)− f0‖δ

≤ 2w(f, αn) + w(f, αn) ‖Ln(f0)− f0‖δ + M1 ‖Ln(f0) − f0‖δ .

Let M := max{2, M1}. Then we can write, for all n ∈ N, that

(3.5)
‖Ln(f) − f‖δ ≤ M {w(f, αn) + w(f, αn) ‖Ln(f0) − f0‖δ

+ ‖Ln(f0) − f0‖δ}
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Given ε > 0, define the following sets:

D : = {n : ‖Ln(f) − f‖δ ≥ ε} ,

D1 : =
{
n : w(f, αn) ≥ ε

3M

}
,

D2 : =
{
n : w(f, αn) ‖Ln(f0) − f0‖δ ≥ ε

3M

}
,

D3 : =
{
n : ‖Ln(f0) − f0‖δ ≥ ε

3M

}
.

Then we easily see from (3.5) that D ⊆ D1 ∪ D2 ∪ D3. Also, defining

D′
2 :=

{
n : w(f, αn) ≥

√
ε

3M

}
and

D′′
2 :=

{
n : ‖Ln(f0) − f0‖δ ≥

√
ε

3M

}
one can deduce that D2 ⊆ D′

2 ∪D′′
2 . Hence we get D ⊆ D1∪D′

2∪D′′
2 ∪D3. Since

cn = max{an, bn}, we obtain, for all j ∈ N, that

(3.6)

1
cj

∑
n∈D

ajn ≤ 1
bj

∑
n∈D1

ajn +
1
bj

∑
n∈D′

2

ajn +
1
aj

∑
n∈D′′

2

ajn

+
1
aj

∑
n∈D3

ajn.

Letting j → ∞ in (3.6) and using (3.2) and (3.3) we have

lim
j

1
cj

∑
n∈D

ajn = 0,

whence the result.

Finally, the above proof can easily be modified to prove the following analog.

Theorem 3.2. Let A = (ajn), {Ln}, (αn), (an) and (bn) be as in Theorem
3.1. If, for a fixed δ > 0 such that δ < b−a

2 ,

‖Ln(f0) − f0‖δ = stA − om(an), (as n → ∞),

and
w(f, αn) = stA − om(bn), (as n → ∞),

then, for all f ∈ C[a, b], we have

‖Ln(f) − f‖δ = stA − om(cn), (as n → ∞),

where cn := max{an, bn, anbn}. Similar conclusions hold when little “o m” is
replaced by big “Om”.



A−Statistical Convergence of Convolution Operators 535

4. SOME FURTHER RESULTS

In this section using the A−statistical convergence, we deal with an approx-
imation result by positive convolution operators defined on C∗, the space of all
2π−periodic and continuous functions on the whole real axis with the usual norm

‖f‖C∗ = sup
x∈R

|f(x)| , f ∈ C∗.

We now consider the convolution operators Ln defined on C∗ by

(4.1) Ln(f ; x) =
1
2π

π∫
−π

f(y)Kn(y − x)dy, n ∈ N and f ∈ C∗,

where Kn ∈ C∗ for all n ∈ N and Kn(y) ≥ 0 for every y ∈ [−π, π]. So Kn is
non-negative on the whole real axis. Then using the similar technique as in the
proof of Theorem 2.4 one can also get the following result.

Theorem 4.1. Let A = (ajn) be a non-negative regular summability matrix
and let {Ln} be a sequence of convolution operators given by (4.1). If

1
2π

π∫
−π

Kn(y)dy = 1 a. a. n

and, for any δ > 0
stA − lim

n

(
sup
|y|≥δ

Kn(y)

)
= 0,

then for all f ∈ C∗, we have

stA − lim
n

‖Ln(f) − f‖C∗ = 0.

Of course, if the matrix A in Theorem 4.1 is replaced by the identity matrix I,

then we immediately get the classical approximation result (see, e.g., [16, p. 9]).
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