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SOME ENTIRE SOLUTIONS OF THE ALLEN–CAHN EQUATION

Yukitaka Fukao, Yoshihisa Morita and Hirokazu Ninomiya

Abstract. This paper is dealing with entire solutions of a bistable reaction-
diffusion equation with Nagumo type nonlinearity, so called the Allen–Cahn
equation. Here the entire solutions are meant by the solutions defined for all
(x; t) 2 R£ R. In this article we first show the existence of an entire solution
which behaves as two traveling front solutions coming from both sides of
x-axis and annihilating in a finite time, using the explicit expression of the
traveling front and the comparison theorem. We also show the existence of
an entire solution emanating from the unstable standing pulse solution and
converges to the pair of diverging traveling fronts as the time tends to infinity.
Then in terms of the comparison principle we prove a rather general result
on the existence of an unstable set of an unstable equilibrium to apply to the
present case.

1. INTRODUCTION

We are concerned with the following scalar reaction-diffusion equation:

ut = uxx +u(u¡a)(1 ¡u); x 2 R(1.1)

with the constant a satisfying

0 < a<
1

2
:

This equation is called the Allen-Cahn equation in a phase transition problem while
called the Nagumo equation in a propagation phenomenon of nerve excitation.

The equation (1.1) has the characteristic feature such that the dynamics generated
by the diffusion–free equation of (1.1) admits two stable equilibria u = 0; 1 and an
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unstable one u = a separating the basins of the two equilibria. Thus it is a called
a bistable reaction-diffusion equation or a reaction-diffusion equation with bistable
nonlinearity.

One of the most basic but important nontrivial behavior of solutions to such
a bistable reaction-diffusion equation on R is the propagation of a traveling front
wave, which is characterized by a solution having the form ©(x¡ct) or ©(¡x¡ct),
where c is a positive constant and ©(z) is monotone decreasing with ©(¡1) = 1
and ©(1) = 0. We note that the existence and the stability of the traveling front
wave for reaction-diffusion equations with more general bistable nonlinearity were
extensively studied in [1], [2], [4] and [6]. (We also refer to the study for the
dynamics of the transition layer with small diffusion coefficient, for instances, see
[3] and [12] and references therein).

Other interesting phenomena concerning the traveling front wave are annihilation
of two front waves and generation of diverging fronts. We explain these phenomena
more precisely. Let two facing fronts be created. Then the left front and the right
front travel from left to right and from right to left respectively. The two fronts
eventually collide and annihilate in a finite time. On the other hand there is a
solution developing into a pair of two diverging fronts for appropriate initial data.
In this case as t!1, the two fronts converges traveling front waves ©(x¡ct¡x0)
in x ¸ 0 and ©(¡x¡ ct¡ x1) in x · 0 respectively, where x0 and x1 are some
constants. These dynamics were also mathematically studied in detail. For instance,
as for the former case see [3] and [12] and the latter case can be found in [6].

We, however, arrive at the query that there exists an entire solution characterizing
the annihilation of two fronts or the diverging fronts, where the entire solution is
meant by a solution which defined for all (x; t) 2 R £ R. We remark that an
equilibrium solution and a traveling wave solution are simple examples of entire
solutions. Thus we have to look for a different type of entiresolutions. Yagisita [13]
gave a positive answer to the former case, that is, he proved that there is an entire
solution u(x; t) such that

Fig. 1. Annihilation of fronts.
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Fig. 2. Diverging fronts.

lim
t!¡1

½
sup
x·0

¯̄
¯u(x; t)¡ ©(x¡ ct ¡x0)

¯̄
¯+ sup

x¸0

¯̄
¯u(x; t)¡ ©(¡x¡ ct ¡ x1)

¯̄
¯
¾

= 0;

and
lim
t!1

sup
x2R

ju(x; t)¡ 1j = 0;

for given x0;x1 (see [7] for Fisher-KPP equation). He also discussed the stability
and the uniqueness. His study revealed a new aspect of the dynamical property
of the bistable reaction-diffusion equation. His main tools used in the proof are
the spectrum theorem for the linearized problem of the traveling front wave, the
invariant manifold theorem and the comparison theorem. In fact he proved the
above result in skillful. Unfortunately his argument is rather technical and lengthy.

The aim of this article is to propose a simple proof for the existence of the
entire solution found in [13] and to show the other entire solution characterizing
the diverging fronts in the specific equation (1.1). In our argument we use only the
comparison principle for a parabolic equation together with the continuity of the
semiflow defined by the time translation of solutions. For instance in the former
case we propose appropriate supersolution and subsolution defined globally in time
such that they both have the same asymptotic profile and the same convergence rate
as t ! ¡1. Once we establish them, we can show the existence of the desired
entire solution by the comparison theorem and the continuity of the semiflow.

The main result is the following:

Theorem 1.1 Consider the reaction-diffusion equation (1:1).
(i) Given constants x1 and x2 there exists an entire solution u(x; t) satisfying

0 < u(x; t)< 1 and

lim
t!¡1

½
sup
x·0

¯̄
¯u(x; t)¡ ©(x ¡ ct¡ x1)

¯̄
¯ + sup

x¸0

¯̄
¯u(x; t)¡ ©(¡x ¡ ct + x2)

¯̄
¯
¾

= 0;

lim
t!1

sup
x2R

ju(x; t)¡ 1j = 0:
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(ii) Let v(x) be a positive standing pulse solution. Given x1 andx2 there exists an
entire solutions u1(x; t) satisfying v(x¡ ¹x) < u1(x; t) < 1; ¹x= (x1+x2)=2
and

lim
t!¡1 sup

x2R
ju1(x; t)¡ v(x ¡ ¹x)j = 0;

lim
t!1

fsup
x¸0

ju1(x; t)¡ ©(x ¡ ct¡ x1)j + sup
x·0

ju1(x;t)¡ ©(¡x¡ ct + x2)jg = 0:

(iii) Given ~x there exists an entire solution u2(x; t) satisfying 0 < u2(x; t) <
v(x¡ ~x) and

lim
t!¡1

sup
x2R

ju2(x; t)¡ v(x¡ ~x)j = 0;

lim
t!1

sup
x2R

u2(x; t) = 0 :

Note that (1.1) has the unstable standing pulse solution which is written as

v(x) :=
3a

1 +a+
p

(1 ¡ 2a)(2 ¡a)=2 cosh(
p
ax)

:(1.2)

We state an idea in the proof of Theorem 1.1 below. First notice that the traveling
front solutions to (1.1) are explicitly written as

©(§x¡ ct) :=
expf§(x¡ ct)=

p
2g

1 + expf§(x¡ ct)=
p

2g
;

where

c :=
p

2

µ
1

2
¡ a
¶

(> 0):

We also see from [12] that

u(x; t) =
expf(x¡ x0)=

p
2 +!tg +expf¡(x+ x0)=

p
2 + !tg

1 + expf(x¡x0)=
p

2 + !tg+ expf¡(x+x0)=
p

2 + !tg

is a subsolution for (x; t) 2 R, where we put

! :=
1

2
¡ a

µ
=

cp
2

¶
:

This subsolution has the asymptotic profile such that as t ! ¡1, it converges
to ©(x¡ ct) in x > 0 and ©(¡x ¡ ct) in x < 0 respectively. Moreover it is a
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good approximate solution for a wide range of t. This consideration suggested us
to construct a supersolution with the form:

u(x; t) :=
expf(x¡ x0)=

p
2 + p(t)g +expf¡(x+ x0)=

p
2 + p(t)g

1 + expf(x¡x0)=
p

2 + p(t)g+ expf¡(x+x0)=
p

2 + p(t)g ;(1.3)

with

lim
t!¡1

jp(t)¡ !tj = 0 :

Using the comparison argument and the continuity of the semiflow defined by time
shift of solutions to (1.1), we easily prove that there is a unique entire solution
between the subsolution and the supersolution. Since they has the same asymptotic
profile as t! ¡1, we can assert that the entire solution also does.

Next we go to the second and the third results of Theorem 1.1. When we prove
the existence of a solution converging to the unstable equilibrium v(x) as t !¡1,
we apply the next general result.

Theorem 1.2 Let f(x; u) be a continuous function defined in RN £ I0 and
assume that f(¢; u) isC1-Lipschitz in u, where I0 is an open interval of R. Consider
a reaction-diffusion equation

ut =4u+ f(x;u); x 2RN :(1.4)

If the equation

4u+ f(x; u) = 0; x 2 RN

admits a nonconstant C2-solution v(x) such that there exist a positive ¹ > 0 and
a positive C2-function ' which solve the linearized eigenvalue problem

4'+ fu(x;v(x))' = ¹'; lim
jxj!1

'(x) = 0;

then the equation (1:4) has solutions u+(x; t); u¡(x; t) satisfying

v(x) + ²'(x) exp(p1(t))· u+(x; t) · v(x) + ²'(x) exp(p2(t));

v(x)¡ ²'(x) exp(p2(t))· u¡(x; t) · v(x)¡ ²'(x) exp(p1(t));

for (x; t) 2 RN £ (¡1; 0] where ² is a sufficiently small positive number and
pj(t) (j = 1; 2) are monotone increasing functions satisfying

p1(t) < p2(t) (¡1 < t · 0); lim
t!¡1

jpj(t)¡ ¹tj = 0:
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The assertion of (iii) of Theorem 1.1 immediately follows from this theorem
while the proof of (ii) can be completed by the argument in [6] for large t.

We remark that the first result of Theorem 1.1 is due to the nice explicit form
of supersolution (2.8). Thus we have a difficulty if we extend our argument to a
general bistable reaction-diffusion equation. This generalization of our arguement
will be a future problem. On the other hand the second and the third results of
Theorem 1.1 can be easily generalized to the reaction-diffusion equation with more
general bistable nonlinearity. Indeed our argument does not depend on the explicit
form of the standing pulse solution (1.2) but on the existence of the unstable positive
eigenfunction with decay at jxj = 1. Moreover the convergence to the diverging
fronts as t !1 was established by [6] for the general bistable nonlinearity.

We also remark on Theorem 1.2. Matano proved in [10] the existence of an
unstable set for an unstable equilibrium provided that the semiflow generated by a
parabolic equation is ’strongly’ order-preserving and compact. In the present case
this condition is not clealy met. Thus we needed our theorem to apply to the present
problem. (He also discussed a stable set in [11] when the domain is unbounded).

The readers might suspect that they could prove Theorem 1.2 by using the
unstable manifold theorem. A standard way to prove the existence of an unstable
set for the equilibrium solution is certainly the application of the unstable manifold
theorem in an infinite-dimensional dynamical system. However, to carry out it under
the condition in Theorem 1.2, we would be puzzled by the choice of an appropriate
phase space for the semiflow. In addition it would need a lengthy preparation for
setting up to apply the theorem. Thus it would be helpful if there is a simple
alternative argument. The readers will find our simple proof of Theorem 1.2 by
the comparison principle though the assertion is only related to the most unstable
direction for the positive eigenfunction.

We finally remark on the related work [7] where entire solutions of the KPP-
Fisher equation are studied (also see [8]). Their equation is monostable, that is,

ut = uxx + f(u); f(0) = f(1) = 0; f(u)> 0 (0 < u < 1); f 0(0) > 0; f 0(1)< 0:

Then the diffusion–free equation has a unique asymptotically stable equilibrium and
an unstable one. It is known that under the condition f(u) · f 0(0)u (0 · u· 1)

there are a family of traveling front solutions connecting u= 0 and u = 1; namely
there are traveling front solutions U c(x¡ ct); Uc(¡x¡ ct) with the speed c; c ¸
2
p
f0(0). One can also see that there is a uniform entire solution V (t) satisfying

lim
t!¡1

V (t) = 0; lim
t!1

V (t) = 1:

They prove the existence of an entire solution by using a combination of

Uc1(x¡ c1t+ »1); U
c2(¡x¡ c2t+ »2); V (t+ »3)

³
c1; c2 > 2

p
f0(0)

´
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as t! ¡1. They also show the continuity of the family of the entire solution with
respect to »1; »2; »3; c1 and c2 in some topology. Their proof for the existence of the
entire solution is similar to our proof since they also use the comparison principle
with appropriate subsolution and upper estimate. However their argument for the
upper estimate is not applicable to the bistable case. Thus we need a new idea of it.
Moreover we prove the different type of the entire solution with diverging fronts.

This paper is organized as follows. In the next section we construct the super-
solution (1.3) precisely and estimate the asymptotic behavior as t ! ¡1. In the
third section we prove the existence of the entire solution of (i) in Theorem 1.1.
Then the proof of Theorem 1.2 is given in the forth section. In the final section the
remaining results of Theorem 1.1 is shown with the aid of Theorem 1.2.

2. GLOBALLY DEFINED SUPPERSOLUTION AND SUBSOLUTION

Recall that the equation (1.1) possesses the traveling front solutions connecting
between the two equilibrium states u = 0 and u = 1:

ª(§x; t) :=
expf(§x¡ x0)=

p
2 +!tg

1 + expf(§x¡x0)=
p

2 + !tg
(2.1)

where

! =
1

2
¡ a:

and the speed of the traveling fronts is given by c =
p

2!. Here we fix x0 as
satisfying ª(§x0;0) = 1=2. Note that each traveling front solution is unique up to
the translation of time or space shift.

As mentioned in the previous section, two facing fronts collide and eventually
annihilate in a finite time (for instance see [3], [6], [12] and references therein)
and a time-globally defined smooth subsolution which exhibits such a collision and
annihilation was found in [12]. We also rewrite the subsolution below

u(x; t) =
expf(x¡x0)=

p
2 +!tg+ expf¡(x+x0)=

p
2 +!tg

1 + expf(x¡ x0)=
p

2 + !tg +expf¡(x+ x0)=
p

2 + !tg;

which is simply written as

u(x; t) = 1 ¡ 1

1 + Ã1(x; t)
;(2.2)

where

Ã1(x; t) := ´1 cosh(x=
p

2) exp(!t); ´1 := 2 exp(¡x0=
p

2):(2.3)
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For convenience sake, we put

F[u] := ut ¡ uxx¡u(u¡ a)(1¡ u):
Then we have the following lemma.

Lemma 2.1 The function

u(x; t) = 1¡ 1

1 +Ã(x; t)

satisfies

F[u] =
1

(1 + Ã)2

½
Ãt ¡ Ãxx +aÃ+

2Ãx
2¡ Ã2

1 + Ã

¾
:

Moreover, if Ã(x; t) = ´ cosh(x=
p

2) exp(p(t)), then

F[u] =
Ã

(1 + Ã)2

½
pt ¡ !¡

´2 exp(2p)

Ã(1 +Ã)

¾
:(2.4)

Since the computation to verify the lemma is straight forward, we skip it.
Applying (2.2) and (2.3) to Lemma 2.1 immediately yields

F[u] = ¡ ´21 exp(2!t)

(1 +Ã1(x; t))3
< 0:

Thus u(x; t) is a subsolution for any t 2 (¡1;1) and it gives a good approximate
solution for large jtj. In [12] they also construct a supersolution having two fronts,
and estimate the annihilation time for the fronts. However, the supersolution in [12]
is only defined in a finite time interval.

Now we shall construct a supersolution u(x; t) defined for any t 2 (¡1;1)
which satisfies

lim
t!¡1

sup
x2R

ju(x; t)¡u(x; t)j = 0;

for an appropriate ´1 or x0. The identity (2.4) suggests us to find the supersolution
with the form (1.3). In fact we get to an ordinary differential equation for p(t) in
the next lemma.

Lemma 2.2 Given ´2 > 0, consider the ordinary differential equation
(

_p(t) = !+ ´2 exp(p(t));

p(0) = 0:
(2.5)
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Then the solution p(t) of (2:5) over (¡1;1) satisfies

exp(p(t)¡ !t) =
!

! + ´2

³
1 +O(exp(!t))

´
; (t!¡1):(2.6)

Proof. First notice that the solution p(t) is monotone increasing. We put

y(t) = ´2 exp(p(t)):

Then y(t) satisfies
(

_y(t) = (! + y)y;

y(0) = ´2:

A simple integration yields

y(t) =
c0! exp(!t)

1¡ c0 exp(!t)
; c0 :=

´2
! + ´2

;(2.7)

which leads to (2.6).
It is easily seen that y(t) is monotone increasing and that the solution exists for

t < t¤ , where

t¤ :=¡ log c0
!

=
1

!
log

! + ´2

´2
> 0

and that u(x; t) ! 1 as t ! t¤¡ 0. With the aid of p(t) of (2.5) we define

u(x; t) :=

8
<
:

1 ¡ 1

1 + Ã2(x; t)
; (t < t¤);

1 (t ¸ t¤);
(2.8)

where

Ã2(x; t) := ´2 cosh(x=
p

2) exp(p(t)):

It follows from Lemma 2.1 that

F[u] ¸ Ã2(x; t)

(1 + Ã2(x; t))2

½
_p¡! ¡ ´2 exp(p(t))

1 + ´2 exp(p(t))

¾
¸ 0

for t < t¤.
If u(x; t) is a solution of (1.1) satisfying u(x; t0)· u(x; t0), then

u(x; t) · u(x; t)
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for t ¸ t0. Indeed by the assumption, u(x; t) · 1 for t ¸ t0, the inequality holds
even if t is greater than t¤.

In the end of this section we show the following lemma:

Lemma 2.3 Suppose that

´1 =
!

! + ´2
´2:

Then u(x; t) > u(x; t) for any (x; t) 2 R£ R and there exists a positive constant
K1 such that

sup
x2R

ju(x; t)¡ u(x; t)j ·K1 exp(!t) (t · 0):

Proof. By the definition of u and u we can compute

u(x; t)¡ u(x; t) =
cosh(x=

p
2) exp(!t)f´2 exp(p(t)¡ !t)¡ ´1g

(1 + Ã1(x; t))(1 +Ã2(x; t))
:

We see from (2.7) that

y(t) exp(¡!t) = ´2 exp(p(t)¡ !t)

is monotone increasing and that by (2.6)

´2 exp(p(t)¡ !t) = ´1 +O(exp(!t))

as t! ¡1. These facts immediately lead us to the assertion of the lemma.

Remark 2.4 We first note that in Lemma 2.3

´1 < ´2:(2.9)

Next we give a remark on the supersolution. Instead of (2.5), we can use a
solution of

_p = ! +
´2 exp(p(t))

1 + ´2 exp(p(t))
:

Then u with this p(t) can be defined globally and it certainly a supersolution. We
thereby obtain the same result for the existence of the entire solution proved in the
next section by using the new supersolution. Although this supersolution would be
helpful in studying of the behavior of the entire solution for large t > 0, it suffice to
consider the present one for the later arguments. In addition we will use a similar
equation to (2.5) in the proof of Theorem 1.2.
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3. AN ENTIRE SOLUTION WITH ANNIHILATING FRONTS

In this section we show the existence of an entire solution which behaves like
two traveling front solutions coming from both sides of the real axis and annihilating
in a finite time.

Lemma 3.1 Let u(x; t) and u(x; t) be the subsolution and the supersolution
defined by (2:2) and (2:8) respectively. Assume the condition in Lemma 2.3. Then
the equation (1:1) has a unique entire solution u¤(x; t) satisfying

u(x; t)< u¤(x; t) < u(x; t); (x; t) 2 R2:(3.1)

It suffices to prove this lemma for the assertion of Theorem 1.1 (i). Indeed since
the traveling wave solution of (2.1) can be written as

ª(x; t) = 1¡ 1

1 + (´1=2) exp(x=
p

2) exp(!t)
;

we can easily verify u(x; t) >ª(x; t) with (2.9) and estimate

sup
x¸0

(u(x; t)¡ª(x; t))

=
exp(x=

p
2) exp(!t)

2f1 + (´1=2) exp(x=
p

2) exp(!t)g(1 + Ã2)

n
´2 exp(p(t)¡ !t)¡ ´1

o

+
exp(¡x=

p
2)´2 exp(p(t)¡ !t)

2f1 + (´1=2) exp(x=
p

2) exp(!t)g(1 + Ã2)
exp(!t)

· K exp(!t)

for t · 0 as in the proof of Lemma 2.3. Hence from replacing x by x¡(x1+x2)=2
and choosing x0 = (x2¡x1)=2 in Lemma 3.1, Theorem 1.1 (i) immediately follows.

We prove the lemma in the rest of this section. Denote by u(x; t; t0; v0) a
solution to (1.1) with the initial condition

u(x; t0; t0; v0) = v0(x); v0 2 C0(R); 0 · v0(x)· 1:

Define the mapping S(t) : C0(R)! C0(R) for t ¸ 0 by

[S(t)v0](x) := u(x; t; 0; v0):

We often use the notation u(¢) · v(¢) for u(x) · v(x); x 2R. We note

u(¢; t; t0; v0) = S(t ¡ t0)v0:

Thus it follows from the maximum principle and the inequalities

u(¢; t0)· v0(¢) · u(¢; t0)
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that

u(¢; t) · S(t ¡ t0)v0 · u(¢; t):

First we observe some continuity of S(t).

Lemma 3.2 Given a positive function w(x) satisfying limjxj!1 w(x) = 0,
consider a set

W := fu 2C0(R) : ju(x)¡ 1j · w(x) (x 2 R)g;

and assume that S(t)W ½W (t ¸ 0). Let kukC0 := supx2R ju(x)j. Then for any
u0 2W the map t 7! S(t)u0 is continuous from [0;1) into C0(R) equipped with
norm k ¢ kC0 . Moreover if fung ½ C0(R) converges to v with respect to k ¢ kC0,
then given T > 0,

lim
n!1

sup
t2[0;T ]

kS(t)un ¡S(t)vkC0 = 0:

Proof. Since u0 2 W is equicontinuous, we easily obtain the first assertion.
We prove the second one. Set ui := S(t)u0i (i = 1; 2). Using the heat kernel

K(x; t) =
1

2
p
¼t

exp(¡jxj2=4¼t)

we can write

ui(x; t) =

Z 1

¡1
K(x¡ y; t)u0i(y)dy +

Z t

0
ds

Z 1

¡1
K(x¡ y; t ¡ s)g(ui(y; s))dy;

for t ¸ 0 (i = 1; 2), where we put g(u) = u(u¡ a)(1 ¡u). Then we obtain

ju1(x; t)¡u2(x; t)j · sup
y2R

ju01(y)¡ u02(y)j +L

Z t

0

sup
y2R

ju1(y; s)¡u2(y; s)jds;

where

L := sup
0·u·1

jgu(u)j:

Applying the Gronwall inequality yields

sup
y2R

ju1(y; t)¡u2(y; t)j · sup
y2R

ju01(y)¡u02(y)jexp(Lt); t ¸ 0:

This implies the desired continuity.
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We also need the following lemma for the proof of the uniqueness.

Lemma 3.3 For any positive integer n, there exists a positive number ²n such
that

u(x;¡n) · u(x;¡n+ ²n)

for all x 2 R and

lim
n!1

²n = 0

Proof. We first compute

u(x; t0)¡u(x; t) =
´1 exp(!t0) cosh(x=

p
2)

1 + ´1 exp(!t0) cosh(x=
p

2)
¡ ´2 expp(t) cosh(x=

p
2)

1 + ´2 exp p(t) cosh(x=
p

2)

(3.2) =
(´1 exp(!t0)¡ ´2 exp p(t)) cosh(x=

p
2)

(1 + ´1 exp(!t0) cosh x=
p

2)(1 + ´2 exp p(t) cosh x=
p

2)
:

Let

²n :=
p(¡n) +!n

!
+

1

!
log

´2
´1
:

Then by Lemmas 2.2 and 2.3, we have ²n > 0 and

lim
n!1

²n = 0:

Substituting t0=¡n+ ²n and t=¡n into (3.2) yields u(x;¡n+ ²n)¸ u(x;¡n).

Now we are in the position to prove Lemma 3.1. Set

vn(¢) = S(n)u(¢;¡n); wn(¢) = S(n)u(¢;¡n); n= 0;1;2 : : : :

We show that the sequences fvng and fwng are monotone increasing and decreasing
respectively. Since u(x; t) is a subsolution, we see

u(¢;¡n) < S(1)u(¢;¡(n+ 1)):

Thus applying the maximum principle yields

vn = S(n)u(¢;¡n) < S(n)S(1)u(¢;¡(n+1)) = vn+1;

which implies the monotonicity of fvng. We can also see that fwng is monotone
decreasing in n.
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Since

0 · vn(x) · w0(x) = u(x;0);

there is a function v¤ 2 C0(R) such that vn uniformly converges to v¤. Thus
u¤(¢; t) := S(t)v¤ is a solution for t ¸ 0.

We show that u¤(x; t) is defined for any t · 0. Given T > 0, take an integer
n1 so that T < n1. We fix T and n1 . Then, for n¸ n1, we have

S(¡T )vn = S(¡T )S(n)u(¢;¡n) = S(n¡ T)u(¢;¡n):

Since

S(n+ 1¡ T)u(¢;¡(n+ 1)) = S(n¡ T)S(1)u(¢;¡(n+1)) > S(n¡T )u(¢;¡n);

the sequence fS(n¡T )u(¢;¡n)gn ņ1 is monotone increasing. Thus the argument
similar to the above implies that there is a continuous function vT to which S(n¡
T)u(¢;¡n) converges uniformly. In terms of the fact

v¤ = lim
n!1

S(T )S(¡T )vn = S(T)vT ;

we obtain vT = S(¡T )v¤. Since T > 0 is arbitrary number, we can conclude that
u¤(¢; t) := S(t)v¤ is a defined globally for t 2R.

Next we show the uniqueness of such entire solutions between the supersolution
and the subsolution. Let u¤1(x; t);u¤2(x; t) be two entire solutions such that

u(x; t)· u¤j(x; t) · u(x; t) (j = 1;2);

for all (x; t) 2 R2 . By Lemma 3.3,

u(x;¡n)· u¤1(x;¡n) · u(x;¡n) · u(x;¡n+ ²n) · u¤2(x;¡n+ ²n):

The maximum principle implies that

u¤1(x; t)· u¤2(x; t+ ²n)

for t ¸¡n. We similarly obtain

u¤2(x; t)· u¤1(x; t+ ²n)

for t ¸¡n. Specifically

u¤2(x;¡²n) · u¤1(x;0) · u¤2(x; ²n)

holds for large n. It follows from Lemma 3.3 that u¤1(x; 0) ´ u¤2(x;0) for all x 2 R.
We thereby assert that the entire solution satisfying (3.1) is unique. This concluded
the proof of Theorem 1.1.
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4. PROOF OF THEOREM 1.2

First notice that for the function f(x; u) in Theorem 1.2 there are positive
constants M; ± such that

jfu(x;v(x))¡ fu(x; v(x) +w)j ·M jwj; jwj < ±:(4.1)

We only prove the existence of the solution u+(x; t) in the theorem since the other
case can be easily obtained by reversing the signs.

We consider a couple of ordinary differential equations
(

_p1(t) = ¹¡ ²M exp(p1(t)); p1(0) =¡p0
1;

_p2(t) = ¹+ ²M exp(p2(t)); p2(0) =¡p0
2:

(4.2)

With the conditions

p01 > log

µ
²M

¹

¶
; p02 > 0;(4.3)

there are solutions

p1(t) = ¹t ¡ log

½
exp(p0

1)¡
²M(1 ¡ exp(¹t))

¹

¾
; t · 0

p2(t) = ¹t ¡ log

½
exp(p0

2) +
²M(1 ¡ exp(¹t))

¹

¾
; t · 0;

which can be easily obtained by integration of the equations. We also see that both
of p1(t) and p2(t) are monotone increasing. With the aid of these solutions we have
the following lemma.

Lemma 4.1 Assume the hypotheses in Theorem 1.2 and let M and ± are
constants in (4:1). Set

ui(x; t) := v(x) + ²'(x) exp(pi(t)) (i = 1; 2);

where p1(t) and p2(t) (t · 0) are the solutions to (4:2) with (4:3). Let the
eigenfunction '(x) > 0 be normalized so that

sup
x2RN

'(x) = 1:

Then u1(x; t) (resp. u2(x; t)) is a subsolution (resp. supersolution) of (1:4) for
0 < ² < ± and t 2 (¡1;0]. Moreover, if p0i ; (i = 1; 2) are chosen as satisfying

exp(p01)¡ exp(p02) =
2²M

¹
;(4.4)
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then

0 · u2(x; t)¡u1(x; t)· K2 exp(¹t); (x; t) 2 RN £ (¡1; 0](4.5)

where K2 is a positive constant.

Proof. We can compute
(u1)t ¡4u1¡ f(x; u1)

= ²' exp(p1(t)) _p1¡ ²4' exp(p1(t)) + f(x;v)¡ f(x; v+ ²' exp(p1(t)))

· ²' exp(p1(t))f _p1¡ ¹+ ²M exp(p1(t))g = 0 (t · 0):

This implies that u1 is a subsolution of (1.4) for t · 0. Similarly we can check that
u2 is a supersolution. Moreover under the condition (4.4) we obtain

lim
t!¡1

jp1(t)¡ ¹tj = lim
t!¡1

jp2(t)¡ ¹tj:

Thus the first inequality of (4.5) follows from _p1 < _p2.
The second inequality of (4.5) follows from the similar computation found in

the proof of Lemmas 2.2 and 2.3.

Proof of Theorem 1.2 With the new variable U = u ¡ v(x) we write the
equation as

Ut = ¢U + ~F(x;U ); ~F(x; U) := F (x;v(x) +U )¡F (x;v(x)):

Set
W := fU 2 C0(RN) : jU (x)j · '(x) (x 2 RN)g;

and let U(x; t;U0) be a solution with U(x; 0;U0) = U0. Then for the map t 7!
S(t)U0 := U(¢; t;U0), U0 2W the assertion of Lemma 3.2 holds. Thus by virtue
of the above lemma we can apply the same argument as in the proof of Theorem
1.1 (i) to obtain the desired solution. This concludes the proof of Theorem 1.2.

5. AN ENTIRE SOLUTION WITH DIVERGING FRONTS

In this section we give the proof of Theorem 1.1 (ii) and (iii), using the result
of Theorem 1.2.

By the translation invariance of the equation we may assume ~x = 0. Thus we
consider the linearized eigenvalue problem

'xx + fu(v(x))' = ¹';(5.1)

in L2(R), where we put f(u) = u(u¡a)(1 ¡u). Since (';¹) = (vx(x);0) meets
(5.1) and vx(x) changes the sign, we can assert that there exist a positive eigenvalue
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¹ and the corresponding positive eigenfunction '(x). Moreover since v(x) decay
exponentially as jxj ! 1, we can see that as jxj ! 1, '(x) asymptotically
satisfies

'xx + fu(0)'= 'xx¡a' = ¹':

Thus

'(x) =O(exp(¡pa+ ¹jxj)); jxj !1(5.2)

(see [9, Section 5.4]). Hence we can apply Theorem 1.2 to obtain solutions u§(x; t)
defined in (¡1; 0]. Since these solutions are extended forward in time, it turns out
that both solutions are entire solutions. It therefore suffices to prove that they
satisfies the asymptotic behaviors as t!1.

By virtue of (5.2) u¡(x; t) is positive and monotone decreasing in time by
the comparison theorem (indeed Lemma 4.1 shows u = v(x) ¡ ²'(x) exp(p1(t))

is a supersolution). The solution u¡(x; t) converges to u = 0 since there is no
equilibrium solution between u= v(x) and u = 0 and the convergence is uniform.
This implies the result (iii) of the theorem.

Next we consider u+(x; t). Recall the result by [6] (or [4]). Lemma 6.1 in [6]
tells that there are positive numbers »;¯ and q0 with q0 < a such that

u+(x; t) <ª(x¡ »; t) + ª(¡x¡ »; t)¡ 1 + q0 exp(¡¯t); t ¸ 0:

Thus for any fixed t ¸ 0,

limsup
x!§1

u+(x; t) < a

holds. On the other hand we see that u+(x; t) is monotone increasing (see Lemma
4.1 again). We can assert that u+ converges to u = 1 uniformly in any compact
interval. Thus for sufficiently large time the condition of Theorem 3.2 in [6] are
enjoyed so that we obtain the desired convergence result as t !1. This concludes
the rest of the proof of Theorem 1.1.
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