Vol. 7, No. 3, pp. 423-432, September 2003

This paper is available online at http://www.math.nthu.edu.tw/tjm/

ESTIMATES OF AN INTEGRAL OPERATOR ON FUNCTION SPACES

Der-Chen Chang† and Stevo Stević

Abstract. In this paper, we shall study the family of operators of the form

$$T_{\vec{g}}(f)(z) = \int_0^{z_1} \cdots \int_0^{z_n} f(\zeta_1, \cdots, \zeta_n) \prod_{j=1}^n g'_j(\zeta_j) d\zeta_j$$

on Hardy $H^p(D_n)$, the generalized weighted Bergman $\mathcal{A}_{\mu}^{p,q}(D_n), p \in (0,\infty)$, and α -Bloch $\mathcal{B}^{\alpha}(D_n)$ spaces on the polydisk $D_n = \{(z_1,\ldots,z_n) \in \mathbf{C}^n : |z_j| < 1, \ j=1,\ldots,n\}$.

1. Introduction and preliminaries

Let D be the unit disk in the complex plane ${\bf C}$ and H(D) be the set of all analytic functions $f:D\to {\bf C}$. The Bloch space ${\cal B}$ is the space of all analytic functions f on D such that

$$b(f) = \sup_{z \in D} (1 - |z|^2)|f'(z)| < \infty.$$

Let $\mathcal{B}_{\mathcal{S}}$ denote a subspace of the Bloch space that consists of all analytic functions f on D such that

$$||f||_{\mathcal{B}_{\mathcal{S}}} = \sup_{z \in D} |1 - z| |f'(z)| < \infty.$$

In the article [1], Aleman and Siskakis studied operators of the form

$$T_g(f)(z) = \int_0^z f(\zeta)g'(\zeta)d\zeta,$$

Received November 14, 2002.

Communicated by S. B. Hsu.

1991 Mathematics Subject Classification: 47B38,46E20.

Key words and phrases: Analytic function, Hardy space, Bergman space, Bloch space, integral operator, polydisk.

on weighted Bergman spaces

$$\mathcal{A}^p_\omega = \left\{ f \in H(D) \, | \, \int_D |f(z)|^p \omega(z) dm(z) < \infty \,
ight\},$$

with $\omega(r)$ other than the standard radial weight $(1-r)^{\alpha}$. Recently there has been great deal of interest in studying the weighted Bergman spaces with weights other than the standard (see, for example, [1, 4, 11, 12, 18, 20, 21, 23] and the references therein).

The following theorem was proved by Aleman and Siskakis in [1]:

Theorem 1.1. Let ω be a positive radial weight function on the unit disc and there is a constant C such that

$$\omega(r) \ge \frac{C}{1-r} \int_r^1 \omega(s) ds, \qquad 0 < r < 1.$$

If $g \in \mathcal{B}$, then T_g is bounded on \mathcal{A}^p_{ω} and $||T_g||_{op} \cdot C(p)||g||_{\mathcal{B}}$ for $p \geq 1$. Here $||T_g||_{op}$ is the operator norm of the operator T_g .

Motivated by this theorem, we define and study a family of integral operators $T_{\vec{q}}$, on the polydisk D_n . The operators are defined by

$$T_{\vec{g}}(f)(z) = \int_0^{z_1} \cdots \int_0^{z_n} f(\zeta_1, ..., \zeta_n) \prod_{j=1}^n g'_j(\zeta_j) d\zeta_j,$$

whenever $f(z) = \sum_{|\alpha|=0}^{\infty} a_{\alpha} z^{\alpha}$ is an analytic function on D_n (α is multi-index from $(\mathbf{Z}_+)^n$). Here $g_j, j=1,...,n$, are analytic functions on the unit disk. It is easy to see that

(1)
$$T_{\vec{g}}(f)(z) = \prod_{j=1}^{n} z_j \int_0^1 \cdots \int_0^1 f(\tau_1 z_1, ..., \tau_n z_n) \prod_{j=1}^{n} g'_j(\tau_j z_j) d\tau_j.$$

If $g_j(\zeta_j) = \ln(1/(1-\zeta_j))$, j=1,...,n, then $T_{\vec{g}}(f)$ is a natural generalization of the Cesàro operator \mathcal{C} on the unit disk:

$$\vec{\mathcal{C}}(f)(z) = \prod_{j=1}^{n} z_j \int_0^1 \cdots \int_0^1 f(\tau_1 z_1, \dots, \tau_n z_n) \prod_{j=1}^{n} (1 - \tau_j z_j)^{-1} d\tau_1 \cdots d\tau_n.$$

The Cesàro operator on the unit disk has been studied by many mathematicians (see, for example [1, 2, 5, 7, 8, 9, 13, 14, 15, 16, 17, 19, 24, 25] and the references therein). In this paper we continue our investigations of some integral operators

defined on analytic functions on the polydisk which were started in the articles [3], [4] and [22].

If $g_j(\zeta_j) = \zeta_j$, j = 1, ..., n, then $T_{\vec{q}}(f)$ is the integration operator.

In what follows, we write $z \cdot w$ as an abbreviation for $(z_1w_1,...,z_nw_n)$ for $z,w \in \mathbb{C}^n$; $e^{i\theta}$ is an abbreviation for $(e^{i\theta_1},...,e^{i\theta_n})$; $d\tau = d\tau_1 \cdots d\tau_n$; $d\theta = d\theta_1 \cdots d\theta_n$ and r,s,τ are vectors in \mathbb{C}^n . We write $0 \cdot r < 1$, where $r = (r_1,...,r_n)$ it means $0 \cdot r_j < 1$ for j = 1,...,n.

Our first result is:

Theorem 1.2. If $g_j \in \mathcal{B}_S$, j = 1, ..., n, then there is a constant C depending only on p and n, such that

$$\int_{[0,2\pi]^n} |T_{\vec{g}}(f)(r\cdot e^{i\theta})|^p d\theta \cdot C \prod_{j=1}^n r_j^p ||g_j||_{\mathcal{B}_{\mathcal{S}}}^p \int_{[0,2\pi]^n} |f(r\cdot e^{i\theta})|^p d\theta,$$

for $0 and for all <math>f \in H(D_n)$.

The proof of Theorem 1.2 for the case 0 relies on Theorem 1.5 in [22]. In the proof of this theorem we use Miao's arguments [13], which are modifications of the corresponding arguments used in the case of the unit disk. Miao's ideas were originated from Hardy and Littlewood [10]. We shall give detailed discussion later.

In order to prove Theorem 1.2, we need three auxiliary results which are incorporated in the following lemmas.

For real y and $\sigma > -1$, set

$$H^{\sigma}(y) = \frac{1}{1+|y|} \left\{ \begin{array}{ll} 1+|y|^{\sigma}, & \text{if} \quad \sigma < 0 \\ \log(2+1/|y|), & \text{if} \quad \sigma = 0 \\ 1, & \text{if} \quad \sigma > 0. \end{array} \right.$$

Lemma 1.3. [2] For $\sigma > -1$, there is a constant $C = C(\sigma)$ such that

$$\int_0^1 \frac{x^{\sigma+1} dx}{[x^2 + \varphi^2][x^2 + \theta^2]^{(\sigma+1)/2}} \cdot C \frac{H^{\sigma}(\varphi/\theta)}{|\theta|}$$

for all real φ and $\theta \neq 0$.

For any measurable function $g(e^{i\theta}),$ define $E_sg(e^{i\theta})=E_{s_1,\dots,s_n}g(e^{i\theta})$ by

$$E_s g(e^{i\theta}) = \left\{ \begin{array}{ll} g(e^{i(s+1)\theta}), & \quad \text{if } |s_j\theta_j| \cdot & \pi \text{ for all } j \in \{1,...,n\}, \\ 0, & \quad \text{otherwise.} \end{array} \right.$$

The following lemma is a generalization of Lemma 2.2 in [2].

Lemma 1.4 Let $\sigma_j > -1$, j = 1, ..., n, 1 and

$$A_{\vec{\sigma},p} = 2^{n/p} \int_{\mathbf{R}^n} \prod_{j=1}^n \frac{H^{\sigma_j}(s_j)}{|s_j + 1|^{1/p}} ds.$$

Then $A_{\vec{\sigma},p} < \infty$ and

$$\int_{[-\pi,\pi]^n} \left(\int_{\mathbf{R}^n} \prod_{j=1}^n H^{\sigma_j}(s_j) E_s g(e^{i\theta}) ds \right)^p d\theta \cdot A^p_{\vec{\sigma},p} \int_{[-\pi,\pi]^n} g^p(e^{i\theta}) d\theta,$$

for all measurable $g \geq 0$.

Proof. The first assertion of Lemma 1.4 can be easily proved. Let $H^{\sigma}(s) = \prod_{j=1}^{n} H^{\sigma_j}(s_j)$. By Minkowski's inequality we obtain

(2)
$$\left(\int_{[-\pi,\pi]^n} \left(\int_{\mathbf{R}^n} H^{\sigma}(s) E_s g(e^{i\theta}) ds \right)^p d\theta \right)^{1/p}$$

$$\cdot \int_{\mathbf{R}^n} H^{\sigma}(s) \left(\int_{[-\pi,\pi]^n} [E_s g(e^{i\theta})]^p d\theta \right)^{1/p} ds.$$

On the other hand, since for real b, $\min\{|b+1|, |(b+1)/b|\}$ \cdot 2, for $s_j \neq -1$, j=1,...,n, we obtain

$$\int_{[-\pi,\pi]^n} [E_s g(e^{i\theta})]^p d\theta
= \int_{\substack{j=1 \ j=1}}^n \{\theta_j : |s_j\theta_j| \ \pi\} \cap \{\theta_j : |\theta_j| \ \pi\}} g^p(e^{i(s+1)\theta}) d\theta
= \prod_{j=1}^n \frac{1}{|s_j+1|} \int_{\substack{n \ j=1}}^n \{\varphi_j : |s_j\varphi_j| \ |s_j+1|\pi\} \cap \{\varphi_j : |\varphi_j| \ |s_j+1|\pi\}} g^p(e^{i\varphi}) d\varphi$$

From (2) and (4) the result

$$\int_{[-\pi,\pi]^n} \left(\int_{\mathbf{R}^n} \prod_{j=1}^n H^{\sigma_j}(s_j) E_s g(e^{i\theta}) ds \right)^p d\theta \cdot A^p_{\vec{\sigma},p} \int_{[-\pi,\pi]^n} g^p(e^{i\theta}) d\theta,$$

follows immediately.

2. Proof of Theorem 1.2

Now we are in a position to prove Theorem 1.2.

Proof. Case 1. $0 . Let <math>f \in H(D_n)$ and denote

$$I = \left(\prod_{j=1}^n r_j^p\right)^{-1} M_p^p(T_{\vec{g}}(f), r) = \left(\prod_{j=1}^n r_j^p\right)^{-1} \int_{[0, 2\pi]^n} |T_{\vec{g}}(f)(r \cdot e^{i\theta})|^p d\theta.$$

Since $g_j \in \mathcal{B}_S, j = 1, ..., n$, and by Theorem 1.5 in [22] for case $\vec{\gamma} = \vec{0}$, one has

$$I \quad \cdot \quad \int_{[0,2\pi]^n} \left(\int_{[0,1)^n} |f(\tau \cdot r \cdot e^{i\theta})| \prod_{j=1}^n |g'(\tau_j r_j e^{i\theta_j})| d\tau \right)^p d\theta$$

$$\cdot \quad \prod_{j=1}^n ||g_j||_{\mathcal{B}_{\mathcal{S}}}^p \int_{[0,2\pi]^n} \left(\int_{[0,1)^n} \frac{|f(\tau \cdot r \cdot e^{i\theta})|}{\prod_{j=1}^n |1 - \tau_j r_j e^{i\theta_j}|} d\tau \right)^p d\theta$$

$$\cdot \quad C \prod_{j=1}^n ||g_j||_{\mathcal{B}_{\mathcal{S}}}^p \int_{[0,2\pi]^n} |f(r \cdot e^{i\theta})|^p d\theta,$$

for which the result follows.

Case 2. $1 . Let <math>f \in H(D_n)$ and 0 < r < 1, set $f_r(e^{i\varphi}) = f(r \cdot e^{i\varphi})$. Then for $0 < \tau < 1$, $f(\tau \cdot r \cdot e^{i\theta})$ is given by the following integral

(5)
$$f(\tau \cdot r \cdot e^{i\theta}) = \frac{1}{(2\pi)^n} \int_{[-\pi,\pi]^n} f_r(e^{i\varphi}) \prod_{j=1}^n P(\tau_j, \varphi_j - \theta_j) d\varphi$$

where $P(\rho, \phi)$ is the Poisson kernel *i.e.*,

$$P(\rho, \phi) = \frac{1 - \rho^2}{1 - 2\rho\cos\phi + \rho^2}.$$

Combining (1) and (5) and using Fubini's theorem, we obtain

$$T_{\vec{g}}(f)(r \cdot e^{i\theta}) = \prod_{j=1}^{n} \frac{z_j}{2\pi} \int_{[-\pi,\pi]^n} K_r^{\vec{g}}(\theta,\varphi) f_r(e^{i(\theta+\varphi)}) d\varphi,$$

where

$$K_r^{\vec{g}}(\theta,\varphi) = \prod_{i=1}^n \int_0^1 \frac{(1-\tau_j^2)g_j'(r_j\tau_j e^{i\theta_j})}{(1-2\tau_j\cos\varphi_j + \tau_j^2)} d\tau_j.$$

Since $g_j \in \mathcal{B}_{\mathcal{S}}, \ j = 1, ..., n$, we obtain

$$|K_r^{\vec{g}}(\theta,\varphi)| \cdot \prod_{j=1}^n ||g_j||_{\mathcal{B}_{\mathcal{S}}} \int_0^1 \frac{(1-\tau_j^2)}{(1-2\tau_j\cos\varphi_j+\tau_j^2)|1-r_j\tau_j e^{i\theta_j}|} d\tau_j.$$

Using an estimate in [26, p. 96], we have that there is a constant $C = C(\vec{g})$ such that

$$|K_r^{\vec{g}}(\theta,\varphi)| \cdot C \prod_{i=1}^n \int_0^1 \frac{x dx}{[x^2 + \varphi_j^2][x^2 + \theta_j^2]^{1/2}}$$

for $|\theta_j| \cdot \pi$, $|\phi_j| \cdot \pi$, j = 1, ..., n. Thus, by Lemma 1.3, we obtain

$$|K_r^{\vec{g}}(\theta,\varphi)| \cdot C \prod_{j=1}^n \frac{H^0(\varphi_j/\theta_j)}{|\theta_j|}$$

for $0 < |\theta_j| \cdot \pi$, $|\phi_j| \cdot \pi$, 0 < r < 1. Hence

(5)
$$\begin{split} |T_{\vec{g}}(f)(r \cdot e^{i\theta})| & \cdot C \int_{[-\pi,\pi]^n} \prod_{j=1}^n \frac{H^0(\varphi_j/\theta_j)}{|\theta_j|} |f_r(e^{i(\theta+\varphi)})| d\varphi \\ & = C \int_{\mathbf{R}^n} \prod_{j=1}^n H^0(s_j) E_s |f_r| (e^{i\theta}) ds. \end{split}$$

From this, using Lemma 1.4 and 2π periodicity of the subintegral function in θ_j , j = 1, ..., n, the result follows.

Remark 1. Throughout the above proof C denotes a constant which may change from line to line.

The Hardy space $H^p(D_n)$ $(0 is defined on <math>D_n$ as follows:

$$H^p(D_n) = \left\{ f \in H(D_n) : ||f||_{H^p(D_n)} = \sup_{0 \ r < 1} \int_{[0,2\pi]^n} |f(r \cdot e^{i\theta})|^p d\theta < \infty \right\}.$$

From Theorem 1.2 we obtain the following corollaries.

Corollary 2.1. If $g_j \in \mathcal{B}_{\mathcal{S}}$, j = 1, ..., n, then the operator $T_{\vec{g}}$ is bounded on $H^p(D_n)$ for 0 . Moreover,

$$||T_{\vec{g}}(f)||_{H^p(D_n)} \cdot C \prod_{j=1}^n ||g_j||_{\mathcal{B}_{\mathcal{S}}} ||f||_{H^p(D_n)}.$$

In particular, the Cesàro operator is bounded on the spaces $H^p(D_n)$ for 0

Given $0 < p, q < \infty$, and positive Borel measures μ_j , j = 1, ..., n on $r_j \in (0,1)$, the weighted space $\mathcal{A}_{\mu}^{p,q}(D_n)$ consists of those functions f analytic on D_n for which

$$||f||_{\mathcal{A}^{p,q}_{\mu}(D_n)} = \left[\int_{[0,1)^n} \left(\int_{[0,2\pi]^n} |f(r \cdot e^{i\theta})|^p d\theta \right)^{\frac{q}{p}} \prod_{j=1}^n d\mu_j(r_j) \right]^{1/q} < \infty.$$

Of particular interest are the absolutely continuous measures of the form $d\mu_j(r_j) = (1 - r_j)^a r_j^b dr_j$. When a = b = 0 and p = q, the space $A_\mu^{p,q}(D_n)$ is the standard Bergman space $A^p(D_n)$.

Corollary 2.2 If $g_j \in \mathcal{B}_S$, j = 1, ..., n, then the operator $T_{\vec{g}}$ is bounded on $\mathcal{A}^{p,q}_{\mu}(D_n)$ for $0 < p, q < \infty$. Moreover, there is a constant C depending only on p and n, such that

$$||T_{\vec{g}}(f)||_{\mathcal{A}^{p,q}_{\mu}(D_n)} \cdot C \prod_{j=1}^n ||g_j||_{\mathcal{B}_{\mathcal{S}}} ||f||_{\mathcal{A}^{p,q}_{\mu}(D_n)}.$$

In particular, the Cesàro operator is bounded on the spaces $\mathcal{A}_{\mu}^{p,q}(D_n)$ for $0 < p, q < \infty$.

3. Some invariant spaces of the operator $T_{\vec{g}}$

The α -Bloch space $\mathcal{B}^{\alpha}(D_n)$ is the space of all analytic functions f on D_n such that

$$b_{lpha}(f) = \max_{j=1,...,n} \sup_{z \in D_n} (1 - |z_j|^2)^{lpha} \left| \frac{\partial f}{\partial z_j}(z) \right| < \infty.$$

We denote $S_{\vec{\alpha}}$ the space of all analytic functions f on D_n such that

$$N(f)_{\mathcal{S}_{\vec{\alpha}}} = \sup_{z \in D_n} |f(z)| \prod_{j=1}^n (1 - |z_j|)^{\alpha_j} < \infty,$$

where $\vec{\alpha} = (\alpha_1, ..., \alpha_n), \ \alpha_j > 0, \ j = 1, ..., n.$

It is well-known that when n=1 and $\alpha>1$, the following are equivalent:

$$b_{\alpha}(f) < \infty \Leftrightarrow N(f)_{\mathcal{S}_{\alpha-1}} < \infty.$$

Lemma 3.1 [4]. Let $\alpha > 1$. Then $\mathcal{B}^{\alpha}(D_n) \subset \mathcal{S}_{\vec{\alpha}-1}(D_n)$, where $\vec{\alpha} - 1 =$ $(\alpha - 1, ..., \alpha - 1).$

Remark 2. The function $f(z_1,...,z_n) = \prod_{k=1}^n \frac{c_k}{(1-z_k)^{\alpha-1}}$, shows that the inclusion in this Lemma is proper.

The main result in this section is the following theorem:

Theorem 3.2 If $g_j \in \mathcal{B}, j = 1, ..., n$, then the space $\mathcal{S}_{\vec{\alpha}}, \alpha > 0$ is invariant for the operator $T_{\vec{q}}$ on the polydisk D_n . Moreover there is a constant C independent of f such that

$$N(T_{\vec{g}}(f))_{\mathcal{S}_{\vec{\alpha}}} \cdot CN(f)_{\mathcal{S}_{\vec{\alpha}}}.$$

Proof. Let $f \in \mathcal{S}_{\vec{\alpha}}$. Then

$$|T_{\vec{g}}f(z)| \cdot \prod_{j=1}^{n} |z_{j}| \int_{0}^{1} \cdots \int_{0}^{1} |f(\tau \cdot z) \prod_{j=1}^{n} g'_{j}(\tau_{j}z_{j})| d\tau$$

$$\cdot \prod_{j=1}^{n} |z_{j}| \int_{0}^{1} \cdots \int_{0}^{1} \frac{|f(\tau \cdot z)| \prod_{j=1}^{n} (1 - \tau_{j} |z_{j}|)^{\alpha_{j}}}{\prod_{j=1}^{n} (1 - \tau_{j} |z_{j}|)^{\alpha_{j}+1}}$$

$$\times \prod_{j=1}^{n} |g'_{j}(\tau_{j}z_{j})| (1 - \tau_{j}|z_{j}|) d\tau$$

$$\cdot N(f)_{\mathcal{S}_{\vec{\alpha}}} \prod_{j=1}^{n} |z_{j}| ||g_{j}||_{\mathcal{B}} \int_{0}^{1} \cdots \int_{0}^{1} \frac{1}{\prod_{j=1}^{n} (1 - \tau_{j} |z_{j}|)^{\alpha_{j}+1}} d\tau$$

$$= N(f)_{\mathcal{S}_{\vec{\alpha}}} \prod_{j=1}^{n} |z_{j}| ||g_{j}||_{\mathcal{B}} \prod_{j=1}^{n} \int_{0}^{1} \frac{1}{(1 - \tau_{j} |z_{j}|)^{\alpha_{j}+1}} d\tau_{j}$$

$$\cdot N(f)_{\mathcal{S}_{\vec{\alpha}}} \prod_{j=1}^{n} \frac{||g_{j}||_{\mathcal{B}}}{\alpha_{j}} \prod_{j=1}^{n} \frac{1}{(1 - |z_{j}|)^{\alpha_{j}}}$$

from which the result follows with $C = N(f)_{\mathcal{S}_{\vec{\alpha}}} \prod_{j=1}^{n} \frac{\|g_j\|_{\mathcal{B}}}{\alpha_j}$. From Lemma 3.1 and Theorem 3.2, one obtains the following corollary:

Corollary 3.3 Let $\alpha > 1$. Then $T_{\vec{q}}$ is bounded operator from \mathcal{B}^{α} to $\mathcal{S}_{\vec{\alpha}-1}$. In particular, the Cesàro operator is bounded from the space \mathcal{B}^{α} into the space $\mathcal{S}_{\vec{\alpha}-1}$.

REFERENCES

1. A.Aleman and A. Siskakis, Integration operators on Bergman spaces, *Indiana Univ.* Math. J. 46 (1997), 337-356.

- K.F.Andersen, Cesàro averaging operators on Hardy spaces, Proc. Royal Soc. Edinburgh 126A (1996), 617-624.
- 3. G.Benke and D.C.Chang, A note on weighted Bergman spaces and the Cesáro operator, *Nagoya Math. J.* **159** (2000), 25-43.
- 4. D.C.Chang and S.Stević, The generalized Cesáro operator on the unit polydisk, *Taiwanese Math. J.* (to appear), (2003).
- 5. N.Danikas and A.Siskakis, The Cesàro operator on bounded analytic functions, *Analysis* **13** (1993), 195-199.
- 6. P.Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- 7. P.Galanopoulos, The Cesàro operator on Dirichlet spaces, *Acta Sci. Math.* **67** (2001), 411-420.
- 8. D.V.Giang and F.Móricz, The Cesàro operator is bounded on the Hardy space H^1 , *Acta Sci. Math.* **61** (1995), 535-544.
- 9. G.H.Hardy, Notes on some points in the integral calculus LXVI, *Messenger of Math.* **58** (1929), 50-52.
- 10. G.H.Hardy and J.E.Littlewood, Some properties of fractional integrals II, *Math. Z.* **34** (1932), 403-439.
- 11. T.L.Kriete and B.D.MacCluer, Composition operators on large weighted Bergman spaces, *Indiana Univ. Math. J.* **41** (1992), 755-788.
- 12. P.Lin and R.Rochberg, Hankel operators on the weighted Bergman spaces with exponential weights, *Integral Equations Operator Theory* **21** (1995), 460-483.
- 13. J.Miao, The Cesàro operator is bounded in H^p for 0 ,*Proc. Amer. Math. Soc.***116**(1992), 1077-1079.
- 14. A.Siskakis, Composition semigroups and the Cesàro operator on $H^p(D)$, J. London Math. Soc. **36** (1987), 153-164.
- 15. A.Siskakis, Semigroups of composition operators in Bergman spaces, *Bull. Austral. Math. Soc.* **35** (1987), 397-406.
- 16. A.Siskakis, The Cesàro operator is bounded on H^1 , Proc. Amer. Math. Soc. 110 (2) (1990), 461-462.
- 17. A.Siskakis, On the Bergman space norm of the Cesàro operator, *Arch. Math.* **67** (1996), 312-318.
- 18. A.Siskakis, Weighted integrals of analytic functions, *Acta Sci. Math.* **66** (2000), 651-664.
- K.Stempak, Cesàro averaging operators, Proc. Royal Soc. Edinburgh 124A (1994), 121-126.
- 20. S.Stević, On an area inequality and weighted integrals of analytic functions, *Result. Math.* **41** (2002), 386-393.

- 21. S.Stević, Weighted integrals of holomorphic functions in \mathbb{C}^n , Complex Variables 47 (9) (2002), 821-838.
- 22. S.Stević, Cesàro averaging operators, Math. Nachr. 248-249 (2003) 1-5.
- 23. S.Stević, Composition operators on the generalized Bergman space, *J. Indian Math. Soc.* (to appear).
- 24. S.Stević, A note on the generalized Cesàro operator on Bergman spaces (to appear).
- 25. J.Xiao, Cesàro-type operators on Hardy, BMOA and Bloch spaces, *Arch. Math.* **68** (1997), 398-406.
- 26. A.Zygmund, Trigonometric series, 2nd edn, vols. I&II, Cambridge University Press, Cambridge, 1968.

Der-Chen Chang Department of Mathematics, Georgetown University, Washington D.C., 20057, USA e-mail: chang@math.georgetown.edu

Stevo Stević

Matematicki Fakultet, Studentski Trg 16, 11000 Beograd, Serbia, Yugoslavia

e-mail: sstevic@ptt.yu; sstevo@matf.bg.ac.yu