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ESTIMATES OF AN INTEGRAL OPERATOR ON FUNCTION SPACES

Der-Chen Changf and Stevo Stevi¢

Abstract. In this paper, we shall study the family of operators of the form
21 Zn n
1)) = [ [ e T 6
j=1

on Hardy HP(D,,), the generalized weighted Bergman A?:¢(D,,), p € (0, 00),
and a-Bloch B*(D,,) spaces on the polydisk D,, = {(z1,...,2,) € C" :
lz;l <1, 5=1,...,n}.

1. INTRODUCTION AND PRELIMINARIES

Let D be the unit disk in the complex plane C and H (D) be the set of all
analytic functions f : D — C. The Bloch space B is the space of all analytic
functions f on D such that

b(f) = jlelg(l — [2P)If'(2)] < 0.

Let Bs denote a subspace of the Bloch space that consists of all analytic func-
tions f on D such that

1fllBs = sup |1 — 2| [f'(2)] < oo.
zeD

In the article [1], Aleman and Siskakis studied operators of the form

T,(f)(z) = /0 OO,
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on weighted Bergman spaces

Af::{feHw)\ / rf<z>rpw<z>dm<z><oo},

with w(r) other than the standard radial weight (1 — r)®. Recently there has been
great deal of interest in studying the weighted Bergman spaces with weights other
than the standard (see, for example, [1, 4, 11, 12, 18, 20, 21, 23] and the references
therein).

The following theorem was proved by Aleman and Siskakis in [1]:

Theorem 1.1. Let w be a positive radial weight function on the unit disc and
there is a constant C' such that

w(r) >

1
_1_T/Tw(s)ds, 0<r<l1.

If g € B, then T, is bounded on A%, and ||Tyllop  C(p)|lglls for p > 1. Here
Ty llop is the operator norm of the operator T,.

Motivated by this theorem, we define and study a family of integral operators
T, on the polydisk D,,. The operators are defined by

10 = [ [T i TL a3
j=1

whenever f(2) = }77_¢aaz® is an analytic function on Dy (a is multi-index
from (Z)"). Here gj, j = 1,...,n, are analytic functions on the unit disk. It is
easy to see that

URENEPTISES | Y A N
7(f)(z —j:1zj ; ; T1Z1, ooy TnZn j:19j 7;2;)dT;.

If g;(¢;) =In(1/(1 = ¢;)), 5 = 1,...,n, then Tg(f) is a natural generalization
of the Cesaro operator C on the unit disk:

5(f)(2’) - ﬁz-/l o '/1 f(TlZla'“ aTnZn) ﬁ(l - T‘Z')ildTl' dTn
=1 7 Jo 0 i 7

The Cesaro operator on the unit disk has been studied by many mathematicians (see,
for example [1, 2, 5, 7, 8, 9, 13, 14, 15, 16, 17, 19, 24, 25] and the references
therein). In this paper we continue our investigations of some integral operators



Estimates of an Integral Operator 425

defined on analytic functions on the polydisk which were started in the articles [3],
[4] and [22].

If g;(¢;) = ¢j, 5 =1,...,n, then Ty(f) is the integration operator.

In what follows, we write z-w as an abbreviation for (zjwy, ..., zpwy,) for z,w €
C"; ¢ is an abbreviation for (&1, ...,e"); dr = dry---drp; df = dfy ---db,
and 7, s, 7 are vectors in C". We write 0 r < 1, where r = (ry,...,7,,) it means
0 rmj<lforj=1,..,n.

Our first result is:

Theorem 1.2. If g; € Bs, j = 1,...,n, then there is a constant C' depending
only on p and n, such that

/[02 TN -etyrdeC ] rillaills, /[ G- epas,

j=1 ,27]

Jor 0 < p < oo and for all f € H(D,,).

The proof of Theorem 1.2 for the case 0 < p 1 relies on Theorem 1.5 in [22].
In the proof of this theorem we use Miao’s arguments [13], which are modifications
of the corresponding arguments used in the case of the unit disk. Miao’s ideas were
originated from Hardy and Littlewood [10]. We shall give detailed discussion later.

In order to prove Theorem 1.2, we need three auxiliary results which are incor-
porated in the following lemmas.

For real y and 0 > —1, set

1+ y|7, if 0<0
H (y) = —— < log(2+1/y]), if o0=0
() T+ 1o ( 1’/\ ) o=y

Lemma 1.3. /2] For o > —1, there is a constant C = C(o) such that

/1 ma—l—ldm CHU(¢/9)
o B+ e+ oo g

for all real ¢ and 6 # 0.
For any measurable function g(e?), define Esg(e®) = E;, 5, g(e) by

iy [ g(ettthoy, if |s;0;] « forall je {1,...,n},
Esg(e™) = { 0, otherwise.

The following lemma is a generalization of Lemma 2.2 in [2].
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Lemma 1.4 Leto; > —1,j=1,..,n,1<p < oo and

n

_2n/p/ H Hi( S]
R 5y |85 +1’1/p

Then Az, < oo and
P

/ / HHUj(sj)Esg(ew)ds db Agp/ gP(e?)dp,
[—m,m]™ R" j=1 [—m,m]™

for all measurable g > 0.

Proof. The first assertion of Lemma 1.4 can be easily proved. Let H(s) =

[I;—, H (s;). By Minkowski’s inequality we obtain

</“’ﬂ" ( R" HU(S)Esg(e”)ds)p d@) "’

) 1/p
H(s) ( / [Esg(eie)]pdﬂ) ds.
R™ [—m,m]™

On the other hand, since for real b, min{|b + 1|, |(b+ 1)/b|} 2, for s; # —1

7 =1,...,n, we obtain

/ (Eeg(e®)Pd
[_7r7ﬂ—]n

_ gp(ei(s+1)9)d9
®) /” 1105+ 155051 300 : 105 =}

]

-l

gP(e")dp

‘/] 1es s lsiesl Isj+1min{e;  lo;| |sj+1ln}

9P (e")dy
H |5J + 1 Jer_{lp;l 2n}

gP(e*?)dep.
H‘SJ—i_l’ - 7r7r]" ( )

From (2) and (4) the result

“4)

p
/[\ }n /n H HO'j (SJ)Esg(eZG)ds d9 A§’7p/[\ }n gp(ezﬁ)d07
-, j=1 e

follows immediately.

)
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2. PROOF OF THEOREM 1.2
Now we are in a position to prove Theorem 1.2.

Proof. Casel. 0 <p 1.Let f e H(D,) and denote

-1 -1

%) mpason= 10| [ e
j=1 j=1 [0,27]™

Since gj € Bg,j = 1,...,n, and by Theorem 1.5 in [22] for case ¥ = 0, one has

p

I / / 1€ g (1jr;ed)|dr | db
ose \ oy £ ( \H\ jrie’™)|

n p
irre)
lailty, [ | i) w
j:Hl 7S Jozmn \Joe TTj=y [1 = 7jrjes]
TNl [ 156 epas,
j=1 [0,27]™

for which the result follows.

Case2. 1 <p<oo. Let f € H(D,) and 0 < r < 1, set f,.(e/?) = f(r - ).
Then for 0 < 7 < 1, f(7 - r - €®) is given by the following integral

. 1 n
N (1205 — 05)dp
(27T)n [—m,m]|™ _7:]:! s
where P(p, ¢) is the Poisson kernel i.e.,
1—p?
P
(p’d)) 1_2pcos¢+p

Combining (1) and (5) and using Fubini’s theorem, we obtain

no . .
e =[] [ K005 g,
j=1 [—m,m]|™
where
~ U (1= g lrye®)
K00 =] | 5,
=10 (1 —27jcos ¢ +77)
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Since g; € Bs, j = 1,...,n, we obtain
_ n 1 (1-172)
K90, ; J
K9(6.) jHngJHBS/O Ty T

Using an estimate in [26, p. 96], we have that there is a constant C' = C(g)
such that

. ot xdx
Ki(0, C | | /
|K7(0, )] 5o [$2+¢?][$2+9J2_]1/2

for |6;] , |¢;| m,j=1,..,n. Thus, by Lemma 1.3, we obtain

= 65)
K80, cH Lt

for 0 < |0;] =, |¢;] m, 0<r <1 Hence

me-e o[ T[EE e,

=C HO E|fr 10)
/n.Hl o

From this, using Lemma 1.4 and 27 periodicity of the subintegral function in 6;,
j =1,...,n, the result follows.

Remark 1. Throughout the above proof C' denotes a constant which may change
from line to line.

The Hardy space H?(D,,) (0 < p < o0) is defined on D,, as follows:

Hp(Dn>={feH<Dn> llon = o [ z}nlf(r-ew)lpd9<00}-

r<l

From Theorem 1.2 we obtain the following corollaries.

Corollary 2.1. If g; € Bs, j = 1,...,n, then the operator Ty is bounded on
HP(Dy,) for 0 < p < co. Moreover,

1Ty (D llroay € 1T N9illssl1F 1w (D).

=1
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In particular, the Cesaro operator is bounded on the spaces HP(D,,) for 0 < p <
0.

Given 0 < p,q < oo, and positive Borel measures p;, j = 1,...,n on r; €
(0,1), the weighted space A;?(D,,) consists of those functions f analytic on D,
for which

1
1, /q

I fllaza(p,) = / </ |f(7“-ew)|pd9) dpi(r;) < 0.
# (Do) 0,1y \ J[0,2x]" J]‘_‘E 7

Of particular interest are the absolutely continuous measures of the form du;(r;) =
(1 —rj)®rbdr;. When a = b = 0 and p = g, the space A};*(Dy,) is the standard
Bergman space AP(D,,).

Corollary 2.2 If g; € Bs, j = 1,...,n, then the operator Ty is bounded on
AY(Dy,) for 0 < p,q < co. Moreover, there is a constant C depending only on p
and n, such that

1T (N azopny  C 11 Ngillss 1Fllazap,)-
j=1

In particular, the Cesaro operator is bounded on the spaces A}(D,,) for 0 <
P, q < 0.

3. SOME INVARIANT SPACES OF THE OPERATOR T; i

The a-Bloch space B*(D,,) is the space of all analytic functions f on D,, such that

of

ba(f) = max sup (1 |5[})7 |2
J

J:17"~7n ZeDn

(z)' < 00.

We denote Sz the space of all analytic functions f on D,, such that

n

N(f)sy = sup [f(2) [T =1z < oo,

ZEDn ]:1
where & = (a1, ...,ap), o > 0,5 =1,...,n.

It is well-known that when n = 1 and « > 1, the following are equivalent:

ba(f) <00 & N(f)s, , < 0.
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Lemma 3.1 [4]. Let a > 1. Then B*(D,,) C Sz_1(Dn), where d — 1 =
(a—1,..,a—1).

Remark 2. The function f(z1, ..., 2n) = [[_4 (1_;’#, shows that the inclu-
sion in this Lemma is proper.

The main result in this section is the following theorem:
Theorem 3.2 If g; € B,j = 1,...,n, then the space Sz, o > 0 is invariant for

the operator Tj on the polydisk D,,. Moreover there is a constant C' independent
of f such that

N(T3(f))ss CN(f)ss

Proof. Let f € S5. Then
T3 (2)| Ilm/“ /NfTZII%n@uT
o usz“< — 75 l%)%
1;[ Z]‘/ / — 7 |z5])% !

X H 195 (7525)|(1 — 75]2;|)dr

5* H ‘ZJ‘ HgJHB/ / H T] ’2 ’)aj+1d7—

’VL

H@wmmH/ pTEte

me |
J
1;[ 1:[ 1 — |z5])%

)

from which the result follows with C' = N(f)s. [/ lgslls

J=1 qj
From Lemma 3.1 and Theorem 3.2, one obtains the foflowing corollary:

Corollary 3.3 Let a > 1. Then Ty is bounded operator from B* to Sz_1. In
particular, the Cesaro operator is bounded from the space B* into the space Sz_1.
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