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GENERALIZED DERIVATIONS WITH NILPOTENT VALUES ON
MULTILINEAR POLYNOMIALS

Jer-Shyong Lin and Cheng-Kai Liu

Abstract. Let R be a prime ring without nonzero nil one-sided ideals. Suppose

that ¢ is a generalized derivation of R and that f (X3, -- -, Xj) is a multilinear
polynomial not central-valued on R such that g(f(z1,---,xx)) is nilpotent
for all 21, -- -,z in some nonzero ideal of R. Then g = 0.

1. INTRODUCTION AND RESULTS

The study of derivations having values satisfying certain properties has been
investigated in various papers. As to derivations having nilpotent values, Herstein
and Giambruno [9] proved that if R is a semiprime ring and d is a derivation of R
such that d(x)™ = 0 for all = in some nonzero ideal I of R, where n > 1 is a fixed
integer, then d(I) = 0. In [7] Felzenszwalb and Lanski proved that if R is a ring
with no nonzero nil one-sided ideals and d is a derivation such that d(x)™ = 0 for
all = in some nonzero ideal I of R, where n = n(x) > 1 is an integer depending
on z, then d(I) = 0. The extensions of this theorem to Lie ideals were obtained by
Carini and Giambruno [3] in case charR # 2 and by Lanski [12] in case of arbitrary
characteristic. A full generalization in this vein was proved by Wong [19]. She
showed that if d is a derivation of a prime ring R such that d(f(z1,---,2%))" =0
for all x; in some nonzero ideal of R, where n = n(xz1,---,z;) > 1 is an integer
depending on x; and f(X7,---, Xx) is a multilinear polynomial not central-valued
on R, then d = 0 provided that n is fixed or R contains no nonzero nil one-sided
ideals.

Let R be a ring. An additive mapping ¢ : R — R is called a generalized
derivation of R if there exists a derivation d of R such that g(xy) = g(x)y + zd(y)
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for all z,y € R. In [10] Hvala proved a result concerning generalized derivations
with nilpotent values of bounded index. In fact, he proved that if R is a prime ring
of charR > n and ¢ is a generalized derivation of R satisfying ¢g(z)" = 0 for all
x € R, then ¢ = 0. Later, Lee [15] extended this result to Lie ideals. Recently,
[18] Wang showed that if g is a generalized derivation of a prime ring R such that
g(f(x1,---,2zx))" = 0 for all z; in some nonzero ideal of R, where n > 1 is a
fixed integer and f(Xy,---, X) is a multilinear polynomial not central-valued on
R, then g = 0. In this paper we shall prove the unbounded version of Wang’s result.
Precisely, we will prove the following

Theorem 1. Let K be a commutative ring with unity and let R be a prime K-
algebra without nonzero nil one-sided ideals. Let f(X,---, X%) be a multilinear
polynomial over K with at least one coefficient invertible in K. Suppose that g is
a generalized derivation of R and f(X,---, X) is not central-valued on R such
that g(f(x1,---,x)) is nilpotent for all =4, - - - , 24 in some nonzero ideal I of R.
Then g = 0.

Let R be a ring. For z,y € R, we denote [z,y] = zy — yx. An additive
subgroup L of R is said to be a Lie ideal of R if [u,r] C L for all v € L and
r € R. ALieideal L of R is called noncommutative if [L, L] # 0. It is well-known
that if L is a noncommutative Lie ideal of a prime ring R, then [z}, z2] C L for
all 21, x5 in some nonzero ideal I of R (see the proof of [8, Lemma 1.3]). So we
immediately obtain the following result from Theorem 1.

Theorem 2. Let R be a prime ring without nonzero nil one-sided ideals and let
L be a noncommutative Lie ideal of R. Suppose that ¢ is a generalized derivation
of R such that g(u) is nilpotent for each v € L. Then g = 0.

Finally, we extend Wang’s result to the case of semiprime rings.

Theorem 3. Let R be a semiprime K-algebra, where K is a commutative

ring with unity. Let f(Xq,---, X)) be a multilinear polynomial over K with at
least one coefficient invertible in K. Suppose that g is a generalized derivation of
R such that g(f(z1,---,2zx))" =0 forall z1,---, 2, € R, where n > 1 a fixed

integer. Then [f(x1,- -+, zk),z|g(y) =0 forall z1,- -, zk, z,y € R.

2. PRELIMINARIES

Throughout, unless specially stated, let R be a prime K-algebra, where K is a
commutative ring with unity and f(Xy,---, X%) abbreviated by f or f(X;), will
be a multilinear polynomial over K with at least one coefficient invertible in K.
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An additive mapping g : R — R is called a generalized derivation of R if there
exists a derivation d of R such that g(zy) = g(z)y + zd(y) for all z,y € R.

We let U be the maximal right ring of quotients of R and let @ stand for the
two sided Martindale quotient ring of R. The center C' of U (and Q) is called the
extended centroid of R (see [1] for details). It is well-known that any derivation
of R can be uniquely extended to a derivation of Q. Without loss of generality, we
may write

FXa, - X)) =Xy X+ Y 0 Xo() - Ko,
o#id

where a4 is invertible in K and the sum is taken over all permutations o except the
identity id in the symmetric group Sk.
We include two preliminary lemmas.

Lemma 1.1. Let R be a prime ring with nonzero socle H. Suppose that R is
not a domain and d is a derivation of R such that d(e)e = 0 for all e = e? € H.
Then d = 0. By symmetry, if ed(e) = 0 for all e = ¢2 € H, then d = 0.

Proof. Letz € R. For e = €2 € H, e + (1 — e)xe is still an idempotent
in H. Assume first that d is X-inner, that is, d(xz) = axz — za for some a € Q.
Then (ae — ea)e = 0 for e = €2 € H. Hence ae = eae for e = ¢* € H. Let
y € Hand e =¢e? € H. Then (1 —e)y € H. Note that H is a regular ring [6,
Lemma 1]. So (1 —e)yH = hH for some h = h*> € H. Hence eh = 0. Since
ah = hah, we have eah = 0. Therefore ea(1 — e)y = 0 and then ea(1 —e)H =0
implies that ea(1 — e) = 0. Thus ae — ea = 0 for all €2 = e € H. In particular,
ale+(1—e)ze) = (e+ (1 —e)xze)a. Then a(l —e)ze = (1 —e)xea for all z € R.
Since R is not a domain, there exists e = e € H and e # 0, 1. By Martindale’s
Lemma [17, Theorem 2 (a)], a(1 —e) = A(1 —e) and ea = Ae for some A € C. So
a = A and then d = 0, as desired. Assume next that d is not X-inner. Let xz € R.
Expanding d(e + (1 — e)ze)(e + (1 — e)ze) = 0 and using d(e)e = 0 to yield that

dle)(1—e)ze+d(1 —e)ze+ (1 —e)d(z)e+ (1 — e)zd(e)(1 — e)xe =0

for all x € R. Thus (1 — e)d(x)e+ (1 — e)xzd(e)xe = 0. Applying Kharchenko’s
Theorem [11] by replacing d(x), « with y, 0 respectively, we have that (1 —e)ye = 0
forall y € R. Thuse =0 or 1 for e = €2 € H, a contradiction. This proves the
lemma.

The second lemma is implicit in the proof of [7, Theorem 5].

Lemma 1.2. Let Rbearingand v € R,v? = 0. Suppose that for each z € R
with 22 = 0 we have either zv = 0 or va = 0. Then vhv = 0 for all nilpotent
elements A in R.
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Proof. Assume on the contrary that vhv # 0 for some nilpotent element h.
Since h is nilpotent, there exists some ¢ > 1 such that vh*v = 0 and vh‘v # 0
for all k¥ > ¢. Note that ((1 + r®)v(1 + h*)~1)2 = 0. By assumption, either
v(1+hYv(1+hY "L =0o0r (14+h"v(1+h") 1w = 0. Thus either v(1+h%v =0
or v(14+h) v =0. S0 0 =v(1+h*)" v =v(1 — bt + h* — B3¢ 4 ... )u. This
implies that vh‘v = 0, a contradiction.

2. PrRoOF oF THEOREM 1 AND THEOREM 3

Before proving Theorem 1, we make the following remark. For each coefficient
a of f, since o and d(«) are all contained in C, we may choose a nonzero ideal
I, of R such that al, U d(a)l, € R. Replacing I by I - (N.I,), where the
intersection runs over all coefficients of f, we may assume that o7 Ud(«)I C R for
each coefficient « of f. If k = 1, then f(X1) = a1 X3, where a1_1 € K. Observe
that f(X;)X2 = a1 X1 X5 is not central-valued on R; otherwise R is commutative
and then f is central-valued on R. Replacing f by fX5, we may always assume
that k& > 2.

We divide the proof of Theorem 1 into several lemmas.

Lemma 2.1. Theorem 1 holds if R is a semisimple algebra.

Proof. Let rM be an irreducible left R-module and Anng(M)= {r € R |
rm =0 forallm € M}. Let J = aqI?. Since a1—1 € K, J is a nonzero ideal
of R contained in 7. We claim that either g(J%) C Anng(M) or g(f(z;))*! C
Anng(M) for x; € I. If J C Anng(M), then g(J?) C Anng(M). So we
may assume that JM =# 0 and then M is also an irreducible left J-module. Let
D = End(gM) = End(;M). Suppose first that dimMp < k + 1. Then R =
R/Anng(M) = M, (D), where m < k+1. Since g(f(x;)) = g(f(x;))+Anng(M)
is nilpotent in R, we must have g(f(x;)) =0, that is, g(f(z;))™ € Anng(M)
forall x; € I.

Suppose now that dimMp > k + 1. By [15, Theorem 4], we may write
g(x) = ax + d(z) for all x € R, where a € U and d a derivation of R. Notice
that aR C g(R) — d(R) C R. Define an additive map d : J — End(Mp) given by
d(r) = Lq(y, where Ly, (v) = d(r) - v for v € M (see [2, p.326]). We divide the
proof into two cases.

Case 1. Assume that d is M-inner [2, Definition 4.1]. That is, there exists an
additive endomorphism 7" of M such that d(r)v = T'(rv) — rT'(v) for all » € J
and v € M. Suppose first that v and 7T'(v) are linear dependent over D for all
v € M. Then by [2, Lemma 7.1] there exists A\ € D such that 7'(v) = v\ for all
v € M. Hence d(r)v = (rv)A —r(vA) =0 for r € J,v € M, thatis, d(J)M =0
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and so d(J) C Anng(M). If (aJ)M = 0, then g(J?) C Anng(M), as claimed.
Hence we may assume that (a(aqy))v # 0 for some y € I? and v € M. Let

w = (a(aqy))v and w = wuq,---,ur be k D-independent vectors in M. Since
M is an irreducible left J-module, by the Jacobson Density Theorem, there exist
71, ,7E € Jsuch that rpuy = uo, rp_1ug = ug, -+, roUk_1 = ug, riux = v and
riu; = 0 for all other possible choices of i and j. Then af(yry,---,ry)w = w and

d(f(yri, -+, me)) € d(J). Hence g(f(yr1,-- - re))w = (af(yr, ..., re))w = w.
In particular, g(f(yri, ..., 7x))"w = w for all n > 1, a contradiction.
So we may assume that there exists v € M such that v and T'(v) are linear

independentover D. Letv = ug, T'(v) = uy, - - - , u, be k+1 D-independent vectors
in M. By the Jacobson Density Theorem, there exist y € 12 and rq,---, 7, € J
such that (a1y)v = v, rpur = ug, - -+, rouk—1 = ug, riug = —v and r;u; = 0 for

all other possible choices of 7 and j. Hence we have

g(f(yrlv U ,rk))”v:(af(yrl, U ,Tk)-FTf(yrl, e ,’I“k)—f(y’l"l, U ,’I“k)T)n’U:’U

for all n > 1, a contradiction.

Case 2. Assume that d is not M-inner. We denote by f¢(X1,---,X}) the
polynomial obtained from f(Xi,---,X}) by replacing each coefficient o with
d(ae - 1). Let vy,---,v; be k D-independent vectors in M. By the Extended
Jacobson Density Theorem [2, Theorem 4.6], there exist 1, - - - , 7, € J such that

d(Tg)Vk = Vk—1, Tk—1Vk—1 = Vk—2, ** ,ToUs = U1, T1V] = V)

and
riv; = 0, d(r;)v; = 0 for all other possible choices of i and j.

Let y € I? such that (a1y)vx = vg. Then af(yri,---,76)vr = 0,
fyr, -+ o =0,

fld(yri),re, - ri)vr = f(d(y)r1 +yd(r1),ra, -, rk)vk =0

and f(yri,---,d(r), -+, re)op = 0. But f(yry, -, rg—1,d(ry))vp = vg. SO
we have g(f(yry,- - re))ox = (af(yry, - re) +d(f(yry, - 7))ok = vk
Hence g(f(yr1, - ,7k))"vx = vi for all n > 1, a contradiction.

So now we have g(J?)Rg(f(z;))**1 C Ny Anng(M) = 0, where the inter-
section runs over all irreducible left R-modules M. If g(J?) = 0, then g = 0 by
[15, Theorem 6]. Otherwise, by primeness of R, g(f(z;))**' = 0 for all z; € I.
Thus g = 0 follows from [18, Theorem 1].

From now on we may assume that R is not a semisimple algebra, that is, J(R),
the Jacobson radical of R, is nonzero.
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Lemma2.2. Theorem 1 holds if there exist b, ¢ € @ with bc = 0 but bd(c) # 0.

Proof. We first claim that if u,v € @ with wv = 0 but ud(v) # 0, then f
vanishes on Qu. Let I’ be a nonzero ideal of R such that vI’, I'v and I'u are all
contained in /. Rewrite f in a form that

f - lel(X27 T 7Xk‘) +X2f2(X17X37 T 7Xk‘) + - +Xk‘f(X17 T 7Xk‘—1)'

For all z1,---,x; € I', we have
vz, xou, - -+, mpu) = vay fi(zou, - - - 2pu)
and
g(f(vzr, zou, - - -, xpu))v = verd(fi(zou, - - -, xgu))v.
Thus

(9(f (v, wou, - - zpu))) v = v(zrd(fi(zou, - - TRu))v)" = 0

for some n = n(z;) > 1. Hence I'd(fi(xou, - -, zxu))v is a nil left ideal of R.
So d(fi(zau, -+ ,zku))v = 0. And then

fi(zou, - -+ xpu)d(v) = d(fi(zou, - - -, xpu)v) — d(fi(zou, - -+, xpu))v =0

for all z; € I’ and hence for all z; € Q by [5, Theorem 2]. By [19, Lemma 4],
fi(zou, -+, zpu) = 0 forall z; € Q. In asimilar way, we have f;(z;u) = 0 for all
zj€Qandi=2,--- k. Therefore, f(ziu,---,zpu) isa GPl of Q). Since bc =0
and bd(c) # 0, @ satisfies the nontrivial GPI f(x1b,---,x;b). By Martindale’s
Theorem [17], @ is a primitive ring with nonzero socle H and its associated division
ring D is finite-dimensional over C. Moreover, @ is isomorphic to a dense subring
of the ring of linear transformations of a vector space M over D and H consists
of linear transformations of finite rank. If dimMp = m, then Q = M,,,(D). Then
g(f(z;))™ = 0 for all z; € I. By [18, Theorem 1], we are done. So we assume
that dimpM = co. Note that f is not a Pl of Q(1 —e) for ¢ = e € H. Otherwise,
Q(1—e) = Qh for some h? = h € H by [13, Proposition]. Thus (1—e)(1—h) = 0.
This implies that 1 = e + (1 — e)h € H, contrary to the infinite-dimensional of
pM. Since e(1 —e) = 0, we have 0 = ed(1 — e) = —ed(e) for all €2 = ¢ € H.
By Lemma 1.1, d = 0. This contradicts that bd(c) # 0.

By Lemma 2.2, now we may assume that xy = 0 implies that zd(y) = 0 for
r,y € Q.

Lemma 2.3. Let R be a non-GPI ring. Then Theorem 1 holds.
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Proof. Let
S={scR|s*=0}.

If S =0, then R is a prime reduced ring and hence is a domain. So g(f(z;)) =0
for all z; € I. By [18, Theorem 1], we are done. Now we assume that S ## 0. We
first to show that d(S) = 0.

Now let

T = {t € R | xty = 0 whenever zy = 0 for z,y € Q}.

Note that 7" is a subring of R. We also remark that S and 7" are invariant under
inner automorphisms of R. For z,y € @ with zy = 0 and s € S, we have
xzd(y) =0=sd(s) and (1 — s)(1+ s)y = 0. Thus

0==z(1—-s)d((1+s)y) =z(1—s)(1+s)d(y)+z(1 —s)d(1+ s)y = zd(s)y.

So d(S) C T. Also d(s)s = d(s*) — sd(s) = 0 implies that d(s)? = 0 for s € S,
that is, d(S) C S.

Suppose first that 7N.S = 0. Then d(S) = 0. We are done. So suppose now
that W = T NS # 0. Note that (1 + 2)W (1 + 2)~!1 C W for z € J(R). We
claim that there exists some 0 # v € R such that v € W and vRv C T. Fix
0#weW. If wW =0, then w(l +2)W(1+ 2)~t =0 for 2 € J(R). This
implies wJ(R)W = 0 and so w = 0, a contradiction. Choose ¢ € W such that
wt # 0. Recall that w? = 2 = wtw = 0 and (trwt)? = 0 for » € R. Hence

(1 + trwt)w(l — trwt) —w = w — wtrwt € T.
Let v =wt. Then0#v € W and vRv C T. Let
V={veW]|vRvCT}.

Obviously, (1 +2)V(1+2)~' C V for z € J(R). And for v € V and s = 0,
svRvs C sT's = 0 yields that either vs = 0 or sv = 0. Since g(f(z;)) is nilpotent,
by Lemma 1.2, vg(f(x;))v = 0 for all v € V. Let L be the additive subgroup of
R generated by {f(z;) : z; € I}. Lety € R. Using multilinearity of f(X;), we
have [y, f(z1,---,@%)] = S0, f(z1,---, [y, 2, - - ,xx). Hence [R, L] C L and
then L is a Lie ideal of R. Obviously, vg(L)v = 0. Since R is a non-GPI ring,
L must be noncommutative. Moreover, we have vg(R)v = 0 by [14, Theorem 2].
From the definition of 7" we see that vg(r)tv = 0 for t € T. Hence

vrd(t)v = vg(rt)v —vg(r)tv =0

for all » € R. This implies that d(¢)v =0 for all t € T'and v € V. So it follows
that d(t).J(R)v = 0 from d(¢)(142z)v(1+2z)~! =0 for z € J(R). Thus d(T) = 0.
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In particular, d(V) = 0. Let 0 # v € V and s> = 0. Then either sv = 0 or vs = 0.
If vs =0, then vd(s) = 0. If sv =0, thenvs = (1 — s)v(l1+s) —v € T and
50 0 = d(vs) = d(v)s + vd(s) = vd(s). Using (1 + 2)~tv(1 + 2)d(s) = 0 for
z € J(R), we obtain that d(S) = 0.

Next we claim that d = 0. For 0 # s € S, obviously we have sRs C S.
So 0 = d(sRs) = d(sR)s = sd(R)s. This yields that sd(R) € S. Thus 0 =
d(sd(R)) = sd?(R) for all s € S. Therefore (1 + z)~'s(1 + 2)d?*(R) = 0 for
z € J(R), implying that d>(R) = 0. By [4, Theorem 2], we may assume that the
characteristic of R is equal to 2. Using 0 = d(sR)s and in view of [4, Lemma
4], there exists some ps € @ depending on s such that d(z) = psx — xps and
pssR = 0. S0 pss = 0. Since 0 = d?(x) = p?x — xp?, we see that p2 € C for all
0 # s € S. Thus it follows that p2 = 0 from pss = 0. Suppose that ps # py for
some 0 # 5,8 € S. Then p, — a = py for some o € C and (ps — a)? = 0 = p2.
This implies that « = 0, a contradiction. So we may assume that d(z) = px — zp
for some p € Q and ps = 0 for all s € S. Using p(1 + 2)S(1 4 z)~! = 0 for
z € J(R), we have p = 0. Hence d = 0, as claimed.

So now g(x) = ax for some a € U [15, Theorem 4]. For 0 # s € S, we have

sg(f(sz1, - -sxp—1, sxKs)) =saf(sry, - STp—1, STKS) =Ssah(sx1, -+, STK—1)STkS
for some multilinear polynomial A(zy,-- -, xx_1). Thus
0=sg(f(sx1, - swr_1,s2s))" = (sah(szy, -, szp_1)sxE)"s

for m large enough. Hence sah(sxy,- -, szi—1)sI is a nil right ideal of R. So
sah(sxy,- -+, srk—1)szy = 0 for all z; € I. Since R is a non-GPI ring, we have
sas = 0 for all s € S. Also we have

sg(f(x1, sza, - - sx)_1, STKS)) = sax1h/(swe, -, Swk_1)STLS
for some multilinear polynomial »/(zo, -, xx—1). Thus
0 = sg(f(x1, 822, 5T)_1, 5T8S))™ = (sazx1h (sx2, + , sT)_1)5TK)™'S

for m large enough. Hence saxih/(sxo,- -, szr—1)sI is a nil right ideal of R.
So saxyh/(sza, -+, sxi—1)szr = 0 for all z; € I. Since R is a non-GPlI ring, it
follows that sa = 0 for all s € S. Using (1 + 2)~1S(1 + z) C S, we may easily
get a = 0. So g = 0. This proves the lemma.

Proof of Theorem 1. In view of Lemma 2.3, R can be assumed to be a
prime GPI-ring. Then by Martindale’s Theorem [17], @ is a primitive ring with
nonzero socle H and its associated division ring D is finite-dimensional over C.
Moreover, @ is isomorphic to a dense subring of the ring of linear transformations
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of a vector space M over D and H consists of linear transformations of finite rank.
If dimMp = m, then Q = M,,,(D). Hence g(f(x;))™ =0 for all z; € I. By [18,
Theorem 1], we are done. So we assume that dimMp = co. Since e(1—e¢) = 0 for
e? = e € H, in view of Lemma 2.2 we have 0 = ed(1 — €) = —ed(e). By Lemma
1.1, d = 0. So now g(z) = ax. For each ¢> = e € H, it follows from Litoff’s
Theorem [6] that eQe = M,, (D), where dim(eM)p = m. Choose a nonzero ideal

I’ of R such that el’e C I. Thus
(eaef(exye, - exre))™ =0

for all z; € I’ and hence for z; € Q by [5, Theorem 2]. Moreover, if 2m —1 > k,
then f is not cental-valued on eQe and then eae = 0 by [18, Theorem 1]. Given
r € Rand h € H, there exists > = e € H such that arh,rh € eQe and
eQe = M,,(D), 2m — 1 > k. Then arh = earh = eaerh = 0. This implies that
aRH = 0. Thus a = 0 and so g = 0. The proof is now complete.

Proof of Theorem 3. By [15, Theorem 4], we may write g(x) = az + d(z)
for all x € R, where « € U and d a derivation of R. Since U and R satisfy
the same differential identities [16, Theorem 3], g(f(x1,---,x%))™ = 0 for all
x1,---, 2, € U. Denote by C' = Z(U) the center of U. Let P be a maximal ideal
of C. Then PU is a prime ideal of U invariant under all derivations of U and
NpPU = 0, where P’s run over all maximal ideals of C' (see [16, p.32 (iii)]).

Fix a maximal ideal P of C. Let d be the canonical derivation of U = U/PU
induced by d. Set g(z) = @ -7 + d(z). Note that § is a generalized deriva-
tion of the prime ring U. Moreover, g(f (1, --,T%))™ = 0. It follows from
[18, Theorem 1] that either g(U) = 0 or f(Xy,---,Xx) is central-valued on
U, that is either g(U) c PU or [f(xy1,---,xx),2] C PU for xy, -, a0 €
U. Hence [f(x1, - ,zx),2z]g(U) C PU. But since NnpPU = 0, we obtain

[f(xlv"' ,fL’]g),fL']g(y) = 0 for T1, Tk, T, Y € U.
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