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SINGULAR INTEGRALS ON LIPSCHITZ AND SOBOLEV SPACES

Yasuo Komori

Abstract. We consider the boundedness of Calderón–Zygmund operators on

Lipschitz space and Sobolev space without assuming cancellation condition

T1 = 0, and we apply our results to Calderón’s commutator.

1. INTRODUCTION

Many authors have considered the boundedness of generalized singular integrals

(non-convolution operators)

Tf(x) =
∫

Rn

K(x, y)f(y)dy,

on several function spaces (see, for example, [1-3,5,6,8]). But they assume the

condition that T1 = 0. This condition is very strong and Calderón’s commutator

Caf(x) =
∫

R1

a(x) − a(y)
(x − y)2

f(y)dy,

which is a typical example of generalized singular integral operator, does not sat-

isfy this in general. Meyer [5,6], proved the boundedness of generalized singular

integrals on Lipschitz and Sobolev spaces when T1 = 0.
In this paper we consider the boundedness of these operators by assuming that

T1 belongs to some Lipschitz class. Our results are applicable to Calderón’s com-
mutator.

2. DEFINITIONS AND NOTATIONS

The following notation is used: For a setE ⊂ Rn we denote the characteristic
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function of E by χE and |E| is the Lebesgue measure of E. We denote a ball of

radius r centered at x by B(x, r) = {y; |x− y| < r}.
First we define some classical function spaces which we shall consider in this

paper (see, for example, [6,7]).

Definition 1. Let 0 < α < 1. We define homogeneous Lipschitz space by

Λ̇α(Rn) =

{
f ; ‖f‖Λ̇α

= sup
x 6=y

|f(x)− f(y)|
|x − y|α < ∞

}
.

Definition 2. Let 0 < α < 1. We define inhomogeneous Lipschitz space by

Λα(Rn) =
{
f ; ‖f‖Λα = ‖f‖L∞ + ‖f‖Λ̇α

< ∞
}

.

Definition 3. Let λ ≥ 0. We define Morrey space by

L1,λ(Rn) =
{

f ; ‖f‖L1,λ = sup
x∈Rn

r>0

1
rλ

∫

B(x,r)
|f(y)|dy < ∞

}
.

Remark. L1,0 = L1, L1,n = L∞ and L1,λ = {0} where λ > n.

Definition 4. We define BMO by

BMO(Rn) =
{

f ; ‖f‖BMO = sup
x∈Rn

r>0

1
|B(x, r)|

∫

B(x,r)
|f(y)− fB |dy < ∞

}
,

where fB = 1
|B(x,r)|

∫
B(x,r) f(y)dy.

The following proposition is well-known (see [6, p. 213]).

Proposition. Let 0 < α < 1 and 1 ≤ p < ∞. Then

sup
x∈Rn

r>0

inf
c

1
rα

( 1
rn

∫

B(x,r)

|f(y)− c|pdy
)1/p

≈ ‖f‖Λ̇α
.

Remark. Because of this proposition, we can consider BMO = Λ̇0.

Definition 5. Let 0 < s < 1. We define homogeneous Sobolev space by

Ḃs(Rn) =
{

f ; ‖f‖Ḃs =
(∫∫ |f(x)− f(y)|2

|x− y|n+2s
dxdy

)1/2
< ∞

}
.
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Definition 6. Let 0 < s < 1. We define inhomogeneous Sobolev space by

Hs(Rn) =
{

f ; ‖f‖Hs = ‖f‖L2 + ‖f‖Ḃs < ∞
}

.

Next we define new function spaces.

Definition 7. Let λ, µ ≥ 0. We define generalized Morrey space by

L1,(λ,µ)(Rn) =
{

f ; ‖f‖L1,(λ,µ)

= sup x∈Rn

0<r≤1

1
rλ

∫
B(x,r) |f(y)|dy + supx∈Rn

r≥1

1
rµ

∫
B(x,r) |f(y)|dy < ∞

}
.

Remark. L1,(λ,λ) = L1,λ. If λ ≤ n ≤ µ then L∞ ⊂ L1,(λ,µ).

Definition 8. Let 0 < α < 1 and λ, µ ≥ 0. We define generalized inhomoge-
neous Lipschitz space by

Λ(λ,µ)
α (Rn) =

{
f ; ‖f‖

Λ
(λ,µ)
α

= ‖f‖L1,(λ,µ) + ‖f‖Λ̇α
< ∞

}
.

We write Λ(λ,λ)
α = Λλ

α.

Remark. Λ(n,n)
α = Λα and Λα ⊂ Λ(λ,µ)

α where λ ≤ n ≤ µ.

Definition 9. Let 0 < s < 1 and 1 ≤ p < ∞. We define generalized
inhomogeneous Sobolev space by

Hs,p(Rn) =
{

f ; ‖f‖Hs,p = ‖f‖Lp + ‖f‖Ḃs < ∞
}

.

Remark. Hs,2 = Hs.

Next we define singular integrals.

Definition 10. Let T be a bounded linear operator from S to S ′. T is

called an ε-Calderón–Zygmund operator (CZO(ε)), where 0 < ε ≤ 1, if T extends

to a continuous operator on L2 and there exists a function K(x, y) defined on
{(x, y) ∈ Rn × Rn; x 6= y}, which satisfies the following:

|K(x, y)| ≤ C

|x − y|n ,

|K(x, y)− K(x′, y)| ≤ C|x − x′|ε

|x − y|n+ε
if 2|x− x′| < |x − y|,

(Tf, g) =
∫

K(x, y)f(y)g(x)dydx for f, g ∈ D with disjoint supports.
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Remark. Note that we only assume the regularity with respect to x variable

for K(x, y).

Throughout this paper C is a positive constant which is independent of essential

parameters and not necessarily same at each occurrence.

We shall give an example of CZO(ε) which is not convolution operator.

Definition 10. (Calderón’s commutator)

Caf(x) = p.v.

∫

R1

a(x) − a(y)
(x − y)2

f(y)dy.

Remark. If a′ ∈ L∞, then Ca is a CZO(1) (see [6, p. 402]).

3. RESULTS

Meyer [6] and Lemarié [4] proved the following:

Theorem A. Let 0 < α < ε ≤ 1. If T is a CZO(ε) and T1 = 0, then T is

bounded on Λ̇α.

Theorem B. Let 0 < s < ε ≤ 1. If T is a CZO(ε) and T1 = 0, then T is

bounded on Ḃs .

Remark. For the meaning of T1, see [1, Chapter 8] or [6, p. 412]. Note that
Ca(1) 6= 0 in general.

The following our results Corollary 1 and 3 are variants of Theorem A and B

respectively. To prove these corollaries, we shall prove more general results.

Theorem 1. Let 0 < α < ε ≤ 1 and 0 < β < 1. If T is a CZO(ε) and
T1 ∈ Λ̇β, then T is bounded from Λ(λ,µ)

α to Λ̇α where λ ≥ n+α−β and µ < n+α.

Remark. If α ≤ β, then we can take λ and µ such that Λα ⊂ Λ(λ,µ)
α .

Theorem 2. Let 0 < s < ε ≤ 1 and s < β < 1. If T is a CZO(ε) and
T1 ∈ Λ̇β, then T is bounded from Hs,p to Ḃs where max

(
1, 2n/(n+2(β−s))

)
<

p ≤ 2.

As corollaries of our theorems we obtain the following:

Corollary 1. Let 0 < α < ε ≤ 1. If T is a CZO(ε) and T1 ∈ Λ̇α, then T is

bounded from Λα to Λ̇α
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Proof. Let α = β and λ = µ = n in Theorem 1.

Corollary 2. (Calderón’s commutator) Let 0 < α < 1. If a′ ∈ L∞(R1) and
a′ ∈ Λ̇α(R1), then Ca is bounded from Λα(R1) to Λ̇α(R1).

Proof. Ca is a CZO(1) and Ca(1) = −H(a′) where H is the Hilbert trans-

form. Because the Hilbert transform is bounded on Λ̇α, we obtain Ca(1) ∈ Λ̇α.

Remark. Corollary 2 is deduced from Meyer’s result. In fact we can write

Caf(x) =
∫

a(x)− a(y)− (x− y)a′(y)
(x − y)2

f(y)dy + H(a′f)(x)

= C̃af(x) + H(a′f)(x),

where C̃a is a CZO(1) and C̃a(1) = 0. So C̃a is bounded on Λ̇α. We also have

a′f ∈ Λ̇α if f ∈ Λα and obtain H(a′f) ∈ Λ̇α.

But if a′ ∈ Λ̇β where β < α, we can not apply Meyer’s theorem. Theorem 1 is

applicable to these cases.

Corollary 3. Let 0 < s < ε ≤ 1 and s < β < 1. If T is a CZO(ε) and
T1 ∈ Λ̇β, then T is bounded from Hs to Hs.

Proof. Note that T is bounded on L2.

Corollary 4. (Calderón’s commutator) Let 0 < s < β < 1. If a′ ∈ L∞(R1)
and a′ ∈ Λ̇β(R1), then Ca is bounded from Hs(R1) to Hs(R1)

4. PROOF OF THEOREM 1

First we note that T is bounded from L∞ to BMO, so T1 ∈ BMO (see [1, p.

20]). Therefore if T1 ∈ Λ̇β then T1 ∈ Λ̇γ for all γ < β.

Let B(x0, r) be fixed. We shall show

1
rn+α

∫

B(x0,r)
|Tf(x)− cB|dx ≤ C‖f‖

Λ
(λ,µ)
α

,

for some constant cB.

We write

f(x) = (f(x)− fB)χB(x0,2r)(x) + (f(x)− fB)χ B(x0,2r)(x) + fB

= f1(x) + f2(x) + fB,
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where fB = 1
|B(x,r)|

∫
B(x,r) f(y)dy.

The estimates of Tf1 and Tf2 are routine.

By using L2 boundedness of T , we have

1
rn+α

∫

B(x0,r)
|Tf1(x)|dx ≤ C

rα

(
1
rn

∫

B(x0,r)
|Tf1(x)|2dx

)1/2

≤ C

rα

(
1
rn

∫

B(x0,2r)
|f(x)− fB |2dx

)1/2

≤ C‖f‖Λ̇α
.

To estimate Tf2, let c2 =
∫

K(x0, y)f2(y)dy. For any x ∈ B(x0, r), we have

|Tf2(x) − c2| =
∣∣∣∣
∫

(K(x, y)− K(x0, y))f2(y)dy

∣∣∣∣

≤ Crε

∫

|x0−y|≥2r

|f(y)− fB|
|x0 − y|n+ε

dy ≤ Crα‖f‖Λ̇α
if α < ε.

So we have
1

rn+α

∫

B(x0,r)
|Tf2(x)− c2|dx ≤ C‖f‖Λ̇α

.

To estimate TfB , we use the condition for generalized Morrey space. We take

γ such that µ ≤ n + α − γ and 0 < γ < β. Let x ∈ B(x0, r). We have

|TfB(x) − TfB(x0)| = |fB||T1(x)− T1(x0)|

≤

{
|fB| ‖T1‖Λ̇β

rβ, if r ≤ 1

|fB| ‖T1‖Λ̇γ
rγ , if r ≥ 1

≤




‖T1‖Λ̇β

rα
(
r−λ

∫
B(x0,r)

|f(y)|dy
)

rλ−α−n+β , if r ≤ 1

‖T1‖Λ̇γ
rα
(
r−µ

∫
B(x0,r)

|f(y)|dy
)

rµ−α−n+γ , if r ≥ 1

≤ rα
(
‖T1‖Λ̇β

+ ‖T1‖Λ̇γ

)
‖f‖L1,(λ,µ) .

Therefore we obtain the desired result.

5. PROOF OF THEOREM 2

We shall show

∫∫ |Tf(y)− Tf(x)|2

|x − y|n+2s
dxdy ≤ C‖f‖2

Hs,p .
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Let ξ ∈ D be a radial function such that ξ(u) = 1 where |u| ≤ 2, and put
η(u) = 1− ξ(u). As in [1, p. 119] (see also [5]), we write

Tf(y)− Tf(x) =g1(x, y) + g2(x, y) + g3(x, y) + g4(x, y)
+ f(x) (T1(y)− T1(x)) ,

where

g1(x, y) =
∫ (

K(y, u)− K(x, u)
)(

f(u)− f(x)
)
η

(
u − x

|y − x|

)
du,

g2(x, y) = −
∫

K(x, u)
(
f(u)− f(x)

)
ξ

(
u − x

|y − x|

)
du,

g3(x, y) =
∫

K(y, u)
(
f(u)− f(y)

)
ξ

(
u − x

|y − x|

)
du,

g4(x, y) =
(
f(y) − f(x)

) ∫
K(y, u)ξ

(
u − x

|y − x|

)
du.

We can also write

Tf(y) − Tf(x) = − g1(y, x)− g2(y, x)− g3(y, x)− g4(y, x)
+ f(y) (T1(y)− T1(x)) .

So we have

|Tf(y)− Tf(x)| ≤
4∑

i=1

(
|gi(x, y)|+ |gi(y, x)|

)

+ min(|f(x)|, |f(y)|) · |T1(y)− T1(x)|.

Meyer showed that for 1 ≤ i ≤ 4,
∫∫ |gi(x, y)|2 + |gi(y, x)|2

|x − y|n+2s
dxdy ≤ C‖f‖2

Ḃs if s < ε.

Therefore we need to estimate

I =
∫∫

min(|f(x)|2, |f(y)|2) · |T1(y)− T1(x)|2

|x − y|n+2s
dxdy.

We take γ such that 0 < γ < β and γ < s. Because T1 ∈ Λ̇β ∩ Λ̇γ , we have

|T1(y)− T1(x)| ≤

{
‖T1‖Λ̇β

|x − y|β, if |x − y| ≤ 1

‖T1‖Λ̇γ
|x − y|γ , if |x − y| ≥ 1.

Let q = p/(2− p) and 1/q + 1/q′ = 1. (When p = 2, we set 1/q = 0 and q′ = 1).
Then we obtain
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I ≤
∫

|f(x)|p
{
‖T1‖2

Λ̇β

∫

|x−y|≤1

|f(y)|2−p|x − y|−n−2s+2βdy

+ ‖T1‖2
Λ̇γ

∫

|x−y|≥1

|f(y)|2−p|x− y|−n−2s+2γdy

}
dx

≤ ‖f‖p
Lp‖f‖p/q

Lp

{
‖T1‖2

Λ̇β

(∫

|x|≤1

|x|(−n−2s+2β)q′dx
)1/q′

+ ‖T1‖2
Λ̇γ

(∫

|x|≥1
|x|(−n−2s+2γ)q′dx

)1/q′
}

≤ C‖f‖2
Lp

(
‖T1‖2

Λ̇β
+ ‖T1‖2

Λ̇γ

)
,

because (−n − 2s + 2γ)q′ < −n < (−n − 2s + 2β)q′.
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