TAIWANESE JOURNAL OF MATHEMATICS Vol. 9, No. 1, pp. 73-80, March 2005 This paper is available online at http://www.math.nthu.edu.tw/tjm/

SINGULAR INTEGRALS ON LIPSCHITZ AND SOBOLEV SPACES

Yasuo Komori

Abstract. We consider the boundedness of Calderón–Zygmund operators on Lipschitz space and Sobolev space without assuming cancellation condition T1 = 0, and we apply our results to Calderón's commutator.

1. INTRODUCTION

Many authors have considered the boundedness of generalized singular integrals (non-convolution operators)

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy,$$

on several function spaces (see, for example, [1-3,5,6,8]). But they assume the condition that T1 = 0. This condition is very strong and Calderón's commutator

$$C_a f(x) = \int_{R^1} \frac{a(x) - a(y)}{(x - y)^2} f(y) dy,$$

which is a typical example of generalized singular integral operator, does not satisfy this in general. Meyer [5,6], proved the boundedness of generalized singular integrals on Lipschitz and Sobolev spaces when T1 = 0.

In this paper we consider the boundedness of these operators by assuming that T1 belongs to some Lipschitz class. Our results are applicable to Calderón's commutator.

2. DEFINITIONS AND NOTATIONS

The following notation is used: For a set $E \subset \mathbb{R}^n$ we denote the characteristic

Received July 10, 2003; Accepted August 7, 2003.

Communicated by Szi-Bi Hsu.

²⁰⁰⁰ Mathematics Subject Classification: 42B20.

Key words and phrases: Calderón-Zygmund operator, Lipschitz space, Sobolev space.

function of E by χ_E and |E| is the Lebesgue measure of E. We denote a ball of radius r centered at x by $B(x, r) = \{y; |x - y| < r\}$.

First we define some classical function spaces which we shall consider in this paper (see, for example, [6,7]).

Definition 1. Let $0 < \alpha < 1$. We define homogeneous Lipschitz space by

$$\dot{\Lambda}_{\alpha}(R^n) = \left\{ f; \|f\|_{\dot{\Lambda}_{\alpha}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty \right\}.$$

Definition 2. Let $0 < \alpha < 1$. We define inhomogeneous Lipschitz space by

$$\Lambda_{\alpha}(R^n) = \left\{ f; \|f\|_{\Lambda_{\alpha}} = \|f\|_{L^{\infty}} + \|f\|_{\dot{\Lambda}_{\alpha}} < \infty \right\}.$$

Definition 3. Let $\lambda \ge 0$. We define Morrey space by

$$L^{1,\lambda}(\mathbb{R}^n) = \bigg\{ f; \|f\|_{L^{1,\lambda}} = \sup_{\substack{x \in \mathbb{R}^n \\ r > 0}} \frac{1}{r^{\lambda}} \int_{B(x,r)} |f(y)| dy < \infty \bigg\}.$$

Remark. $L^{1,0} = L^1, L^{1,n} = L^{\infty}$ and $L^{1,\lambda} = \{0\}$ where $\lambda > n$.

Definition 4. We define *BMO* by

$$BMO(R^n) = \left\{ f; \|f\|_{BMO} = \sup_{\substack{x \in R^n \\ r > 0}} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y) - f_B| dy < \infty \right\},\$$

where $f_B = \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) dy$.

The following proposition is well-known (see [6, p. 213]).

Proposition. Let $0 < \alpha < 1$ and $1 \le p < \infty$. Then

$$\sup_{\substack{x \in \mathbb{R}^n \\ r > 0}} \inf_{c} \frac{1}{r^{\alpha}} \left(\frac{1}{r^n} \int_{B(x,r)} |f(y) - c|^p dy \right)^{1/p} \approx \|f\|_{\dot{\Lambda}_{\alpha}}.$$

Remark. Because of this proposition, we can consider $BMO = \dot{\Lambda}_0$.

Definition 5. Let 0 < s < 1. We define homogeneous Sobolev space by

$$\dot{B}^{s}(R^{n}) = \left\{ f; \|f\|_{\dot{B}^{s}} = \left(\iint \frac{|f(x) - f(y)|^{2}}{|x - y|^{n + 2s}} dx dy \right)^{1/2} < \infty \right\}.$$

74

Definition 6. Let 0 < s < 1. We define inhomogeneous Sobolev space by

$$H^{s}(\mathbb{R}^{n}) = \left\{ f; \|f\|_{H^{s}} = \|f\|_{L^{2}} + \|f\|_{\dot{B}^{s}} < \infty \right\}.$$

Next we define new function spaces.

Definition 7. Let $\lambda, \mu \ge 0$. We define generalized Morrey space by $L^{1,(\lambda,\mu)}(R^n) = \left\{ f; \|f\|_{L^{1,(\lambda,\mu)}} \\ = \sup_{\substack{x \in R^n \\ 0 < r \le 1}} \frac{1}{r^{\lambda}} \int_{B(x,r)} |f(y)| dy + \sup_{\substack{x \in R^n \\ r \ge 1}} \frac{1}{r^{\mu}} \int_{B(x,r)} |f(y)| dy < \infty \right\}.$

Remark. $L^{1,(\lambda,\lambda)} = L^{1,\lambda}$. If $\lambda \leq n \leq \mu$ then $L^{\infty} \subset L^{1,(\lambda,\mu)}$.

Definition 8. Let $0 < \alpha < 1$ and $\lambda, \mu \ge 0$. We define generalized inhomogeneous Lipschitz space by

$$\Lambda_{\alpha}^{(\lambda,\mu)}(\mathbb{R}^n) = \left\{ f; \|f\|_{\Lambda_{\alpha}^{(\lambda,\mu)}} = \|f\|_{L^{1,(\lambda,\mu)}} + \|f\|_{\dot{\Lambda}_{\alpha}} < \infty \right\}.$$

We write $\Lambda_{\alpha}^{(\lambda,\lambda)} = \Lambda_{\alpha}^{\lambda}$.

Remark. $\Lambda_{\alpha}^{(n,n)} = \Lambda_{\alpha} \text{ and } \Lambda_{\alpha} \subset \Lambda_{\alpha}^{(\lambda,\mu)} \text{ where } \lambda \leq n \leq \mu.$

Definition 9. Let 0 < s < 1 and $1 \le p < \infty$. We define generalized inhomogeneous Sobolev space by

$$H^{s,p}(\mathbb{R}^n) = \left\{ f; \|f\|_{H^{s,p}} = \|f\|_{L^p} + \|f\|_{\dot{B}^s} < \infty \right\}.$$

Remark. $H^{s,2} = H^s$.

Next we define singular integrals.

Definition 10. Let T be a bounded linear operator from S to S'. T is called an ε -Calderón–Zygmund operator $(CZO(\varepsilon))$, where $0 < \varepsilon \le 1$, if T extends to a continuous operator on L^2 and there exists a function K(x, y) defined on $\{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n; x \neq y\}$, which satisfies the following:

$$\begin{split} |K(x,y)| &\leq \frac{C}{|x-y|^n}, \\ |K(x,y) - K(x',y)| &\leq \frac{C|x-x'|^{\varepsilon}}{|x-y|^{n+\varepsilon}} \quad \text{if} \quad 2|x-x'| < |x-y|, \\ (Tf,g) &= \int K(x,y)f(y)g(x)dydx \quad \text{for} \quad f,g \in \mathcal{D} \quad \text{with disjoint supports.} \end{split}$$

Remark. Note that we only assume the regularity with respect to x variable for K(x, y).

Throughout this paper C is a positive constant which is independent of essential parameters and not necessarily same at each occurrence.

We shall give an example of $CZO(\varepsilon)$ which is not convolution operator.

Definition 10. (Calderón's commutator)

$$C_a f(x) = \text{p.v.} \int_{R^1} \frac{a(x) - a(y)}{(x-y)^2} f(y) dy.$$

Remark. If $a' \in L^{\infty}$, then C_a is a CZO(1) (see [6, p. 402]).

3. Results

Meyer [6] and Lemarié [4] proved the following:

Theorem A. Let $0 < \alpha < \varepsilon \leq 1$. If T is a $CZO(\varepsilon)$ and T1 = 0, then T is bounded on $\dot{\Lambda}_{\alpha}$.

Theorem B. Let $0 < s < \varepsilon \leq 1$. If T is a $CZO(\varepsilon)$ and T1 = 0, then T is bounded on \dot{B}^s .

Remark. For the meaning of T1, see [1, Chapter 8] or [6, p. 412]. Note that $C_a(1) \neq 0$ in general.

The following our results Corollary 1 and 3 are variants of Theorem A and B respectively. To prove these corollaries, we shall prove more general results.

Theorem 1. Let $0 < \alpha < \varepsilon \leq 1$ and $0 < \beta < 1$. If T is a $CZO(\varepsilon)$ and $T1 \in \dot{\Lambda}_{\beta}$, then T is bounded from $\Lambda_{\alpha}^{(\lambda,\mu)}$ to $\dot{\Lambda}_{\alpha}$ where $\lambda \geq n + \alpha - \beta$ and $\mu < n + \alpha$.

Remark. If $\alpha \leq \beta$, then we can take λ and μ such that $\Lambda_{\alpha} \subset \Lambda_{\alpha}^{(\lambda,\mu)}$.

Theorem 2. Let $0 < s < \varepsilon \leq 1$ and $s < \beta < 1$. If T is a $CZO(\varepsilon)$ and $T1 \in \dot{\Lambda}_{\beta}$, then T is bounded from $H^{s,p}$ to \dot{B}^s where $\max(1, 2n/(n+2(\beta-s))) .$

As corollaries of our theorems we obtain the following:

Corollary 1. Let $0 < \alpha < \varepsilon \leq 1$. If T is a $CZO(\varepsilon)$ and $T1 \in \dot{\Lambda}_{\alpha}$, then T is bounded from Λ_{α} to $\dot{\Lambda}_{\alpha}$

Proof. Let $\alpha = \beta$ and $\lambda = \mu = n$ in Theorem 1.

Corollary 2. (Calderón's commutator) Let $0 < \alpha < 1$. If $a' \in L^{\infty}(\mathbb{R}^1)$ and $a' \in \dot{\Lambda}_{\alpha}(\mathbb{R}^1)$, then C_a is bounded from $\Lambda_{\alpha}(\mathbb{R}^1)$ to $\dot{\Lambda}_{\alpha}(\mathbb{R}^1)$.

Proof. C_a is a CZO(1) and $C_a(1) = -H(a')$ where H is the Hilbert transform. Because the Hilbert transform is bounded on $\dot{\Lambda}_{\alpha}$, we obtain $C_a(1) \in \dot{\Lambda}_{\alpha}$.

Remark. Corollary 2 is deduced from Meyer's result. In fact we can write

$$C_a f(x) = \int \frac{a(x) - a(y) - (x - y)a'(y)}{(x - y)^2} f(y)dy + H(a'f)(x)$$

= $\widetilde{C}_a f(x) + H(a'f)(x)$,

where \widetilde{C}_a is a CZO(1) and $\widetilde{C}_a(1) = 0$. So \widetilde{C}_a is bounded on $\dot{\Lambda}_{\alpha}$. We also have $a'f \in \dot{\Lambda}_{\alpha}$ if $f \in \Lambda_{\alpha}$ and obtain $H(a'f) \in \dot{\Lambda}_{\alpha}$.

But if $a' \in \Lambda_{\beta}$ where $\beta < \alpha$, we can not apply Meyer's theorem. Theorem 1 is applicable to these cases.

Corollary 3. Let $0 < s < \varepsilon \leq 1$ and $s < \beta < 1$. If T is a $CZO(\varepsilon)$ and $T1 \in \dot{\Lambda}_{\beta}$, then T is bounded from H^s to H^s .

Proof. Note that T is bounded on L^2 .

Corollary 4. (Calderón's commutator) Let $0 < s < \beta < 1$. If $a' \in L^{\infty}(R^1)$ and $a' \in \dot{\Lambda}_{\beta}(R^1)$, then C_a is bounded from $H^s(R^1)$ to $H^s(R^1)$

4. PROOF OF THEOREM 1

First we note that T is bounded from L^{∞} to BMO, so $T1 \in BMO$ (see [1, p. 20]). Therefore if $T1 \in \dot{\Lambda}_{\beta}$ then $T1 \in \dot{\Lambda}_{\gamma}$ for all $\gamma < \beta$.

Let $B(x_0, r)$ be fixed. We shall show

$$\frac{1}{r^{n+\alpha}} \int_{B(x_0,r)} |Tf(x) - c_B| dx \le C ||f||_{\Lambda_{\alpha}^{(\lambda,\mu)}},$$

for some constant c_B .

We write

$$f(x) = (f(x) - f_B)\chi_{B(x_0,2r)}(x) + (f(x) - f_B)\chi_{B(x_0,2r)}(x) + f_B$$

= $f_1(x) + f_2(x) + f_B$,

where $f_B = \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) dy$.

The estimates of Tf_1 and Tf_2 are routine. By using L^2 boundedness of T, we have

$$\frac{1}{r^{n+\alpha}} \int_{B(x_0,r)} |Tf_1(x)| dx \le \frac{C}{r^{\alpha}} \left(\frac{1}{r^n} \int_{B(x_0,r)} |Tf_1(x)|^2 dx \right)^{1/2} \\ \le \frac{C}{r^{\alpha}} \left(\frac{1}{r^n} \int_{B(x_0,2r)} |f(x) - f_B|^2 dx \right)^{1/2} \le C ||f||_{\Lambda_{\alpha}}.$$

To estimate Tf_2 , let $c_2 = \int K(x_0, y) f_2(y) dy$. For any $x \in B(x_0, r)$, we have

$$\begin{aligned} |Tf_2(x) - c_2| &= \left| \int (K(x, y) - K(x_0, y)) f_2(y) dy \right| \\ &\leq Cr^{\varepsilon} \int_{|x_0 - y| \geq 2r} \frac{|f(y) - f_B|}{|x_0 - y|^{n + \varepsilon}} dy \leq Cr^{\alpha} ||f||_{\dot{\Lambda}_{\alpha}} \quad \text{if} \quad \alpha < \varepsilon. \end{aligned}$$

So we have

$$\frac{1}{r^{n+\alpha}}\int_{B(x_0,r)}|Tf_2(x)-c_2|dx\leq C||f||_{\dot{\Lambda}_{\alpha}}.$$

To estimate Tf_B , we use the condition for generalized Morrey space. We take γ such that $\mu \leq n + \alpha - \gamma$ and $0 < \gamma < \beta$. Let $x \in B(x_0, r)$. We have

$$\begin{split} |Tf_{B}(x) - Tf_{B}(x_{0})| &= |f_{B}||T1(x) - T1(x_{0})| \\ &\leq \begin{cases} |f_{B}| \ \|T1\|_{\dot{\Lambda}_{\beta}}r^{\beta}, & \text{if } r \leq 1 \\ |f_{B}| \ \|T1\|_{\dot{\Lambda}_{\gamma}}r^{\gamma}, & \text{if } r \geq 1 \end{cases} \\ &\leq \begin{cases} \|T1\|_{\dot{\Lambda}_{\beta}}r^{\alpha} \left(r^{-\lambda}\int_{B(x_{0},r)}|f(y)|dy\right)r^{\lambda-\alpha-n+\beta}, & \text{if } r \leq 1 \\ \|T1\|_{\dot{\Lambda}_{\gamma}}r^{\alpha} \left(r^{-\mu}\int_{B(x_{0},r)}|f(y)|dy\right)r^{\mu-\alpha-n+\gamma}, & \text{if } r \geq 1 \end{cases} \\ &\leq r^{\alpha} \left(\|T1\|_{\dot{\Lambda}_{\beta}} + \|T1\|_{\dot{\Lambda}_{\gamma}}\right)\|f\|_{L^{1,(\lambda,\mu)}}. \end{split}$$

Therefore we obtain the desired result.

5. Proof of Theorem 2

We shall show

$$\iint \frac{|Tf(y) - Tf(x)|^2}{|x - y|^{n + 2s}} dx dy \le C ||f||_{H^{s,p}}^2.$$

Let $\xi \in \mathcal{D}$ be a radial function such that $\xi(u) = 1$ where $|u| \leq 2$, and put $\eta(u) = 1 - \xi(u)$. As in [1, p. 119] (see also [5]), we write

$$Tf(y) - Tf(x) = g_1(x, y) + g_2(x, y) + g_3(x, y) + g_4(x, y) + f(x) (T1(y) - T1(x)),$$

where

$$g_1(x,y) = \int \left(K(y,u) - K(x,u) \right) \left(f(u) - f(x) \right) \eta \left(\frac{u-x}{|y-x|} \right) du,$$

$$g_2(x,y) = -\int K(x,u) \left(f(u) - f(x) \right) \xi \left(\frac{u-x}{|y-x|} \right) du,$$

$$g_3(x,y) = \int K(y,u) \left(f(u) - f(y) \right) \xi \left(\frac{u-x}{|y-x|} \right) du,$$

$$g_4(x,y) = \left(f(y) - f(x) \right) \int K(y,u) \xi \left(\frac{u-x}{|y-x|} \right) du.$$

We can also write

$$Tf(y) - Tf(x) = -g_1(y, x) - g_2(y, x) - g_3(y, x) - g_4(y, x) + f(y) (T1(y) - T1(x)).$$

So we have

$$|Tf(y) - Tf(x)| \le \sum_{i=1}^{4} (|g_i(x, y)| + |g_i(y, x)|) + \min(|f(x)|, |f(y)|) \cdot |T1(y) - T1(x)|.$$

Meyer showed that for $1 \leq i \leq 4$,

$$\iint \frac{|g_i(x,y)|^2 + |g_i(y,x)|^2}{|x-y|^{n+2s}} dx dy \le C \|f\|_{\dot{B}^s}^2 \quad \text{if} \quad s < \varepsilon.$$

Therefore we need to estimate

$$I = \iint \frac{\min(|f(x)|^2, |f(y)|^2) \cdot |T1(y) - T1(x)|^2}{|x - y|^{n + 2s}} dx dy.$$

We take γ such that $0 < \gamma < \beta$ and $\gamma < s$. Because $T1 \in \dot{\Lambda}_{\beta} \cap \dot{\Lambda}_{\gamma}$, we have

$$|T1(y) - T1(x)| \le \begin{cases} ||T1||_{\dot{\Lambda}_{\beta}}|x - y|^{\beta}, & \text{ if } |x - y| \le 1 \\ ||T1||_{\dot{\Lambda}_{\gamma}}|x - y|^{\gamma}, & \text{ if } |x - y| \ge 1. \end{cases}$$

Let q = p/(2-p) and 1/q + 1/q' = 1. (When p = 2, we set 1/q = 0 and q' = 1). Then we obtain

Yasuo Komori

$$\begin{split} I &\leq \int |f(x)|^{p} \bigg\{ \|T1\|_{\dot{\Lambda}_{\beta}}^{2} \int_{|x-y|\leq 1} |f(y)|^{2-p} |x-y|^{-n-2s+2\beta} dy \\ &+ \|T1\|_{\dot{\Lambda}_{\gamma}}^{2} \int_{|x-y|\geq 1} |f(y)|^{2-p} |x-y|^{-n-2s+2\gamma} dy \bigg\} dx \\ &\leq \|f\|_{L^{p}}^{p} \|f\|_{L^{p}}^{p/q} \bigg\{ \|T1\|_{\dot{\Lambda}_{\beta}}^{2} \bigg(\int_{|x|\leq 1} |x|^{(-n-2s+2\beta)q'} dx \bigg)^{1/q'} \\ &+ \|T1\|_{\dot{\Lambda}_{\gamma}}^{2} \bigg(\int_{|x|\geq 1} |x|^{(-n-2s+2\gamma)q'} dx \bigg)^{1/q'} \bigg\} \\ &\leq C \|f\|_{L^{p}}^{2} \big(\|T1\|_{\dot{\Lambda}_{\beta}}^{2} + \|T1\|_{\dot{\Lambda}_{\gamma}}^{2} \big), \end{split}$$

because $(-n - 2s + 2\gamma)q' < -n < (-n - 2s + 2\beta)q'$.

REFERENCES

- 1. M. Frazier, Y.-S. Han, B. Jawerth, and G. Weiss, The *T*1 Theorem for Triebel-Lizorkin spaces, Harmonic Analysis and Partial Differential Equations, Lecture Notes in Math. No. **1384**, *J. García-Cuerva*, ed., 168-181.
- M. Frazier, B. Jawerth, and G. Weiss, *Littlewood-Paley Theory and the Study of Function Spaces*, CBMS Reg. Conf. Ser. in Math. No. 79, Amer. Math. Soc., Providence, RI, 1991.
- J. E. Gilbert, Y.-S. Han, J. A. Hogan, J. D Lakey, D. Wiland, and G. Weiss, Smooth Molecular Decompositions of Functions and Singular Integral Operators, Memoirs of the AMS, No. 742, 2002.
- 4. P. G. Lemarié, Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières, Ann. Inst. Fourier (Grenoble), **35** (1985), 175-187.
- 5. Y. Meyer, Continuité sur les espaces de Holder et de Sobolev des opérateurs définis par des intégrales singulières, *Recent Progress in Fourier Analysis*, Peral and Rubio de Francia, eds., (1985), 145-172.
- 6. Y. Meyer and R. Coifman, *Wavelets: Calderón-Zygmund and multilinear operators*, Cambridge Studies in Advanced Mathematics **48**, Cambridge Univ. Press, 1997.
- 7. A. Torchinsky, Real Variable Methods in Harmonic Analysis, Academic Press, 1986.
- 8. R.H. Torres, *Boundedness results for operators with singular kernels on distribution spaces*, Memoirs of the AMS, No. **442**, 1991.

Yasuo Komori School of High Technology for Human Welfare, Tokai University, 317, Nishino Numazu, Shizuoka 410-0395, Japan E-mail: komori@wing.ncc.u-tokai.ac.jp