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PERTURBATION BOUNDS FOR SUBSPACES ASSOCIATED WITH
PERIODIC EIGENPROBLEMS

Ji-guang Sun

Abstract. The concept of periodic deflating subspaces of regular periodic

matrix pairs {(A;, Bj)}/<, is a generalization of deflating subspaces of a

regular matrix pair (A, B). In this paper we derive perturbation bounds for
each individual subspace of simple periodic deflating subspaces.

1. INTRODUCTION

Consider the multivariate eigenproblem

a1 By 0 0 —B1A; T
—B242 a2Bs 0 Z2
: - . 0 :
(1'1) 0 0 —ﬂKAK OéKBK TK
1
al o« o aK .
=C ) ) . — 07
< /817 U 7/8K ) ’
TK

where A; and B; are complex n X n matrices, «; and 3; are complex variable, and

x; are n-dimensional nonzero vectors for j = 1,..., K. In this paper we assume
that the periodic matrix pairs {(A;, Bj)}f: | are regular; that is,
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The eigenproblem (1.1) with the period K > 1 arises in the area of periodic control
systems, and there are some contributions in the literature on the theory, applications,
and numerical solution of the eigenproblem (see, e.g., [1-4,6]). The object of this
paper is to derive perturbation bounds for certain subspaces associated with the
eigenproblem (1.1).

Throughout this paper we shall use the following notation. C"™*" denotes the
set of complex m x n matrices, and C" = C™*!. () is the empty set. AT stands
for the transpose of a matrix, and A for the conjugate transpose of A. I is the
identity matrix, I,, is the n X n identity matrix, and 0 is the null matrix. R(A)

denotes the column space of a matrix A. The symbol || || stands for any unitarily
invariant norm, || || is the Frobenius norm, and || ||2 is the Euclidean norm for
vectors and the spectral norm for matrices. For A = (a1, ...,a,) = (a;;) € C™*"

and a matrix B, A® B = («a;;B) is a Kronecker product, and vec(A) is the vector
defined by vec(A) = (af,...,al)T.

rn

We first cite some definitions related to regular periodic matrix pairs.

Definition 1.1 [3, 4]. Let {(A; Bj)}fil be regular periodic matrix pairs. If
the complex numbers aq, ..., ax and 081, ..., Bk satisfy

a1, 0, 0K _
det|: < /817 7/8K >:| =0

(Mo, m3) = Haj,Hﬂj (0,0),

then (7o, mg) is called an eigenvalue of {(A;, Bj)}fil

and

From Definition 1.1 we see that any eigenvalue (74, 7g) of {(A;, B; ) 1 lies
on the complex projective plane, or equivalently, any eigenvalue (74, 73) hes on the
Riemann sphere; that is, (74, 73) # (0,0) and (77, 77g) for any nonzero complex
number 7 represent the same eigenvalue. If an eigenvalue (7, 73) satisfies g # 0,
then 7, /7g is a finite eigenvalue; otherwise, (7, 73) is the infinite eigenvalue.

It is known [3,4] that there are exactly n eigenvalues (counting multiplicity)
for {(A;, Bj)} & j=1- The set of all eigenvalues of {(Aj;, B; ) t , is denoted by

X (1A, B»}j:l).

Let
(o, m3) € A ({ (A, Bj) }isy) -

If (74, mg) is different from the others in A <{(Aj, Bj)}fﬂ), then (74, 7g) is said
to be a simple eigenvalue of {(4;, B;)} 1,
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Definition 1.2 [3, 4]. Let {(Aj,Bj)}fil be regular periodic n x n matrix
pairs, and let (7, 7g8) = <ﬁ aj, ﬁ Bj | be an eigenvalue of {(A;, Bj)}J<,. If
the nonzero vectors x, . . .,x; € Cj”:lsatisfy

Bjdjrj-1 = a;Bjx;

for j =1,..., K, where g = zg, then {xj}fil are called periodic right eigenvec-
tors of {(A4;, Bj)}fil belonging to the eigenvalue (7, 73).

Definition 1.3 [3, 4]. Let &; and Y; (j = 1,. ) be subspaces of C"
with the same dimension. The pairs of subspaces { (X yj)} * , are called periodic
deflating subspaces of {(A;, B;)}/<, if

Aij—l C yj, Bj.)(j C yj

for j =1,..., K, where Xy = X. Furthermore, the subspaces {X; } t | are called
periodic invarlant subspaces (or periodic eigenspaces) of {(4;, B;)} & i

Let 29, QY e ¢ satisty 29" 2 = QW7 QY = T, and let
=Rz, ¥ =R@Q) j=1..K

It has been proved by [4] that the periodic subspaces {(X, yj)}f: , are periodic
deflating subspaces of {(A;, B;) fil if and only if there are n X n unitary matrices

7= (20, 25) and Q; = (QV), QF) with Zy = Z: such that
A0 4 B0 U
1.2 HA 7z | = 1 Sz )\ oHpog. i B
(1:2) Q”“(o AY) Qi BiZ, 0 BY
for j=1,..., K, where A(ﬂ), Bﬁ) € C™", and the matrix pairs
. . K
{<A(1j1)’ Bﬁ)) }j:1 and {<A(2j2)’ Béé)>} =1

are regular.
If

wy ({2 ) ({(a2 )} ) -0

then the periodic deflating subspaces { (X, yj)}f: , are called simple periodic de-
flating subspaces.
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Let the relations (1.2) and (1.3) be satisfied. We now define the matrices 771,
Tha, To1, Too and T by

0 R R I, ® A(212)
2 .
(1.4) Ty = L ®_A(22) )
0 - LAl 0
T
_A(111) Iy, - - 0
(15) T12 — . 9
T
0 A e,
I ® Bé? e 0
(1.6) Ty = _ ,
0 I, ® B
T
—Bﬁ) Iy, - - 0
(1.7) Toy = )
T
0 —Bﬁ() @1, .,
and
Ty Tho
1.8 T = .
(18) < Tor Too )
It is known [3] that the matrix 7" is nonsingular. Write
1 1 2 2
C§1) 0&3 C§1) 0&3 Cy
(1 1 :2 :2 :
I e < N I N
Dry Dig D1y Dik D
(1 1 2 2 D
Dg(% . D%) D%) . D%) K
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where CJ(Q, D§2 g Crin=r)xr(n-r) (1<j,k<K,1<1<2). Note that the matrix

T~ can be expressed by

r1_ (T2 Si ' 0
Ty Tn o ;')

where 171,751 and Tho are the matrices defined by (1.4), (1.6) and (1.7), respec-
tively, and

T
A oL, - 0 0
S12 = ' T ’ ;
0 o A e, 0
. W7
0 0 AV o1,
nT 1 KT 1
_A(n)T ® Bé2) TO e B§1 " A(22)
1 2 2 2
T = BYY ©4f) -AY o B e 0
K-1)T K K T K
0 e B§1 " ® A(22 ) _A(n " ® Bé2 )
and
)T 1 nT 1
A(n) T® Bé2) TO e _B§1) ® A(22)
2 2 3 2
T — _B§1) ® A(22) A(n) ® Bé2) e 0
h = . '
K T K nT ' K
0 e _B§1 " ® A(22) A(n) ® Bé2 )

The following four lemmas will be used in §2 — §4.

Lemma 1.1 [3, Corollary 2.2]. Let {(A;, Bj)}fil be regular periodic matrix

pairs, and let Z; = (Z@,Zéj)) and Q; = ( (lj), (2j)) be the n x n unitary

matrices satisfying (1.2) and (1.3), that is, {(X;, ;) fil with Xj = R(Zg)) and
Y = R( (1j)) are simple periodic deflating subspaces of {(A;, Bj) f:r Then
for Ej, Fy € C™", j = 1,..., K, with sufficiently small || E;||p and ||Fj| p, there
are unique simple periodic deflating subspaces {(Xj, yj)}jil of the matrix pairs

{(A; + E;,B; + F}) fil, where Pej = R(Zp), )7j =R( ~(1j)), and

(1.10) 29 =29 1790+, QY =Y +QYv; + -,
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in which, vec(®;) and vec(¥;) (j =1,..., K) have the expressions
(1.11)

vec( ZC( vec( (k) E;.CZYﬁ 1) ZC( vec( (k) FZyﬁ)),

and
(1.12)
- 1) W (k-1) B k)
vec(V;) = ZDjk vec <Q2 EvZ, ) + ZDjk‘ vec <Q2 VA ) ,
k=1

where Z£O) = Z£K), and CJ(Q and D§112 (1<4,k<K,1<1<2) are the subma-
trices of T~ given by (1.9).

Let X1 = R(X;) and X, = R(X’l) be two r—dimensional subspaces of C",

where X, X1 € C"*", and X' X, = XF X, = I. Define ©(Xy, X;) by
- Heo on 1/2
©(X1, X1) = arccos (Xl X1X4 X1> > 0.
Then it is known [7, Chapter II] that
p(.)(l, )El) = H Sin@(Xl, Xl)”

is a generalized chordal metric on r—dimensional subspaces of C". Particularly, we
have the generalized chordal metric pp(X;, &1):

(1.13) pr(X1, X1) = || sin© (X1, X1)|| .

Lemma 1.2 [9, Theorem 1.3.2]. Let X = (X1, X2) be an n X n unitary
matrix with X1 € C™*". Let

(1.14) X =X ( é ) , Zechnxr
and let X; = R(X1),X; = R(X1). Then
(1.15) p(X, %) = 121+ O (1ZF) as Z — 0.
Let X1, X1, Xy, Xy and Z be as in Lemma 1.2, and let Wy = )2'1()2'1[{)2'1)_1/2.

Then [7, p.232]
12]] = [l tan ©(X 1, Wh)-
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Combining it with

p(1, X1) = || sin ©(X1, W) || < | tan ©(X1, Wh)|
gives
(1.16) p(X1, &) < || Z].

From (1.15) and (1.16) we see that if € is a sharper upper bound for || Z||, and if €
is very small, then e is a sharper upper bound for p(X;, X}), too.

Lemma 1.3 [8, Theorem 1.3.1]. Let z = (21, .. .,zg)T with z; € C™ Yy,
g € C" and

Cy
c=| : | with ¢jecm  j=1,...p,
Cp

where m = mq + - --+my. Let

7= lgllzy =i+ g with = ([Cilla, =1,
and let f,h : C™ — C™ be two continuous mappings satisfying

(1.17) 1 (2)l2 < ellzllz,  [1F(2) = f(2)ll2 < €llZ = 2|2

and

(1.18)  [Ih(=)ll2 < nllll3,  17(2) = h(2)ll2 < 2nmax{||Z]2, | 2]l2}[|Z — 2[2
for some e,n > 0. If

4K2yn

kee <1l and —21_
¢ (1 — Kye)?

<1,

or equivalently, if
’%*(6 + 2\/,7/'7) < 17

then there is a unique solution z of the nonlinear equation
(1.19) z=Clg+ f(2) + h(z)]
that satisfies
26,57
1 — kue + /(1 — ku€)? — 4r29n

Izjll2 < V3.
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Referring to the proof of Lemma 1.3 [8, Theorem 1.3.1] we can prove the
following result.

Lemma 1.4. Let z,9,C,~, f and h be as in Lemma 1.3, in which f and h
satisfy (1.17) and (1.18), respectively. Define

s=|c|

If

€ 4yn

-<1 d =<1

P 1 R TR
or equivalently, if

2
€+ 5\/W <1,

then there is a unique solution z of the nonlinear equation (1.19) that satisfies

2 < 2
d—e++/(6—¢€)?2—4dyn

2]

It has been proved by [3] that each simple deflating subspace of regular peri-
odic matrix pairs {(A;, Bj)}f: 1 has an individual condition number, and by using
the condition number we obtain a first order perturbation bound for each simple
deflating subspace. However, the first order perturbation bounds only formally give
perturbation results for simple deflating subspaces. In the case that perturbations
in {(A;, Bj)}f: 1 are not sufficiently small, the corresponding perturbed deflating
subspaces may not exist. Consequently, it is necessary to derive perturbation bounds
which guarantee the existence of corresponding perturbed deflating subspaces. This
paper, as a supplement to the work [3], will derive such perturbation bounds (see
§3).

Note that the technique and results of this paper are different from those of
[1]. By [1, Subsection 2.1] one can obtain a perturbation bound for simple periodic
deflating subspaces of a regular periodic matrix pairs {(4;, B;) jK: 15 the drawback
of the bound is that it is governed by the ill-conditioning of the most sensitive
deflating subspace. In this paper we obtain perturbation bounds for each individual
subspace of simple periodic deflating subspaces { (X}, );) fil.

2. CoNDITION NUMBERS

In this section we introduce a definition of condition number for each indi-

vidual subspace of simple periodic deflating subspaces { (X, yj)}f: 1> and derive

expressions of the condition numbers. The condition numbers will appear in the
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perturbation bounds for periodic deflating subspaces derived in the next section.
Note that the definition of condition number introduced in this section is a slight
modification of that defined by [3, (3.15)].

Let { (], yj}ji 1 be simple periodic deflating subspaces of regular periodic ma-
trix pairs {(A;, B;)}<,, where X; = R(Z) and V; = R(QY), 2. QY €
cnxT d Z(j)Hz(j) _ (j)H @ _ I. L E. F- K b 1 ba-

, and Z; = Q7 @ =1L et {(E;, F}) j—1 be small perturba
tions in {(Aj, Bj)},, and let {(X;, ¥;}/<, be the corresponding perturbations
of {(X;,¥;}/<,. By Lemma 1.1, for sufficiently small perturbations E; and F}
(j =1,..., K) the matrix pairs {(A; + E;, B; + Fj)}fil have unique simple peri-
odic deflating subspaces {(X;, yj}fil with X; = R(Zp) and J; = R( ~(1j)), and
Z@, ~(1j) have the expansions (1.10), in which vec(®;) and vec(¥;) are given by
(1.11) and (1.12), respectively.

We now apply the condition theory developed by Rice [5] to define condition
numbers x(X;) and £(Y;) (j = 1,. .., K) of the simple periodic deflating subspaces
{(va Vj 5(:1 by

X, X
(2.1) k(X;) = lim sup pr(&, J)7
=0 1/2 )
B EHFE) <5
and
(2.2) k(Y;) = lim sup pr(Ys, Vj)
6=0 1/2 0
(B I3+IFE) <6
i=

Combining (2.1) with (1.10), (1.14) and (1.15) gives

D
(2.3) (&) = lim sup lIvec(®;)ll2.
6—0 K 1/2 )

_ (1B 1E+IEE) <
i

J=1

g ee ey

Let

~ H ~ H
B = Q" BN, Y = o RAY,

(2.4)
Ey=Q{EZr—1, F,=QfF.Zy, k=1,.. K,
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where Z\*) = 7% 7y = Zy. Then from (2.3), (2.4), (1.9) and (1.11) we get

vee(Ef)
1 B
k(&;) = lim sup ~llc; vec( A2(11) )
d—0 K 1/2 1) VGC(F21 )
Vec(}/fz({()) ,
Vec(EgP)
1 ~(K)
= lim sup e, vec( 122(11 | ) |
d—0 1/2 o) VGC(F21 )
||E(J)|| +||F(])||% <5 ‘
"~ .
Vec(ﬁé{()) ,
for j =1,..., K. Consequently, we have
(2.5) k(X)) = ICilla, j=1,...,K.

Similarly, we have
(2.6) k(Y;) =1IDjll2, Jj=1,....K.
Thus, we have the following result.

Theorem 2.1. Let {( V) fil be simple periodic deflating subspaces of
the matrix pairs {(A;, Bj) H< o1, and let k(X;) and k(Y;) be the condition numbers
defined by (2.1) and (2. 2) respectively. Then k(X;) and ());) have the expressions
(2.5) and (2.6), respectively, in which C; and D; are submatrices of T given by
(1.9).

From the definitions (2.1) and (2.2) we get the first order perturbation bounds
for simple periodic deflating subspaces { (X}, yj)}jil

(2.7)
1/2

K K
pr(X;, %) < w(X5) | D0 (1B IE + IE 1) | +0 [ D (IEIF + IF11%) |,
j=1 j=1

1/2

K
pr(Y;, Vi) < k() | D0 (B IE + IEE) | +0 [ D (IElE + IFilIF) |.

j=1 j=1

=
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; X 2 2
forj=1,...,K, as Zl (IE1E + 15511F) —
j:

3. PERTURBATION BOUNDS
3.1 Main Result

Theorem 3.1. Let {(A;, B )}j v Zj; Qj and {(X;, V)Y, be as in Lemma
LI For B;,F; € C™ (j =1,..., K), let

(4 () () (9
E9D E " F9) F
(3.1) Qi'EjZj = ( 4 Elz > , @ FjZj= ( 111 }12 > :
j Eé{) §j2) J 2({) 2(%)

Moreover, let k(X;) and k();) be the condition numbers expressed by (2.5) and
(2.6), and let

K 11/2
(3.2) we = |20 (WP + 0P|

K 11/2
(3.3) v= 2 (1B 1E+ 15D |
o0 em | (60 D), | ( )H
and

) n=max{ max (|42, +[26],) s (58], = |2],)}-
If

(3.6) k(e + 2077) < 1,

then there are unique simple periodic deflating subspaces {( yj) Y, of the
matrix pairs {(A; + E;, B; + F} )}j 1, and

. 2k(X;)y
X, X)) < :
(3.7) prit &) = 1= kve+ /(1 = k.€)2 — 4k2yn)
. 2 j
(ijyj) K(yj)

1 — kue + /(1 — ku€)2 — 4r2yn)
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forj=1,..., K, where pp(-,-) is the generalized chordal metric defined by (1.13).
Proof. It can be verified that the set of matrices
xO L xE y@) yE) ¢ glamr)xr
is a solution to the system of equations
Agjé)X(j_l) _ Y(j)A(lji)
— _EW 4+ (y(j) EY _ gy X(j—l)) e ( A9 4 Eg)) X G-,

(3.8) Bé?x(j—l) _ y(j)Bﬁ)

— _FY 4 (Ym FO _ g XU)) Ly ( BY ¢ Fg)) X,

i=1...,K

if and only if the matrices X (/) and YU) (j = 1,..., K) satisfy

_y [ Eéjl) A(2J2)+E(J) xG-1 7

(3-9)< I 0 )( BY 4+ F9) pY 4 Y >< I 0 >:

VR I
ocx 7
o %
* K
~ * %
~ N———

_Y(j) I F2({) Béﬂ;_’_Fé%) X(j) I
ji=1,... K.

The relations of (3.9) imply that the subspaces { A, 5;]}]1(: | defined by

~ 1 ~ 1 .

are r—dimensional periodic deflating subspaces of {(A;+E;, B;+ Fj )} t ,. Conse-
quently, by Lemmal.2 and the relation (1.16), the problem of proving the inequalities
of (3.7) is reduced to find a set of solutions Xij), Y*(j) (j=1,...,K) to(3.8), and
bound the sizes of HX,@H and HY*(j)H fory=1,..., K.

Let T be the matrix de%ned by (1.4)€(1.8), and let

0 —Ir®E£§)

_ (2) -, :
(3.10) Ly = I ® Bn ;

0 o L @B 0
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(3.11) Liy =
(3.12) Loy =
(3.13) Loy =
and

(3.14)

Moreover, let

(3.15)

and

Zz =

T
EY ©l,

-1, ® F)

T
Y oI,

h

g

vec (X(l))

vec (X(K))
vec (Y(l))

vee ()

L1 Lo
Lo1 Lo

E
B o1,

-1, ®

E
FO" @I,

).

29
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vec (Y(l)(A(lé) + Eg))X(K)>
vec (Y(2)(A(122) + Eg))X(1)>

vec (Y(K)(A(II;) Eg()) (K-1)
vee (YO(BY + FOHx®
vec (YO (B + F2Hx®

(3.16) f(z)=Lz, h(z)=

vee (YU (B + F30)x(5))
Then the system of equations (3.8) can be written in an equivalent form

Tz =g+ f(z) + h(2).

or equivalently,

(3.17) z=T g+ f(2) +h(z)].

Observe that the functions f and h satisfy the conditions (1.17) and (1.18),
where € and n are the scalars defined by (3.4)and (3.5), respectively. In fact, from
the first relation of (3.16) we get

172 < [1Ellallzll2, 11F(2) = F(2)ll2 < | LllallZ = 2|2,
where the matrix L is defined by (3.10)—(3.14), and

e < (2 )]z ),

I, ® EY)
I Py

Moreover, from the second relation of (3.16) we get

< max
1<j<K

4+ max
5 1<<K

T

EY) @l
T

- -

2
= €.

ek JZ o (a-+ 52) x5 o (0 + £19) x00
j=1

K
<7 Z Y DIFIX DI + D Iy OFIX O3

T2
< nllll3,
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and

LCRCETER bl IRl MR

o

Sl vl o+ O

F

S e oo

F

<o (i H};(j)_y(j)ui HXU_I)H}?; ‘ y(j)“i “X(j—l)_X(j—l)“Z

v o o -,
< [2nmax{|[]2, || 2ll2}]|Z — 2[|2)*.

Hence, by Lemma 1.3 and (3.2)—(3.5), if k4,7, €, n satisfy (3.6), then the equation
(3.17) has a unique solution

2e = <vec (Xil))T ,...,vec (XiK)>T , vec (Kf”)T ..., vec (Y;(K)>T>T

satisfying

], = o (29)], < il
o () ( 2[|Djllay

O T [ L —

for j = 1,..., K, where C; and D, are the submatrices of 7! given by (1.9).
Combining (3.18) with (1.16) and (2.5)—(2.6) shows the estimates of (3.7). ]
From (3.7) we get the first order perturbation bounds for simple periodic deflat-
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ing subspaces {(X;, V;)}1:

1/2
K

pr(X;, X)) S R(Xy)y < () | D0 (1B IE+IEIE) |
=1

(3.19) ’ 1/2
K

pr(Y, Vi) S ey < w() | (1B 1+ IFIE) |
7=1

for j =1,..., K. The estimates of (3.19) coincide with those of (2.7).

3.1 Residual Bounds

Let {(Aj, Bj)}iS), Z;,Q; and {(X;,V;)}1<, be as in Lemma 1.1, and let
{(4;, B)) K1 be perturbed to {(A;, B; ) i1 Let Z; = (Z(j) Zéj)> and Q; =
( ~(1j ). Qy )> be n X n unitary matrices with Zg = Zx such that

o AW 10 T BY  BU
3.20 HA.Z. | = w2 ) QEBZ; 1 b}

for j =1,..., K, where A BY) € ¢™" and assume that
K NN <
(3.21) A ({ (a8, BY) }j1> N> ({ (4%, BY) }j1> — 0.

L~et T2 and Ty be the matrices defined by (1.5) and (1.7), and define Tn, Tgl
and T by

0 .. .. I.® A(212)
(3.22) i = I, ®‘A(222) 7
0 I, ®A(K) 0
I ® Bé;) e 0
(3.23) Ty = ‘ ,
6 e I, ®§é§)
and

= T Tio )
3.24 (L _
(3:24) < To1 Too
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The assumption (3.21) implies that the matrix 7" is nonsingular. (The proof is similar
to that of the nonsingularity of the matrix 7" defined by (1.4)—(1.8) [3, 164-166].)
Write

(3.25) 7! ., Cj,Djecrmmkxrn=r) ;1 K.

I
i

Let X; = R(Zp), Y =R( ~(1j)), and let
(3.26) R(j) _ Ajzy’—l) _ (J)A(ljl)7 Rg) _ Z(J) (J)A(ljl)7

be the residuals of {(A;, B;)}X, with respect to 2079 79 QW 49 and

BH), j=1,..., K. The following result gives residual bounds for pp (X}, X;) and
pr(Vi, Vi), i=1,..., K.

Theorem 3.2. For the above mentioned {(A;, Bj)}
Y, and X;,Y;, we have

jl’{(A B)jl’Xj’

-K 5 9 -1/2
pr(%;, %) < (1G5l Z( P BY| + | P R ) ,
=1
ol W[
(P}ij + P%@-)Ré > )
1 F 1 F

where é’j, l~?j are the submatrices ofj“_1 given by (3.25), R(j), Rg) are the resid-
uals defined by (3.26), j =1,..., K, and P5(7'> = I — P~, in which P~ is the
1 1 1

(3.27)

pF(ijj)j) < HDJ’H2

IT_‘;MNI

orthogonal projection onto R ( () ) (z 5@)
Proof.  From (3.26) and (3.20) we get
. ~ (A ~(a\ ~(i_1\H (i ~ (A ~(a\ ~(i_1\H (i ~ (AN ~(a\ ~(i_1\H (i
R(j) _ (IJ)A(J)Z(J 1) Z£J 1)+Q(1J)A(1J2)Z§J 1) Z£J 1)+Q(2J)A(2J2)Z§J 1) Z£J 1)
Q(J A(lj1

. ~,~,~, N N o~ (N ~(NH -l o~ ~(NH (s
Rg) :Q(lj Bﬂ Z£J) Z£J)+Q(1J)B§J2)Z§J) Z£J)+Q(2J)Béj2)zéj) Z£J) _ (J)Bﬂ)7
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and
. I RW = 49 ZG-D" 701 _ 0" ) 40,

~(\H
(2J) R(J) B§J2)Z(J Z(J Q(J (J Bﬂ),
fory=1,..., K.

Let
sgﬁ) = vec (Zéj)HZy)) ) sgg) = vec ( ~(23)HQ(IJ)> )

(Aj) = vec (ng)HR(j)) , qg) = vec ( ~(2j)HRg)> ,
fory=1,..., K, and let

s Ny
(K) (K)
S D
s=1 0 |- =]
Sy 4B
(K (K
S0 450

Then by (3.22)—(3.24), the relation (3.28) can be written in an equivalent form:
TS:q, or S:T_lq,
which implies
(3.29) s =Ciq, s =Djq, j=1,....K.
Observe that
. ~( \NH . NH ~/\ ~/\H . 1/2 ~

B~ 20, = o120 2020 <

for j =1,..., K. Similarly,
. ~(\H . ~
91, -l =0r 30 a1

Hence, from (3.29) we get

. 2 LG
e, %) < 161 | (@ B9+ o Y1) |

3 2 e
e, 3 < 10312 |3 (|08 R[]+ 08" R2[L) |
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which imply the estimates of (3.27). ]

1

to modify the form of the estimates (3.27).

Note that one can use the formulas

e A e e T e A

ngﬁR(j)

ngj)RSBJ)

4. FINAL REMARKS

4.1. Applying Lemma 1.4 to the nonlinear equation (3.17) shows the following
result

Theorem 4.1. Let {(Aj, Bj) f:l’ Zj, ij Ej, Fj (] =1,..., K), {(Xj, yj) f:l’

v, € and n be as in Theorem 3.1. Let T be the matrix defined by (1.4)—(1.8), and
define

(4.1) 5=, -
If

Vg

5 :

. -\ K
then there are unique simple periodic deflating subspaces {(Xj, yj)} . of the
periodic matrix pairs {(A; + E;, B; + Fj)}jK:1 and
K 1/2

42) [ (ok (2. %) + 01 (0. 3)) | < tl :

= §—e+ /(0 —€)?—4yn

Theorem 4.1 is a generalization of the perturbation result [7, Chapter VI, The-
orem 2.14] for deflating subspaces of a regular matrix pair. The drawback of the
perturbation bound given by (4.2) is that it is governed by the ill-conditioning of
the most sensitive deflating subspace.

4.2. From (4.2) we get

1/2
K /

3 (4 (0.5) 1 (03))| =

Jj=1

|2
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K
when > (||E;||% + [|Fj[|%) is sufficiently small. Consequently, the quantity
i=1

(13) s ({20 = 5 (=177,

can be regarded as a condition estimator of the simple periodic deflating subspaces
{(X;,5) f(:l. By (1.9), (2.5), (2.6) and (4.1) we have the relations

k() <k ({(X,V)1))  and  w(V;) <k ({(X5,Y)}1E))
for j =1,..., K, and there is the possibility that in some cases
() <k ({2, V)5)  and/or w(Y) < & ({(X), V))}5)
for some j (1 <j<K). Consequently, in some cases the quantity x <{(Xj, Yj) szl)
may be a severe overestimate of the sensitivity of some subspaces X; and/or J; (1 <

j < K). This fact is illustrated by the following numerical example.

Consider the regular periodic matrix pairs {(A4;, B;)}3_; with

j=1
1 0 -1 4 1 2 0 -1 0
01 60 0 -2 0 5 1 00
Ai=10 0 6 1 01|, B1= 0 0 01 -1 0 |,
00 0 3 2 0 0 0O -1 3
00 0 0 3 00 0 0 1
1 =50 0 3 0 2 1 =2 01
0 4 70 2 0 0 4 0 -2 0
As=1 0 0 1 10 0|, By= 00 1 1 01,
0 0O 0 8 -1 00 0 -1 1
0 0O 0 O 5 00 0 1
2 100 0 -1 O 5 1 2 0 -1
0 10 1 0 01 -1 2 0
As=1| 0 0 1 0 80 |, Bs=1] 0 0 1 1 1
0 0 0 10 1 0 0 0 3 0
0 0 0 0 0 0 0 0 1
We have

A({(Aj,Bj)}ﬁzl) ={(2, 20), (4, 20), (6, 0.1), (240, 3), (105, 1)},
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or equivalently,
A ({(4;,B))¥3_;) ={0.1, 0.2, 60, 80, 105}.

It is easy to see that the pairs of subspaces { (X}, yj)}§:1 with

T
1 0 0 0 O
Xl—X2—X3—y1—y2—y3—R<<0 10 0 0) >

are the simple periodic deflating subspaces of {(A;, Bj)}?:1 corresponding to the
eigenvalues 0.1 and 0.2. Computing x(&X;) and x(Y;) (j = 1,2, 3) by (2.5), (2.6)

and (1.4)(1.9), and computing x ({(Xj, ) ?:1) by (4.3) and (1.4)~(1.8), we get

k(X)) =326, k(Xp) =243, k(AX3) =~ 1.2,
k(1) ~ 6.8 k()2) =~ 61, K(V3) ~ 3,

and

k& ({(X5, V) }io1) =~ 350.

Obviously, the quantity x <{(Xj, yj)}ﬁzl) is much larger than the condition num-
bers k(AX3), k(1) and k(Vs).

Note that the computations were performed using MATLAB, version 6.5. The
relative machine precision is 2.22 x 10716,

4.3. The difficulty about the computation of the condition numbers x(X;) and
k(Y;) (1 =1,...,K) lies on the fact that each one of the condition numbers in-
volves a computation of the spectral norm of an r(n —r) x 2r(n — r) K matrix C;
or D; (see (2.5) and (2.6)), where C; and D; are submatrices of T (see (1.9)),
and T is a 2r(n — r)K x 2r(n — r) K matrix given by (1.4)—(1.8). Therefore, the
problem of how to compute the condition numbers x(X;) and (Y;) (j =1,..., K)
efficiently is worth studying.

4.4. The eigenpronlem (1.1) with K = 1 is the generalized eigenvalue problem
B1A1x1 = a1 Biz1. Condition numbers and perturbation bounds for each individual
simple deflating subspace of the matrix pair (A;, B1) are given by [8, Section 3]
(or see [9, Theorems 4.2.6 and 4.3.1]).
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