TAIWANESE JOURNAL OF MATHEMATICS

Vol. 8, No. 4, pp. 761-770, December 2004

This paper is available online at http://www.math.nthu.edu.tw/tjm/

ONE-SIDED UNIT-REGULAR IDEALS OF REGULAR RINGS

Huanyin Chen

Abstract. In this paper, we investigate one-sided unit-regular ideals of regular rings. Let I be a purely infinite, simple and essential ideal of a regular ring R. It is shown that R is one-sided unit-regular if and only if so is R/I. Also we prove that every square matrix over one-sided unit-regular ideals of regular rings admits a diagonal matrix with idempotent entries.

Let R be an associative ring with identity. We say that R is a regular ring provided that for every $x \in R$ there exists $y \in R$ such that x = xyx(cf. [10]). We say that R is an one-sided unit-regular ring provided that for every $x \in R$ there exists right or left invertible $u \in R$ such that x = xux(see [9]). In [6, Corollary 7], the author proved that one-sided unit-regularity is Morita invariant. In addition, the author proved that a regular ring is one-sided unit-regular if and only if for all finitely generated projective right R-modules A, B and C, if $A \oplus B \cong A \oplus C$, then $B \lesssim C$ or $C \lesssim B$ (see [6, Theorem 8]). Also the author proved that every element in one-sided unit-regular rings is a product of an idempotent and a right or left invertible element of R (see [5, Theorem 4]).

In this paper, we investigate one-sided unit-regular ideals of regular rings. Let I be a purely infinite, simple and essential ideal of a regular ring R. Then I is one-sided unit-regular. Furthermore, we show that R is one-sided unit-regular if and only if so is R/I. Also we prove that every square matrix over one-sided unit-regular ideals of regular rings admits a diagonal matrix with idempotent entries.

Throughout this paper, We assume that all rings are associative with identity and all modules are right unital modules. We say that an element $u \in R$ is weak-invertible if there exist $a,b \in R$ such that au = 1 or ub = 1. Let $R_{<}^{-1}$ denote the set of all weak-invertible elements of R. If A and B are R-modules, the notation $B \lesssim A$ means that B is isomorphic to a submodule of A.

Lemma 1. Let R be a ring with $u \in R$. Then the following are equivalent:

Received November 5, 2002; accepted July 31, 2003.

Communicated by Pjek-Hwee Lee.

2000 Mathematics Subject Classification: 16E50, 16U99.

Key words and phrases: One-sided Unit-regularity, Purely infinite simple ideal, Diagonalization.

- (1) u is weak-invertible.
- (2) There exists $v \in R$ such that uv = 1 or vu = 1.

Proof. $(2) \Rightarrow (1)$ is trivial.

 $(1) \Rightarrow (2)$. Since u is weak-invertible, there exist $a, b \in R$ such that ua = 1 or bu = 1. Set v = a + b - bua. Then v = b (if bu = 1) or v = a (if ua = 1). Therefore either vu = 1 or uv = 1.

Let $u \in R$ be weak-invertible. Then we have some $v \in R$ such that uv = 1 or vu = 1. We denote v by $u_<^{-1}$. We note that $u_<^{-1}$ is not unique. In fact, if we have a fixed weak-inverse $u_<^{-1}$, then uv = 1 or vu = 1 if and only if there exist $a, b \in R$ such that $v = u_<^{-1} + a(1 - uu_<^{-1}) + (1 - u_<^{-1}u)b$. In the sequel, we will always choose some fixed weak-inverse.

Suppose that I is an ideal of a regular ring R. We say that I is one-sided unit-regular in case aR+bR=R with $a\in 1+I, b\in R$ implies that $a+by\in R^{-1}_{<}$ for a $y\in R$. Obviously, The one-sided unit-regularity for ideals of regular rings is a nontrivial generalization of the one-sided unit-regular rings. In [7, Theorem 2.9], the author showed that an ideal I of a regular ring R is one-sided unit-regular if and only if eRe is one-sided unit-regular for all idempotents $e\in I$. Also I is one-sided unit-regular if and only if for every $x\in 1+I$, there exists $u\in R^{-1}_{<}$ such that x=xux (cf. [7, Theorem 2.3]).

We say that $a \overline{\sim} b$ via 1 + I provided that there exist $x, y, z \in 1 + I$ such that a = zbx, b = xay, x = xyx = xzx. We now extend [11, Theorem] and characterize one-sided unit-regularity for ideals of regular rings by pseudo-similarity.

Lemma 2. Let R be a ring with $a, b \in R$. Then the following are equivalent:

- (1) $a \overline{\sim} b \text{ via } 1 + I$.
- (2) There exist some $x, y \in 1 + I$ such that a = xby, b = yax, x = xyx and y = yxy.

Proof. (2) \Rightarrow (1) is trivial.

(1) \Rightarrow (2). Since $a \overline{\sim} b$ via 1+I, there are $x,y,z \in 1+I$ such that b=xay,zbx=a and x=xyx=xzx. By replacing y with yxy and z with zxz, we can assume y=yxy and z=zxz. Clearly, xazxy=xzbxzxy=xzbxy=xay=b,zxybx=zxyxayx=zxayx=zbx=a,zxy=zxyxzxy and x=xzxyx. Obviously, 1+I is a submonoid of (R,\cdot) and so $zxy \in 1+I$ which completes the proof.

Theorem 3. Let I be an ideal of a regular ring R. Then the following are equivalent:

(1) I is one-sided unit-regular.

(2) Whenever $a \overline{\sim} b$ via 1 + I, there exists weak-invertible $u \in R$ such that $a = ubu_{\sim}^{-1}$.

Proof. (1)⇒(2). Suppose that a = b via 1 + I. By Lemma 2, there exist $x, y \in 1 + I$ such that a = xby, b = yax, x = xyx and y = yxy. Since I is one-sided unit-regular, we have $u \in R_<^{-1}$ such that y = yuy. Set $w = y + (1 - yu)u_<^{-1}(1 - uy)$. Then yuw = y. Clearly, $1 - uw = (1 - uy)(1 - uu_<^{-1})$ and $1 - wu = (1 - u_<^{-1}u)(1 - yu)$. Set k = (1 - xy - uy)u(1 - yx - yu), l = (1 - yx - yu)w(1 - xy - uy). Then 1 - kl = (1 - xy - uy)(1 - uw)(1 - xy - uy) and 1 - lk = (1 - yx - yu)(1 - wu)(1 - xy - uy); hence, $l = k_<^{-1}$. Furthermore, $kbk_<^{-1} = (1 - xy - uy)u(1 - yx - yu)b(1 - yx - yu)w(1 - xy - uy) = (1 - xy - uy)(u - uyx - uyu)by = xyuby = xby = a$, as required.

 $(2){\Rightarrow}(1). \ \ \text{Given any} \ x\in 1+I, \ \text{there exists} \ y\in R \ \text{such that} \ x=xyx \ \text{and} \ y=yxy. \ \ \text{Clearly, we have} \ R=yxR\oplus (1-yx)R=xyR\oplus (1-xy)R \ \text{and an isomorphism} \ \eta: xyR=xR\cong yxR \ \text{given by} \ \eta(xr)=yxr \ \text{for any} \ r\in R. \ \ \text{Clearly,} \ xy=x(yx)y, yx=y(xy)x, x=xyx, y=yxy \ \text{and} \ x,y\in 1+I. \ \ \text{Hence} \ xy\overline{\sim}yx \ \text{via} \ 1+I, \ \text{and then we have} \ u\in R_<^{-1} \ \text{such that} \ yx=uxyu_<^{-1}. \ \ \text{Construct maps} \ \alpha: (1-xy)R\to (1-yx)R \ \text{given by} \ (1-xy)r\to (1-yx)u(1-xy)r \ \text{for any} \ r\in R \ \text{and} \ \beta: (1-yx)R\to (1-xy)R \ \text{given by} \ (1-yx)r\to (1-xy)u_<^{-1}(1-yx)r \ \text{for any} \ r\in R. \ \ \text{Define} \ \phi: R=xR\oplus (1-xy)R\to yxR\oplus (1-yx)R \ \text{given by} \ \phi(x_1+x_2)=\eta(x_1)+\alpha(x_2) \ \text{for any} \ x_1\in xR, x_2\in (1-xy)R \ \text{and} \ \psi: R=yxR\oplus (1-yx)R\to xR\oplus (1-xy)R=R \ \text{given by} \ \psi(y_1+y_2)=\eta^{-1}(y_1)+\beta(y_2) \ \text{for any} \ y_1\in yxR, y_2\in (1-yx)R.$

If $uu_{<}^{-1}=1$, then $(1-\phi\psi)(y_1+y_2)=(1-yx)(1-uu_{<}^{-1})y_2$ for any $y_1\in yxR$ and $y_2\in (1-yx)R$. So $\phi\psi=1$.

If $u_<^{-1}u=1$, then $(1-\psi\phi)(x_1+x_2)=(1-xy)(1-u_<^{-1}u)x_2$ for any $x_1\in xR$ and $x_2\in (1-xy)R$. So $\psi\phi=1$. Thus we see that $\phi\in R_<^{-1}$. One easily checks that $x=x\phi x$. Therefore I is one-sided unit-regular by [7, Theorem 2.3].

Let $e, f \in R$ be idempotents. It is well known that $eR \cong fR$ if and only if there exist $a \in eRf, b \in fRe$ such that e = ab and f = ba. If $a, b \in 1 + I$, we say that $eR \cong fR$ via 1 + I.

Corollary 4. Let I be an ideal of a regular ring R. Then the following are equivalent:

- (1) I is one-sided unit-regular.
- (2) For any idempotents $e, f \in R$, $eR \cong fR$ via 1 + I implies that there exists $u \in R_{<}^{-1}$ such that $e = ufu_{<}^{-1}$.

Proof. (1) \Rightarrow (2). Suppose that $eR \cong fR$ via 1+I. Then there exist $a, b \in 1+I$ such that e=ab and f=ba, where $a \in eRf, b \in fRe$. Clearly, e=afb, f=afb

bea, a = aba and b = bab. That is, $e \overline{\sim} f$ via 1 + I. According to Theorem 3, we have $u \in R_{<}^{-1}$ such that $e = ufu_{<}^{-1}$.

(2) \Rightarrow (1) is obtained by the proof of "(2) \Rightarrow (1)" in Theorem 3.

Corollary 5. Let R be a regular ring. Then the following are equivalent:

- (1) R is one-sided unit-regular.
- (2) Whenever $a \overline{\sim} b$ with $a, b \in R$, there exists weak-invertible $u \in R$ such that $a = ubu_{<}^{-1}$.
- (3) Whenever $eR \cong fR$ with idempotents $e, f \in R$, there exists weak-invertible $u \in R$ such that $e = ufu_{\leq}^{-1}$.

Proof. We choose I = R. Then the result follows by Theorem 3 and Corollary 4.

In order to investigate the diagonal reduction of matrices over one-sided unitregular ideals over regular rings, we extend [12, Lemma 1.1] as follows.

Lemma 6. Let I be an ideal of a regular ring R and $x_1, x_2, ..., x_m \in I$. Then there exists an idempotent $e \in I$ such that $x_i \in eRe$ for all i = 1, 2, ..., m.

Proof. Clearly there exist idempotents $u,v\in I$ such that $uR=\sum_{i=1}^m x_iR$ and $Rv=\sum_{i=1}^m Rx_i$. It is enough to show that there exists $e=e^2\in I$ with eu=u=ue and ev=v=ve. Next, fR=uR+vR for some $f=f^2\in I$. Clearly, fu=u and fv=v. Set g=f+u(1-f). Obviously, $g^2=g\in I$, ug=u=gu and gv=v. It is enough to show that there exists $e=e^2\in I$ with eg=g=ge and ev=v=ve. Pick an idempotent $h\in I$ with Rg+Rv=Rh. Clearly, gh=g and gv=v. Set gv=v=ve. Obviously, gv=v=ve.

Theorem 7. Let I be an ideal of a regular ring R. If I is one-sided unit-regular, then $M_n(I)$ is one-sided unit-regular as an ideal of $M_n(R)$.

Proof. In view of [7, Theorem 2.9] it is enough to show that $WM_n(R)W$ is one-sided unit-regular for any idempotent $W=(w_{ij})_{i,j=1}^n\in M_n(I)$. By Lemma 6 there exists an idempotent $e\in I$ with $ew_{ij}e\in eRe$ for all i,j. Let E be the idempotent of $M_n(R)$ whose diagonal entries are equal to e while all the other ones are equal to 0. Obviously, $W\in EM_n(R)E=M_n(eRe)$. Next, by [7, Theorem 2.9], eRe is one-sided unit-regular and so [6, Corollary 7] yields that $M_n(eRe)$ is one-sided unit-regular. As $WM_n(R)W=WEM_n(R)EW=WM_n(eRe)W$, the result follows from [7, Theorem 2.9].

Corollary 8. Let I be an one-sided unit-regular ideal of a regular ring R. Then for any $A \in M_n(I)$, there exist idempotent matrix E and weak-invertible matrix U such that A = EU.

Proof. Given $A \in M_n(I)$, then we have $B \in M_n(R)$ such that A = ABA and B = BAB. Since $(A + (I_n - AB))B + (I_n - AB)(I_n - B) = I_n$, it follows by Theorem 7 that $A + (I_n - AB) + (I_n - AB)(I_n - B)Y = U \in M_n(R)^{-1}$ such that $A = ABA = AB(A + (I_n - AB) + (I_n - AB)(I_n - B)Y) = EU$, where $E = AB = E^2 \in M_n(I)$.

Denote by FP(I) the set of finitely generated projective right R-module P such that P = PI.

Theorem 9. Let I be an ideal of a regular ring R. Then the following are equivalent:

- (1) I is one-sided unit-regular.
- (2) For all $A \in FP(I)$, $A \oplus B \cong A \oplus C$ implies $B \lesssim C$ or $C \lesssim B$ for any right R-modules B and C.
- (3) For any $A, B, C \in FP(I), A \oplus B \cong A \oplus C$ implies $B \lesssim C$ or $C \lesssim B$.
- *Proof.* (1) ⇒ (2) Given $A \oplus B \cong A \oplus C$ with $A, B, C \in FP(I)$, we have idempotents $e_1, \dots, e_n \in I$ such that $A \cong e_1R \oplus \dots \oplus e_nR \cong diag(e_1, \dots, e_n)R^n$. Clearly, $End_R(A) \cong diag(e_1, \dots, e_n)M_n(R)diag(e_1, \dots, e_n)$. By Theorem 7, $M_n(I)$ is one-sided unit-regular as an ideal of $M_n(R)$. According to [7, Theorem 2.9], $End_R(A)$ is one-sided unit-regular. It follows by [6, Proposition 2] that either $B \lesssim C$ or $C \lesssim B$.
 - $(2) \Rightarrow (3)$ is trivial.
- $(3) \Rightarrow (1) \text{ Let } e \in I \text{ be an idempotent. Suppose that } A \oplus B \cong A \oplus C \text{ with } A, B, C \in FP(eRe). \text{ Then we have } A \bigotimes_{eRe} eR \oplus B \bigotimes_{eRe} eR \cong A \bigotimes_{eRe} eR \oplus C \bigotimes_{eRe} eR.$ Clearly, $A \otimes_{eRe} eR, B \otimes_{eRe} eR, C \otimes_{eRe} eR \in FP(I)$. By our assumption either there exist an embedding of R-modules $f: B \otimes_{eRe} eR \to C \otimes_{eRe} eR$ or $f: C \otimes_{eRe} eR \to B \otimes_{eRe} eR$. Say, $f: B \otimes_{eRe} eR \to C \otimes_{eRe} eR$. Then

$$C \cong C \otimes_{eRe} eRe = (c \otimes_{eRe} eR)e \supseteq f(B \otimes_{eRe} eR)e = f(B \otimes_{eRe} eRe) \cong B$$

and so B can be embedded into C. According to [6, Theorem 8], eRe is one-sided unit-regular. Therefore I is one-sided unit-regular from [7, Theorem 2.9].

Set $cr(R_<^{-1}) = \{a \in R \mid \text{If } ax + b = 1 \text{ in } R \text{, then there exists } y \in R \text{ such that } a + by \in R_<^{-1} \}$. An element $e \in I$ is infinite if there exist orthogonal idempotents

 $f,g \in I$ such that e=f+g while $eR \cong fR$ and $g \neq 0$. A simple ideal I of a ring R is said to be purely infinite if every nonzero right ideal of I (as a ring without units) contains an infinite idempotent.

Lemma 10. Let I be a purely infinite, simple and essential ideal of a regular ring R. Then $I + R_{<}^{-1} \subseteq cr(R_{<}^{-1})$.

Proof. Suppose that ax+b=1 with $a\in I+R_<^{-1}, x, b\in R$. Then we have $c\in R$ such that a=aca. Assume that there exists $u\in R_<^{-1}$ such that $a-u\in I$. If uv=1 for a $v\in R$, then we have $a=aca\in acu+I$, so $av-ac\in I$. Clearly, $1-av\in I$. Thus $1-ac=(1-av)+(av-ac)\in I$. Assume that $1-ac\neq 0$ and $1-ca\neq 0$. Since I is essential and simple, we have $(1-ca)I(1-ca)\neq 0$. As I is purely infinite and simple, we can find an infinite idempotent $r\in R$ such that $(1-ac)R\cong rR\subseteq (1-ca)R$; hence, $(1-ac)R\lesssim (1-ca)R$. By the regularity of R, there is an injection $\psi:(1-ac)R\to (1-ca)R$. Clearly, $R=caR\oplus (1-ca)R=acR\oplus (1-ac)R$ with $\phi:acR=aR\cong caR$ given by $\phi(are)=c(ar)$ for any $ar\in aR$. Define $u\in End_R(R)$ so that u restricts to ϕ and u restricts to ψ . Then a=aua with left invertible $u\in R$. Hence $a\in R$ is one-sided unit-regular.

If vu=1 for a $v\in R$, then $a=aca\in uca+I$, so $va-ca\in I$. Clearly, $1-va\in I$; hence, $1-ca=(1-va)+(va-ca)\in I$. Analogously to the discussion above, we have either $(1-ca)R\lesssim (1-ac)R$ or $a\in R_<^{-1}$. Consequently, there is a $u\in R_<^{-1}$ such that a=aua. Therefore we always have $u\in R_<^{-1}$ such that a=aua. Set ua=e. Then ex+ub=u, so e(x+ub)+(1-e)ub=u. Since R is regular, we have a $d\in R$ such that (1-e)ub=(1-e)ubd(1-e)ub. Set g=(1-e)ubd(1-e). Then $e=e^2, g=g^2$ and eg=ge=0. Thus e(x+ub)+gub=u; hence e(x+ub)=eu and gub=gu. Clearly,

$$u(a + bd(1 - e))(1 - eubd(1 - e))u$$

$$= (e(1 - eubd(1 - e)) + ubd(1 - e))u$$

$$= (e + (1 - e)ubd(1 - e))u$$

$$= (e + g)u$$

As $u \in R_{<}^{-1}$, $a + bd(1 - e) \in R_{<}^{-1}$. That is, $a \in cr(R_{<}^{-1})$. so $I + R_{<}^{-1} \subseteq cr(R_{<}^{-1})$.

Let I be a purely infinite, simple and essential ideal of a regular ring R. By Lemma 10, $1+I\subseteq cr(R_<^{-1})$; hence I is one-sided unit-regular. Using Theorem 9, we conclude that for all $A,B,C\in FP(I),\ A\oplus B\cong A\oplus C$ implies $B\lesssim C$ or $C\lesssim B$.

Lemma 11. Let I be an ideal of a regular ring R. Then R is one-sided unit-regular if and only if the following hold:

- (1) R/I is one-sided unit-regular.
- (2) $(I + R_{<}^{-1})/I = (R/I)_{<}^{-1}$.
- (3) $I + R_{<}^{-1} \subseteq cr(R_{<}^{-1}).$

Proof. Assume that R is one-sided unit-regular. It is easy to verify that R/I is one-sided unit-regular too. Clearly, $(I+R_<^{-1})/I\subseteq (R/I)_<^{-1}$. Let $\pi:R\to R/I$ be the quotient morphism. Given any $\pi(a)\in (R/I)_<^{-1}$, we have some $\pi(b)\in (R/I)_<^{-1}$ such that $\pi(a)\pi(b)=\pi(1)$ or $\pi(b)\pi(a)=\pi(1)$. Since R is one-sided unit-regular, it follows from ab+(1-ab)=1 that $v=b+y(1-ab)\in R_<^{-1}$ for a $y\in R$. Assume that uv=1 or vu=1. Set w=u+a(1-vu)+(1-uv)a. We see that wv=1 or vw=1. That is, $w\in R_<^{-1}$. Since $\pi(a)\pi(b)=\pi(1)$ or $\pi(b)\pi(a)=\pi(1)$, we show that

$$\pi(v)\pi(a)\pi(v) = \pi((b+y(1-ab))a(b+y(1-ab)))$$

$$= \pi(ba(b+y(1-ab)))$$

$$= \pi(b+y(1-ab))$$

$$= \pi(v).$$

Clearly, $\pi(w) = \pi(u) + \pi(a) \big(\pi(1) - \pi(v)\pi(u)\big) + \big(\pi(1) - \pi(u)\pi(v)\big)\pi(a)$. If uv = 1, then

$$\psi(v)\psi(w) = \psi(v)\pi(u) + \psi(v)\pi(a)(\pi(1) - \pi(v)\pi(u))$$
$$= \psi(v)\pi(u) + \psi(v)\pi(a) - \psi(v)\pi(a)\pi(v)\pi(u)$$
$$= \psi(v)\pi(a).$$

So we have $\psi(w) = \psi(a)$.

If vu = 1, then

$$\psi(w)\psi(v) = \pi(u)\psi(v) + (\pi(1) - \pi(u)\pi(v))\psi(a)\psi(v)$$
$$= \psi(u)\pi(v) + \psi(a)\pi(v) - \psi(u)\pi(v)\pi(a)\pi(v)$$
$$= \psi(a)\pi(v).$$

We also have $\psi(w)=\psi(a)$. Therefore $(I+R_<^{-1})/I=(R/I)_<^{-1}$. Because R is one-sided unit-regular, we easily get $I+R_<^{-1}\subseteq cr(R_<^{-1})$.

Conversely, assume now that the three conditions are satisfied. Suppose that ax + b = 1 in R. Then $\pi(a)\pi(x) + \pi(b) = \pi(1)$ in R/I. Since R/I is one-sided

unit-regular, we have some $\pi(y) \in R/I$ such that $\pi(a) + \pi(b)\pi(y) \in (R/I)^{-1}_{<}$. Thus there exists $w \in R^{-1}_{<}$ such that $\pi(a) + \pi(b)\pi(y) = \pi(w)$. Hence $a + by - w \in I$, and then $a + by \in I + R^{-1}_{<}$. From ax + b = 1, we have (a + by)x + b(1 - yx) = 1. Therefore $a + b\big(y + (1 - yx)z\big) = a + by + b(1 - yx)z \in R^{-1}_{<}$, as asserted.

In [4, Theorem 1.12], P. Ara et al. showed that if I is a purely infinite, simple and essential exchange ideal, then R is a QB-ring if and only if R/I is a QB-ring and $(R/I)_q^{-1} = (R/I)_r^{-1} \cup (R/I)_l^{-1}$. We now extend this result to one-sided unit-regular rings as follows.

Theorem 12. Let I be a purely infinite, simple and essential ideal of a regular ring R. Then R is one-sided unit-regular if and only if so is R/I.

Proof. One direction is clear. Conversely, assume now that R/I is one-sided unit-regular. It suffices to to prove that one-sided invertible elements lift modulo I. Assume that $\overline{xy} = \overline{1}$ in R/I. Since R is regular, we have a $z \in R$ such that x = xzx and z = zxz. Clearly, $\overline{xz} = \overline{1}$; hence $1 - xz \in I$. If xz = 1 or zx = 1, then $x \in R_{<}^{-1}$. So we assume that the idempotents 1 - xz, 1 - zx are both non-zero. As I is essential and simple, $(1 - zx)I(1 - zx) \neq 0$. On the other hand, I is purely infinite and simple, we can find an infinite idempotent $r \in R$ such that $(1 - xz)R \cong rR \subseteq (1 - zx)R$, whence $(1 - xz)R \lesssim (1 - zx)R$. By the regularity of R, we can find $s \in (1 - xz)R(1 - zx)$, $t \in (1 - zx)R(1 - xz)R$ such that 1 - xz = st. Clearly, xt = sz = 0; hence, (x + s)(t + z) = xz + st = 1. That is, $x + s \in R$ is right invertible. Obviously, we have $s \in (1 - xz)R(1 - zx) \subseteq I$, and then $\overline{x} = \overline{x + s}$. That is, x can be lifted by a right invertible element modulo I. Therefore we complete the proof by Lemma 10 and Lemma 11.

Corollary 13. Every purely infinite, simple regular ring is one-sided unit-regular.

Proof. Since R is a purely infinitely, simple ideal of R, we get the result by Theorem 12.

Lemma 14. Let I be an one-sided unit-regular ideal of a regular ring R. Then the following hold:

- (1) For any $A, B \in M_n(I)$, $AM_n(R) = BM_n(R)$ implies that there exists $U \in M_n(R)^{-1}_{<}$ such that A = BU.
- (2) For any $A, B \in M_n(I)$, $M_n(R)A = M_n(R)B$ implies that there exists $U \in M_n(R)^{-1}$ such that A = UB.

Proof. (1) Suppose that $AM_n(R) = BM_n(R)$ with $A, B \in M_n(I)$. Then A = BX and B = AY for $X, Y \in M_n(R)$. Since R is regular, so is $M_n(R)$. Hence

A and B are both regular, so we may assume that $X, Y \in M_n(I)$. Furthermore, we have $B(X+(I_n-XY))=BX=A$. Thus we may assume that $X\in I_n+M_n(I)$. Likewise, we may assume that $Y \in I_n + M_n(I)$. Since $XY + (I_n - XY) = I_n$, by Theorem 7, we have $Z \in M_n(R)$ such that $X + (I_n - XY)Z = U \in M_n(R)^{-1}$. Therefore $A = BX = B(X + (I_n - XY)Z) = BU$, as asserted.

(2) Clearly, I is one-sided unit-regular as an ideal of R if and only if I^{op} is one-sided unit-regular as an ideal of the opposite ring R^{op} . Thus we get the result by (1).

Theorem 15. Let I be an one-sided unit-regular ideal of a regular ring R. Then for any matrix $A \in M_n(I)$, there exist weak-invertible $U, V \in M_n(R)$ such that $UAV = diag(e_1, \dots, e_n)$ for idempotents $e_1, \dots, e_n \in I$.

Proof. Let $A \in M_n(I)$. Since R is regular, we have $E = E^2 \in M_n(I)$ such that $AM_n(R) = EM_n(R)$. Clearly, ER^n is a generated projective right R-module; hence, there are idempotents $e_1, \dots, e_n \in I$ such that $ER^n \cong e_1R \oplus \dots \oplus e_nR \cong$ $diag(e_1, \dots, e_n)R^n$ as right R-modules, so we have $ER^{n\times 1} \cong diag(e_1, \dots, e_n)$

 $R^{n\times 1}$, where $R^{n\times 1}=\{\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right)\mid x_1,\cdots,x_n\in R\}$ is a right R-module and a left $M_n(R)$ -module. Let $R^{1\times n}=\{(x_1,\cdots,x_n)\mid x_1,\cdots,x_n\in R\}$. Then

 $R^{1 \times n}$ is a left R-module and a right $M_n(R)$ -module; hence, $(ER^{n \times 1}) \bigotimes_R R^{1 \times n} \cong diag(e_1, \dots, e_n) R^{n \times 1} \bigotimes_R R^{1 \times n}$. One easily checks that $R^{n \times 1} \bigotimes_R R^{1 \times n} \cong M_n(R)$

as right $M_n(R)$ -modules. So $\psi:AM_n(R)\cong diag(e_1,\cdots,e_n)M_n(R)$ with all $e_i\in$ R. Clearly, $M_n(R)A = M_n(R)\psi(A)$ and $\psi(A)M_n(R) = diag(e_1, \dots, e_n)M_n(R)$. It follows by Lemma 14 that $UA = \psi(A)$ and $\psi(A)V = diag(e_1, \dots, e_n)$ for some $U, V \in M_n(R)^{-1}$. Therefore $UAV = diag(e_1, \dots, e_n)$, as asserted.

Corollary 16. Let I be a purely infinite, simple and essential ideal of a regular ring R. Then for any $A \in M_n(I)$, there exist weak-invertible $U, V \in M_n(R)$ such that $UAV = diag(e_1, \dots, e_n)$ for idempotents $e_1, \dots, e_n \in I$.

Proof. In view of Lemma 10, I is one-sided unit-regular. So the proof is true from Theorem 15.

Corollary 17. Let R be an one-sided unit-regular ring. Then for any $A \in$ $M_n(R)$, there exist weak-invertible $U, V \in M_n(R)$ such that $UAV = diag(e_1, \cdots, e_n)$ e_n) for idempotents $e_1, \dots, e_n \in R$.

Proof. Letting I = R, we get the result by Theorem 15.

ACKNOWLEDGEMENTS

The author is grateful to the referee for his/her suggestions which led to the proofs of Lemma 6, Theorem 7, Theorem 9 and helped me to improve the manuscript. This work was supported by the National Natural Science Foundation of Zhejiang Province.

REFERENCES

- 1. P. Ara, K. R. Goodearl, K. C. O'Meara and E. Pardo, Diagonalization of matrices over regular rings, *Linear Algebra Appl.* **265** (1997), 147-163.
- 2. P. Ara, K. R. Goodearl and E. Pardo, K_0 of purely infinite simple regular rings, K-Theory **26** (2002), 69-100.
- 3. P. Ara, G. K. Pedersen and F. Perera, An infinite analogue of rings with stable range one, *J. Algebra* **230** (2000), 608-655.
- 4. P. Ara, G. K. Pedersen and F. Perera, *Extensions and pullbacks in QB-rings*, Preprint, 2002.
- 5. H. Chen, Elements in one-sided unit regular rings, *Comm. Algebra* **25** (1997), 2517-2529.
- 6. H. Chen, Comparability of modules over regular rings, *Comm. Algebra* **25** (1997), 3531-3544.
- 7. H. Chen and F. Li, On ideals of regular rings, Acta Math. Sinica 18 (2002), 347-356.
- 8. H. Chen and M. Chen, Generalized ideal-stable regular rings, *Comm. Algebra* **31** (2003), 4989-5001.
- 9. G. Ehrlich, Units and one-sided units in regular rings, *Trans. Amer. Math. Soc.* **216** (1976), 81-90.
- 10. K. R. Goodearl, *Von Neumann Regular Rings*, Pitman, London, San Francisco, Melbourne, 1979; second ed., Krieger, Malabar, Fl. 1991.
- 11. R. Guralnick and C. Lanski, Pseudosimilarity and cancellation of modules, *Linear Algebra and Appl.* **47** (1982), 111-115.
- 12. P. Menal and J. Moncasi, Lifting units in self-injective rings and an index theory for Rickart *C**-algebras, *Pacific J. Math.* **126** (1987), 295-329.

Huanyin Chen Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People's Republic of China

E-mail: chyzxl@sparc2.hunnu.edu.cn