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MINIMAX INEQUALITIES IN THE SPACES WITHOUT LINEAR
STRUCTURE

Lu Haishu and Zhang Jihui

Abstract. In this paper, we found a new result by relaxing the condition of
[15, Corollary 2]. As its application, we have obtained some new minimax
inequalities of Ky Fan and minimax theorems in the spaces without linear
structure.

1. INTRODUCTION AND PRELIMINARIES

Since Ky Fan ([8]) generalized KKM theorem, a number of applications have
been found. Fan’s theorem is now becoming a very versatile tool in nonlinear
analysis, such as fixed point, variational inequalities (see [2-7]). Fan’s theorem was
used by many authors to prove fixed point and minimax theorems in topological
vector spaces (see [3], [8]). Ha [1-2] has given the generalization of Fan’s theorem
and Fan’s minimax inequalities. This paper has two purposes. First we obtain a
new theorem by relaxing closed condition of sets of [15, Corollary 2] , and next, as
its application, we obtain some minimax inequalities and minimax theorems in the
spaces without linear structure.

To begin with we explain the notions of an H-space introduced by Horvath
[9 − 11] and related concepts on H-spaces.

Let X be a topological space and let F (X) be the family of all nonempty finite
subsets of X . Let {ΓA} be a family of nonempty contractible subsets of X indexed
by A ∈ F (X) such that ΓA ⊂ ΓA

′ , whenever A ⊂ A
′ . The pair (X, {ΓA}) is called

an H-space. Given an H-space (X, {ΓA}), a nonempty subset D of X is called
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H-convex if ΓA ⊂ D for each nonempty finite subset A of D. For a nonempty K

of X , we define the H-convex hull of K , denote by H-coK, as

H − coK =
⋂

{D ⊂ X : D is H-convex and D ⊃ K}.

Clearly, H − coK is H-convex and is the smallest H-convex containing K .
Let (X, {ΓA}) be an H-space, let Y be a topological space, and let f : X×Y →

R be a function. For each y ∈ Y , f(x, y) is said to be H-quasiconvex (or H-
quasiconcave ) on X if the set {x ∈ X : f(x, y) < t} (or {x ∈ X : f(x, y) > t})
is H-convex for all t ∈ R.

A topological space is called acyclic if all of its reduced C̆ech homology groups
over rationals vanish. In particular, any contractible space is acyclic, thus, any
nonempty convex or star-shaped set is acyclic.

Now let X, Y be two topological spaces. By a set-valued mapping T defined
on X with values in Y , we mean that to each point x ∈ X , T assigns an unique
nonempty subset T (x) of Y . T is called upper semicontinuous if for each open
subset G of Y , the set {x ∈ X : T (x) ⊂ G} is open in X . It is easy to show (e.g.,
[14]) that if Y is a compact Hausdorff and if T (x) is closed for each x, then T is
upper semicontinuous if and only if the graph {(x, y) ∈ X × Y : y ∈ T (x)} of T

is closed in X × Y .

2. MAIN RESULTS

Our main result is the following Theorem 2.1. To prove it we need to cite a
lemma in Tarafdar [12].

Lemma 2.1. Let X be a compact topological space and let (Y, {ΓA}) be an H-
space. Let T : X → 2Y be a set-valued mapping and T −1(y) = {x ∈ X : y ∈ Tx}
for each y ∈ Y .

Suppose the following conditions are fulfilled:

(i) For each x ∈ X, T (x) is a nonempty H-convex subset of Y ,

(ii) {intT −1(y) : y ∈ Y } is an open covering of X .

Then there is a continuous selection f : X → Y of T such that f = gϕ, where
g : ∆n → Y and ϕ : X → ∆n are continuous mappings, and ∆n is the standard
n-dimensional simplex for some positive n.

Theorem 2.1. Let X be a Hausdorff topological space, let (Y, {ΓA}) be an
H-space, and let M, N be two subsets of X × Y with M ⊂ N . Suppose the
following conditions are fulfilled:
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(i) For each y ∈ Y , there exists a closed subset X y ⊂ X such that the set
{x ∈ X : (x, y) ∈ N} ⊂ Xy,

(ii) For each x ∈ X, the set {y ∈ Y : (x, y) �∈ M} is H-convex or empty.
Suppose also that there exists a subset P of M and a compact subset K of
X such that P is closed in X × Y , and

(iii) For each y ∈ Y , the set {x ∈ K : (x, y) ∈ P} is nonempty acyclic.

Then ⋂

y∈Y

Xy

⋂
K �= ∅.

Proof. If the conclusion of Theorem 2.1 is false, that is,
⋂

y∈Y Xy ⊂ X\K,
we prove that there exists x0 ∈ K such that

(2.1) {x0} × Y ⊂ N,

or else, for each x ∈ K, there exists y0 ∈ Y such that (x, y0) �∈ N . Let

S(x) = {y ∈ Y : (x, y) �∈ N}, T (x) = {y ∈ Y : (x, y) �∈ M}.
Then S, T : K → 2Y are two set-valued mappings such that for each x ∈ K,
there exists a point y ∈ S(x). By S−1(y) = {x ∈ X : (x, y) �∈ N} and (i),
S−1(y) ⊃ X\Xy = Vy, Vy is an open set of X , and

⋃
y∈Y Vy = X\⋂

y∈Y Xy ⊃
K. Therefore, {intS−1(y) : y ∈ Y } is an open covering of K. Consequently,
{int(H − coS)−1(y) : y ∈ Y } is an open covering of K, where the following
mapping H − coS : K → 2Y is defined by

H − coS(x) = H − co(S(x)) for each x ∈ K.

By Lemma 2.1, there exists a continuous mapping f : K → Y such that f = gΨ,
and

f(x) ∈ H − coS(x) ⊂ T (x)

for all x ∈ K, where Ψ : K → ∆n, g : ∆n → Y are continuous mappings and ∆n

is the standard n-simplex. Hence

(2.2) (x, f(x)) �∈ M for all x ∈ K.

On the other hand, we define a set-valued mapping G : Y → 2K by

G(y) = {x ∈ K : (x, y) ∈ P} for all y ∈ Y.

By (iii), G(y) is nonempty and acyclic for all y ∈ Y . Since P is closed in X × Y ,
each G(y) is closed in K and the graph of G is closed in Y ×K; thus, G is an upper
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semicontinuous set-valued mapping defined on Y . Consequently, so is the mapping
F : ∆n → 2K defined by F (µ) = G(g(µ)). By virtue of [13, Lemma 2.1], there
exists a point µ ∈ ∆n such that µ ∈ Ψ(F (µ)) = Ψ(G(g(µ))), and so there is a point
x ∈ G(g(µ)) ⊂ K such that µ = Ψ(x). Let y = g(µ), then y = g(Ψ(x)) = f(x)
and x ∈ G(y), i.e.,

(x, f(x)) = (x, y) ∈ P ⊂ M.

This contradicts (2.2), hence, (2.1) is true. But this contradicts
⋂

y∈Y Xy ⊂ X\K
again, therefore, we must have

⋂
y∈Y Xy

⋂
K �= ∅. This proves the theorem.

Remark 2.1. Theorem 2.1 improve and extend [16, Theorem 2] to a topological
space and an H-space.

As an immediate consequence of Theorem 2.1, we obtain some new minimax
theorems and some minimax inequalities in the spaces without linear structure.

Theorem 2.2. Let X be a Hausdorff topological space. Let (Y, {ΓA}) be an
H-space, and let f, g, h : X × Y → R be functions. Let β = inf

K∈K
sup
y∈Y

min
x∈K

h(x, y)

, where K = {K ⊂ X : K is compact subset of X}. Suppose the following
conditions are fulfilled:

(i) f(x, y) ≤ g(x, y) ≤ h(x, y) for all (x, y) ∈ X × Y,

(ii) f(x, y) is lower semicontinuous on X for each y ∈ Y,

(iii) g(x, y) is H-quasiconcave on Y for each x ∈ X,

(iv) h(x, y) is lower semicontinuous on X×Y, and the set {x ∈ K : h(x, y) < t}
is acyclic or empty for each t > β, K ∈ K and y ∈ Y . Then

(2.3) inf
x∈X

sup
y∈Y

f(x, y) ≤ inf
K∈K

sup
y∈Y

min
x∈K

h(x, y).

If X is compact, then

(2.4) min
x∈X

sup
y∈Y

f(x, y) ≤ sup
y∈Y

min
x∈X

h(x, y).

Proof. We can assume that the right-hand side of (2.3) is not +∞. If the
conclusion of Theorem 2.2 is false, then there is a real number t such that

inf
x∈X

sup
y∈Y

f(x, y) > t > inf
K∈K

sup
y∈Y

min
x∈K

h(x, y).

Let M = {(x, y) ∈ X×Y : g(x, y) ≤ t} and P = {(x, y) ∈ X×Y : h(x, y) ≤ t}.
Then
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(a) For each x ∈ X , by (iii), the set {y ∈ Y : (x, y) �∈ M} is H-convex and
satisfies (ii) of Theorem 2.1,

(b) For each y ∈ Y , by (i), {x ∈ X : (x, y) ∈ M} ⊂ {x ∈ X : f(x, y) ≤ t} =
Xy , by (ii), Xy is closed and satisfies (i) of Theorem 2.1. It is easy to verify that
P is closed in X × Y, P ⊂ M ,

(c) Let K be a compact subset of X such that

t > sup
y∈Y

min
x∈K

h(x, y).

Then for any y ∈ Y , the set {x ∈ K : h(x, y) ≤ t} is nonempty and we know
the set {x ∈ K : h(x, y) ≤ t} =

⋂
ε>0{x ∈ K : h(x, y) < t + ε} is acyclic (this

follows from the continuity of Cech homology. See, e.g., McClendon [17]). Thus,
by Theorem 2.1, ⋂

y∈Y

Xy

⋂
K �= ∅,

that is, there exists x0 ∈ K such that

f(x0, y) ≤ t for all y ∈ Y.

Hence
inf
x∈X

sup
y∈Y

f(x, y) ≤ t.

This contradicts the choice of t, therefore, (2.3) is proved.
We shall establish the following similarities of the proof of theorem 2.2.

Theorem 2.3. Let f, g, h : X × Y → R be as in Theorem 2.2 and X is
compact. Then for each λ ∈ R, one of the following situations hold:

(i) There exists x0 ∈ X such that f(x0, y) ≤ λ for all y ∈ Y,

(ii) There exists y0 ∈ Y such that f(x, y0) > λ for all x ∈ X.

Remark 2.2. Theorem 2.3 is the generalization of [16,Theorem 4].

The following three minimax theorems are obtained from Theorem 2.2 as special
cases by taking f = g, g = h, f = g = h.

Corollary 2.1. Let f, h : X×Y → R be two functions. Let β = inf
K∈K

sup
y∈Y

min
x∈K

h(x, y), where K = {K ⊂ X : K is compact subset of X}. Suppose the following
conditions are fulfilled:

(i) f(x, y) ≤ h(x, y) for all (x, y) ∈ X × Y,
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(ii) f(x, y) is lower semicontinuous on X for each y ∈ Y, and f(x, y) is H-
quasiconcave on Y for each x ∈ X,

(iii) h(x, y) is lower semicontinuous on X×Y and the set {x ∈ K : h(x, y) < t}
is acyclic or empty for each t > β, K ∈ K and y ∈ Y . Then

inf
x∈X

sup
y∈Y

f(x, y) ≤ inf
K∈K

sup
y∈Y

min
x∈K

h(x, y).

If X is compact, then

min
x∈X

sup
y∈Y

f(x, y) ≤ sup
y∈Y

min
x∈X

h(x, y).

Corollary 2.2. Let f, g : X ×Y → R be two functions. Let β = inf
K∈K

sup
y∈Y

min
x∈K

g(x, y), where K = {K ⊂ X : K is compact subset of X}. Suppose the following
conditions are fulfilled:

(i) f(x, y) ≤ g(x, y) for all (x, y) ∈ X × Y,

(ii) f(x, y) is lower semicontinuous on X for each y ∈ Y,

(iii) g(x, y) is H-quasiconcave on Y for each x ∈ X,

(iv) g(x, y) is lower semicontinuous on X×Y and the set {x ∈ K : g(x, y) < t}
is acyclic or empty for each t > β, K ∈ K and y ∈ Y . Then

inf
x∈X

sup
y∈Y

f(x, y) ≤ inf
K∈K

sup
y∈Y

min
x∈K

g(x, y).

If X is compact, then

min
x∈X

sup
y∈Y

f(x, y) ≤ sup
y∈Y

min
x∈X

g(x, y).

Corollary 2.3. Let f : X × Y → R be a real-valued function. Let β =
inf

K∈K
sup
y∈Y

min
x∈K

f(x, y), where K = {K ⊂ X : K is compact subset of X}. Sup-

pose the following conditions are fulfilled:

(i) f(x, y) is lower semicontinuous on X × Y,

(ii) f(x, y) is H-quasiconcave on Y for each x ∈ X, and the set {x ∈ K :
f(x, y) < t} is acyclic or empty for each t > β, K ⊂ K and y ∈ Y . Then

inf
x∈X

sup
y∈Y

f(x, y) = inf
K∈K

sup
y∈Y

min
x∈K

f(x, y).
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If X is compact, then

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).

Remark 2.3. Corollary 2.3 is the generalization of [1, Theorem 4], thus, The-
orem 2.2, Corollary 2.1 and Corollary 2.2 are all the generalizations of [1, Theorem
4].

Theorem 2.4. Let Y be a compact Hausdorff topological space and (X, {Γ A})
be an H-space, let f, g : X × Y → R be two real-valued functions such that:

(i) f(x, y) ≤ g(x, y) for all (x, y) ∈ X × Y,

(ii) f(x, y) is H-quasiconvex on X for each y ∈ Y,

(iii) g(x, y) is upper semicontinuous on Y for each x ∈ X .

If T is an upper semicontinuous set-valued mapping defined on X such that
Tx is a nonempty compact acyclic subset of Y for each x ∈ X , then

(2.5) inf
y∈Tx

f(x, y) ≤ max
y∈Y

inf
x∈X

g(x, y).

Proof. If the conclusion of Theorem 2.4 is false, then there is a real number t
such that

inf
y∈Tx

f(x, y) > t > max
y∈Y

inf
x∈X

g(x, y).

Let

M = {(x, y) ∈ X × Y : f(x, y) ≥ t}, P = {(x, y) ∈ X × Y : y ∈ Tx},

and Yx = {y ∈ Y : g(x, y) ≥ t} for each x ∈ X . It is easy to verify that M and
Yx satisfies (i) and (ii) of Theorem 2.1, and P is closed in X ×Y and satisfies (iii)
of Theorem 2.1 by taking K = Y . Thus, by theorem 2.1,

⋂
x∈X Yx

⋂
Y �= ∅, that

is, there exists y0 ∈ Y such that

g(x, y0) ≥ t, for all x ∈ X.

Hence
max
y∈Y

inf
x∈X

g(x, y) ≥ t.

This contradicts the choice of t, therefore, (2.5) is proved.

Remark 2.4. Theorem 2.4 is the generalization of [2, Theorem 1].

By Theorem 2.4, we can obtain the following corollary.
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Corollary 2.4. Let f, g, T be as in Theorem 2.4. Assume further, that given
λ ∈ R, we have

inf
y∈Tx

f(x, y) ≥ λ for all x ∈ X.

Then there exists y0 ∈ Y such that g(x, y0) ≥ λ for all x ∈ X.

Remark 2.5. Corollary 2.4 is similar to the result of [4, Theorem 13.4].

We can obtain the following two theorems whose proofs are similar to the proof
of Theorem 2.4.

Theorem 2.5. Let (Y, {ΓA}) be a Hausdorff H-space, let X be nonempty
compact acyclic H-convex subset of Y . Let f, g : X ×Y → R be two real-valued
functions satisfying (i)− (iii) of Theorem 2.4. Then

inf
x∈X

f(x, x) ≤ sup
y∈Y

inf
x∈X

g(x, y).

Theorem 2.6. Let (Y, {ΓA}) be a Hausdorff H-space, let X be nonempty
compact acyclic H-convex subset of Y . Let f : X × Y → R be a real-valued
function such that

(i) f(x, y) is a H-quasiconvex on X for each y ∈ Y,

(ii) f(x, y) is upper semicontinuous on Y for each x ∈ X .

Then
inf
x∈X

f(x, x) ≤ sup
y∈Y

inf
x∈X

f(x, y).

Corollary 2.5. Let (Y, {ΓA}) be a Hausdorff H-space, let X be nonempty
compact acyclic H-convex subset of Y . Let f, g : X ×Y → R be two real-valued
functions such that

(i) f(x, y) ≤ g(x, y) for all (x, y) ∈ X × Y,

(ii) f(x, y) is lower semicontinuous on Y for each x ∈ X,

(iii) g(x, y) is H-quasiconcave on X for each y ∈ Y .
Then

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

g(x, x).
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