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CONVERGENCE OF DOUBLE LAGUERRE SERIES

Chang-Pao Chen and Chin-Cheng Lin

Abstract. Let smn(z,y) denote the rectangular partial sums of the double
Laguerre series with the coefficients {cjk}. We give sufficient conditions
on {cjk} to obtain the regular convergence and weighted L"-convergence of

smn(z, y).

1. INTRODUCTION

For a > 0, let L%(t) denote the n-th Laguerre polynomial of order a defined by

mn

1 d
Le@t) = Et*aet @"*ety, n=0,1,2,---.

dtm
Then {L2(t)}°%, forms a complete orthogonal set in L2(R*,t%e~*dt). The prob-
lems of the mean convergence and the pointwise convergence of different types
of Laguerre series (including those with respect to the systems {£%(¢)}°, and
{18(t)}°L,) have been studied by many authors in the last four decades, e.g., Askey-
Wainger [1], Chen-Lin [3], Dlugosz [4], Muckenhoupt [6, 7, 8], and Stempak [9,

10, 11].
In this paper, we consider the following double Laguerre series
XX XX .
@) cipli(@)Li(y), =,y €R™,.1
J=0 k=0

where {c;i : j, k > 0} satisfies the following conditions for some p € N:

(12) ekl GRYPPAEG E) — 0 as max{j, k} — oo,
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X 1 1
(1.3) lim |G pocn| GR)P/2YAEG, ) =0,
>
(1.4) lim | CopCm| (REYP/2YAE (R, ) = 0,
> XX
(1.5) & pcin] GR)PZVAEG E) < cc.
7=0 k=0

Here & = max{¢, 1}, £ is a suitable positive function on [1,00) x [1, c0), and the
finite-order differences €, c;;, are defined by

XX lip'ﬂu |
Cpecji = (-1

Cit+s k+t-
J s?

s

s=0 t=0

The conditions (1.2) — (1.5) describe certain concept of bounded variation, which
are closely related to those in [3, Theorem 2]. We pay attention to the following
two cases:

() £(z,9) = (zy)*/?,
(i) £(z,9) = (zy)*/20(z)9(y),

where 6,9 are two positive increasing functions defined on [1, c0).
Let s, (x,y) denote the rectangular partial sums of series (1.1) defined by

X XK
Smn(xvy) = CjkL?(x)LZ(y)
7=0 k=0

We say that the series (1.1) converggs, regularly to f(z,y) if s;mn(x,v) — f(z,y)
as min{m,n} — oo, the row seriesF, ;‘;O cjrL§(x) L (y) converges for each fixed
value of k, and the column series 2, cjr LG (z) L (y) converges for each fixed
value of j (cf. [5]). For E C R™ xR™, the series (1.1) is said to converge uniformly
on E to f(z,y) if smn(z,y) = f(x,y) uniformly on E as min{m,n} — oco. Set

|J.Z OOZ s ﬂl/r

| fllre = o |f (@, | |z, y)| dedy

Note that || - ||7. , defines a metric for 0 <r <1, and || - [|.4 is @ norm for r > 1.
In this paper, we are concerned with the following convergence problems of
series (1.1):
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(i) the regular convergence and its mean convergence with respect to || - ||, for
0<r<1and £(z,y) = (zy)*?;

(if) the regular convergence and its mean convergence with respect to || - ||, for
r > 1and £(z,y) = (zy)*20()d ().

As a corollary of case (ii), we obtain a result which has the same format as [8,
Theorem 12] (see Corollary 3.2). A detailed argument on these problems will be
given in next two sections. Throughout this paper C, C,, and C,, denote constants,
which are not necessarily the same at each occurrence.

2. CONVERGENCE FOR 0 < 7 < 1 AND £(z,y) = (zy)%/?

Let {c;x : j, k > O} satisfy conditions (1.2) — (1.5) for £(z,y) = (zy)*/2 with
a > 0; that is,

1.2 el GRY@P2Y8 0 as max{j, k} — oo,
X
(1.3) lim & 0| GR)@P/271/4 = g
X
(14/) lim ¢O Conk (,ﬂ‘u%)(a+p)/2—l/4 — O7
/4
XXX
(1.5 & ppcin] GF)@TP/2-14 < o,
=0 k=0

The main result in this section reads as follows.

Theorem 2.1. Leta > 0 and p > 1. Assume that {c;;} satisfies conditions
(1.2") — (1.5'). Then the series (1.1) converges regularly to some function f(z,y)
for all z,y > 0, and the convergence is uniform on any rectangle {e < z < a,§ <
y<p},where0<e<a<ooand0<d < <oo. Moreover, for0 <r < 1/p,
A>r, and 7 > r(a/2 — 1/4), we have

() [f(z,y)['e 2D/ 2(@y)T € LHRY x RY); _ .

(i) [[Smn—1Fllr,s = 0as min{m,n} — oo, where ¢(z,y) = Ole_/\(x“Ly)/Z(xy)T .
The conclusion (i) of Theorem 2.1 displays the Lebesgue integrability of | f (z, y)|"
with respect to the weight function e~ *@*¥)/2(zy)™, where f(z,y) is the limiting

function of series (1.1). The case A = 1 and 7 = a/2 reduces the weight function
into the form e~@*¥)/2(zy)/2. This is the two-dimensional case of the weight
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function e~*/2¢%/2 which appears in the definition of the Laguerre function L2E(t)
and is involved in the inequality of the form

[sn @U@l < C [ FOV @Il

considered in [1, 8]. As for A\ = r and 7 = r(a+p)/2, itis of interest in connection
with the weight function
2 .
t K

v I + v —tr/2,r(a+p)/2
141 (L+t)*»(L+log™ t)e t ,
which plays the role of [U(¢)]” considered in [8, Theorems 7-12] (see Corollary 3.2
for further comments regarding this).

Proof of Theorem 2.1. From [1, 8] we can find an absolute constant C' such
that z z

_L?(t)_ < Cet/2b/2- AR/ 21412,

for all j, all ¢, and all b = a,a+1p-- ,a+p. For z,y > 0 and m,n > 0, the
summation by parts and the equation ~ }—, L¢(t) = L&+ (t) (cf. [12, Eq. (5.1.13)])
yield

B )X atp atp
Smn(T,y) = (Cppese) Ly " (2) Ly, " (y)
=0 k=0
Bt > .
+ (Cpicin+1) L P() L (y)

2.2) t=0 =0

+ (¢spcm+l,k:)Lgn+s+l(x)LZ-'-p(y)

+ (¢stcm+l,n+1)L%~b+s+l(m)L?L-'-t-'-l(y)'
s=0 t=0

Using (2.1), we get the following estimates:

b O, @ - - Z
(@ i) LS P (@) LI ()
7=0 k=0 O 1
2.3 KX
( ) < C @ ‘¢ppcjk:| (jL?{_)(a+p)/271/4A
j=0 k=0

% 6(:c+y)/2(xy)—(a+p)/2—l/4(‘%,:a_)1/2
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and
B K- e il -
(¢pth,n+1)Lj P(z)L5 ®)
t=0 j=0 " T O 1
B XK ¢ >
<C @ | €p0Cj n+1+0] (G)a*/2-1/AA
t=0 v=0 v j=0
(2.4) x e(@*)/2p—(a+p)/2-1/4) —(a+t+1)/2-1/4(3.8)1/2
A |
>
<C SUPps, | Cpocik| GhyTP/2-1/4
j=0 A '
<
x e(@+Y)/2p—(a*p)/2-1/4(2.8)1/2 gty*(a+t+1)/271/4
t=0
Similarly, we have
B > - et oty o
(Cspm+1,k) Ly, (@) Ly, P (y)
s=0k=0 A 1
x 11\ (a+p)/2—1/4
(2.5) SO SUPjm | Copeir] OB
k=0 X
A |
¢
% e(x+y)/2y7(a+p)/271/4(3;5@)1/2 st—(a+s+l)/2—l/4
s=0
and
pE D z
(¢stcm+1,n+l)qu+s+l(x)LgL+t+1(y)
s=0 t=0
B ot > > M TR T .
S C ¢OOCm+1+u,n+1+v (ﬁ‘zﬁ)(a+p)/2—l/4
s=0 =0 u=0v=0 * Y
(2_6) X£(1+y)/2(%@)1/21,7(a+s+1)/27l/4y7'(a+t+l)/271/4

< C SUP o oo lcji| OR) /214 )2 (3g1/2

« R 23+tm—(a+s+1)/2—1/4y—(a+t+1)/2—1/4_
s=0 t=0
Putting (1.2") — (1.5) and (2.2) — (2.6) together, we infer that s,,,,,(z, y) converges
to some function f(z,y) for z,y > 0, and the convergence is uniform on any
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rectangle {e <z < o, <y <G}, where0<e<a<oocand 0 < d < f < 0.
The same argument as the above also shows that series (1.1) converges regularly to
f(x,y) for z,y > 0. Moreover,

X X -+ -+
2.7) fz,y) = (Cppejr) L P (2) Ly, " ().
=0 k=0

Let Oi< r<3/p, A>r and 7 > r(a/2 —1/4). We have r — A < 0 and
T—r G242 > —1 This implies
Z L
a(a,ﬂ) = e(r7)\)(x+y)/2x7'7r(a/2+1/4)nyr(,B/2+l/4)(%@)r/2 dxdy,
<o

forall ;8 =a,a+1,---  a+p. By (2.3)and (2.7), we infer that
Z_Z

oo T o0

£ (@, y)["e A2 () dady

0 Vxox Yoy

<C & ppcin] GR)@P/2-YE A+ p o+ p)
j=0 k=0
< 00,

which says that |f(z,y)|"e 29/ 2(zy)™ ¢ LYR* x RY). Let ¢(z,y) =
O(e 2+ 2(z)7). Set @, = {(j,k) € Z¥ xZ* 1 j > mork > n}. We
have 0 < r < 1. Using (1.2") — (1.5") and (2.2) — (2.7), we obtain

[$mn — f||:,¢
A LI
< 1L\(a+p)/2-1/4 &
<cC & ppcin] GF) (a+p,a+Dp)
Bmn '
> o
C ¢ el (3R etp)/2-1/4 otra 1
+ supk>n | pOC]k:| (] ) (a+p7a+t+ )
. =0 =0
!','
X
+C SUpj, | Gopel GRYETPZYA T oA 4 s+ 1 0+ p)
~ k=0 s=0
A I
+C' SUPjs oo |oji| (F)CrP)/271/4 20 A(q + 5+ La+t+1)
s=0 t=0

—0 as min{m,n} — oco.
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3. CONVERGENCE FOR 7 > 1 AND £(z, y) = (2y)“/260(z)9(y)

Theorem 2.1 deals with the case 0 < r < 1 only. In this section we investigate
the validity of the following statements for » > 1:

3.1) £ (2, 9" d(2)9(y) € LHRT x RT),
Z_Z

[ olmmiNe o]

|Smn(z,y) — f(z,y)|"|o(x)Y(y)| dedy
(3.2)

—0 as  min{m,n} — oo,

where ¢ and 1 are two measurable functions on R*. This corresponds to the case
o(z,y) = ¢(x)y¥(y) in Theorem 2.1. To ensure the truth of (3.1) and (3.2), we
shall replace (1.2") — (1.5") by the following stronger conditions:

@2%) el GBI 0GyoE) — 0 as max{j,k} — oo,
X
(1.3") lim | @hocn| GR) P21 ()0(R) = 0,
j=0
w < (a+p)/2-1/4
(147 lim | Copcmi| (k) 0(m)v(E) =0,
k=0
X X
(15) | € ppp] GR) P21 0G)0(R) < oo,
7=0 k=0

where 6 and ¥ are two positive increasing functions defined on [1, c0). For this
purpose, we introduce the concept of “type I7,” below, which is an analogue of “type
I” in [2]. We say that (¢, 0) is a pair of type I, if there is an absolute constant C'
such that

HZ 1/p TI-1/7“ HZ ) TI-1/7“
,01/4 6tr/2t7m"/2‘¢(t)| dt + pl/6 etr/thar/27T/4‘¢(t)| dt
0 1/p
< Col(p) forall p>1.

Theorem 3.1. Let a > 0 and p,r > 1. Assume that # and ) are two positive
increasing functions defined on [1, c0) and {c;;} satisfies (1.2”) — (1.5"). Then
series (1.1) converges regularly to some function f(z,y) for all z,y > 0, and
the convergence is uniform on any rectangle {¢ < z < «a,d < y < [}, where
O<e<a<ooand0<d < f < oo Moreover, if (¢,0) and (v, ) are of type
I5+p, then (3.1) and (3.2) hold.
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An elementary calculation says that the type I, pair (¢,8) can be chosen from
the following type of functions mentioned in [8]:
@ ke ¢ - 1

— ® m + v —tr/2,ar/2
o) =0 T+1 QA +)*(L+log™ t)e t

where k > -1, p <r/4 -1, v < -1, log* ¢t = max{logt,0}, and

8

>p (HD/r+5/12 for —l<k<r/d—1
6(p) = >p1/6 max{(log p)*/", 1} for k=r/4-1

" pt/® for k>r/4—1

In particular, (¢,6) and (1,9) are of type I7,,, where 6(p) = 9(p) = p/¢,
() = [U()]", ¥(y) = [V(y)]", and

-

U)= —— "1+ 2)" (1 + log™ z)"e /2@ P)/2,
5 .
V(y) = ﬁ Hz(l + y)H2(1 + log™ y)*2e¥/2ya+P)/2,

Here we assume that x; > 1/4 —1/r, u; <1/4—1/r,and v; < —1/r for j =1
and 2. In this case, conditions (1.2"”) — (1.5") become

(1.2") lejn| GR)@*P/271/12 0 as max{j, k} — oo,
- X 1

(1.3") lim € pocsn| G)@+P)/2-1/12 = ¢

X

(1.4") lim | CopCmi| (FRE)(@FP/271/12 = o
XX

(1.5///) ‘¢ppcjk:| (‘:]L?{_)(a+p)/2—l/12 < c0.
=0 k=0

Hence Theorem 3.1 has the following consequence, which gives the same format as
[8, Theorem 12].

Corollary 3.2. Leta >0, p,r > 1, {c;} satisfy (1.2"”") — (1.5""), and U,V
be given as above. Then series (1.1) converges regularly to some function f(z,y)
for all z,y > 0, and the convergence is uniform on any rectangle {¢ < z <
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a,0 <y <[}, where 0 < e < a<ooand0 < d < f < oo. Moreover,
[z, y)U (x)V(tz/) € ZL’“(R+ x R™) and

3 -

Smn(@,9) — F@ | UE@VE)|  dady

o
0
—0 as min{m,n} — oco.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.3. Leta >0, p,7 > 1, and (¢, 0) be of type I;,,,. Then there exists

an absolute constant C' such that
(V4 00 1Tl/r
LR o) dt < CFerP/Z ()

for all j and for all 0 <k <p.

Proof of Lemma 3.3. From [1, 8] we can find two positive constants C' and -,
independent of a,tgand 4, such that

Ecet/zja if 0<t<1/v
Loy < C et/? {—a/2-1/4 jo/2-1/4 if 1/v<t<uv/2
IV T B3O et /2 jo/2-1/3 if v/2<t<3v/2’
- Cet/2tpmal? jol2 if 3v/2<t<oo
where j > 1,v =4j+2a+2,and a = a,a+1,--- ja+p. Forl/v <t <1/j,

we have [¢~/271/4 j/2=1/4] < Cj*, and so the inequality | LS (t)| < Ce'/?j* can
be extended from [0,1/v] to [0,1/5]. Obviously, we have
sup e P ED2| < o,
£>0,0<k<p
Hence, for 0 < k < p and p =7,
(V4 00 1Tl/r
LSO p ()] di

( HZ 1/p TI-1/7“
<O Jark el"/2| ()| dt
0

HZ v/2 1Tl/r
+‘%(a+k:)/2—l/4 6tr/2t_(a+k)r/2_r/4‘¢(t)| dt
1/p
MZ 3,2 /v
_|_}‘(a+k)/271/3 etr/th(a+k)r/2‘¢(t)| dt
v/2
H'Z 0o 1-[1/7")
+}(a+k;)/2 o 6tr/27'ytrt7(a+k)r/2|¢(t)‘ dt
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( ”_Z 1//7 ﬂl/r
< oHarp/2-1/a /e elr/24= @I /2 (1) | dt
0
Hz v/2 ﬂl/T
v g ar

MZ 3,0 /v
+pl/6 etr/Zt—(a+p)r/2—r/4‘¢(t)| dt
v/2 )
nz o ﬂl/r
+ etr/Zt—(a+p)r/2—r/4‘¢(t)| dt
3v/2

< CYern/2-1/4g ().

Proof of Theorem 3.1. Obviously, conditions (1.2"”7)—(1.5") imply (1.2")—(1.5').
Hence, by Theorem 2.1, series (1.1) converges regularly to some function f(z,y)
for all z,y > 0, and the convergence is uniform on any rectangle {¢ < z < a,§ <
y<pB} where0<e<a<ooand0 < < < oco. Asproved in Theorem 2.1,
for z,y > 0, we have

XX

(3.3) (€ppcjr) L?+p(m)LZ+p(y) — f(z,y) as min{m,n} — oo.
j=0 k=0
Set
(3V4 00 TI-1/7“ Mz 00 1Tl/?‘
of = . LS @) @) de B = . LS @) ()| dy

Lemma 3.3 tells us that o < C}@*P/2-1/49(%) and g5 < CH+n/2-1/4y(}),
where 0 < k£ < p. By (3.3), Fatou’s lemma, and Minkowski’s inequality, we infer

that

| f (@, | |¢(x)v(y)| dady

B xx -
<C Imlorlf i | €ppejn| o By
> 14y (a+p)/2-1/4 g% b
<C € ppeji| (GF) 0(5)9(k)
7=0 k=0
< Q.

Y

Moreover, let &, consist of all (j, k) with j > m or k > n. By (2.2), (3.3), and
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1.2y — (1.5"), we get

HZ ooz ) TI-1/7"

|smn(x,y) — f(z, ] |o(@)Y(y)| dedy
O( 0
X
<C € ppcin| GF) P24 9o (E)

Ymn A 1

R Htﬂ > 14\ (a+p)/2—1/4p %
+ y | € p0¢)n+1+0| (GA) TP () V(%)

t=0 v=0 X 7=0

Al |

Bt > M T 5
+ | @ opCrmatau k| (FRE) TP ZVA9(m) 9 (k)

s=0 u=0 k=0

BE X K P—Sﬂutﬂ J
+ - | € 00Cm+1-un-+1-+0| (FRA)TTP/27L/4 ()9 (#)

( $,t=0 u=0 v=0
<X
<C € o] )24 9 Fy(k)
“mnu > 1-[
2P supys,  |@pocx| GR)@TPE4 oy (k)
H o 1T
X
20 SUPjs,, | Coper| GF)@HPYEA 9(G)o(k)
|-1 k=0 ﬂ)
227 SUP ;o ko Cjk| GRY@P 274 0Ty (k)

—0 as min{m,n} — oco.
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