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AN EXTENSION OF DHH-ERDÖS CONJECTURE ON

CYCLE-PLUS-TRIANGLE GRAPHS

Ding-Zhu Du∗ and Hung Quang Ngo∗

Abstract. Consider n disjoint triangles and a cycle on the 3n vertices of
the n triangles. In 1986, Du, Hsu, and Hwang conjectured that the union
of the n triangles and the cycle has independent number n. Soon later, Paul
Erdös improved it to a stronger version that every cycle-plus-triangle graph

is 3-colorable. This conjecture was proved by H. Fleischner and M. Stiebitz.

In this note, we want to give an extension of the above conjecture with an

application in switching networks.

1. INTRODUCTION

Consider n disjoint triangles and a cycle on the 3n vertices of the n triangles.
The union of the n triangles and the cycle is called a cycle-plus-triangle graph. In
1986, Du, Hsu, and Hwang [3]† conjectured that every cycle-plus-triangle graph

has independent number n, i.e., the maximum independent set contains n vertices.
Soon later, Paul Erdös got interested in this conjecture and improved it to a stronger

version that every cycle-plus-triangle graph is 3-colorable. Due to Erdös’ promotion

in his frequent traveling, this conjecture becomes quite well-known during the past

ten years. There were several efforts [5, 1] to attack the conjecture and it was finally

proved by H. Fleischner and M. Stiebitz [6].

In this note, we want to give an extension of the above conjecture with an

application in switching networks.
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2. EXTENSION

Let us first consider a little general graphs. Instead of a cycle, let us consider a

union of disjoint cycles on the 3n vertices of the n triangles. That is, we consider a
graph G constructed by taking the union of n disjoint triangles and a disjount union

of cycles on the 3n vertices of the n triangle.
Is G still 3-colorable? The answer is MAY BE NOT. In fact, the graph in Figure

1 is not 3-colorable since it contains a clique of size four. But it can be obtained

by taking union of four disjoint triangles and a union of three cycles of size four.

This example also shows that a similar conjecture made in [4] is false. The

conjecture is as follows: Consider a line graph G of a d-regular graph. Partition
the vertex set of G into disjoint subsets of size exactly n with d ≤ n ≤ 2d − 1
and for each subset, construct a clique on it. Then the resulting graph G∗ is 2d− 1
vertex-colorable. In the above counterexample, we have d = 2 and n = 3. G

consists of three cycles of size 4 and its vertices are divided into four subsets of

size exactly n. But, G∗ is not (2d− 1)-colorable.
The graph in Figure 1 is 4-colorable. In general, is G 4-colorable? The answer

is YES. In fact, every vertex in G has degree four. It is well-known that a connected

4-regular graph is 4-colorable unless it is a complete graph of order five [2]. Clearly,

G cannot have a connected component of size five. Therefore, G is 4-colorable.

The above observation suggests the following conjecture.

FIG. 1. Not 3-colorable but 4-colorable.
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Conjecture 1. Consider a graph H with maximum degree m. Let L(H) be
the line graph of H. Divide all vertices of L(H) into disjount groups of size at most
n. Connect all vertices in each group into a clique. If m ≤ n, then the resulting

graph is (m + n)-colorable.

The reader may have question on the coloring number m + n. Why do we use

m + n instead of m + n − 1? In fact, for the above example, we have m = 2 and
n = 3 and the resulting graph is (m + n − 1)-colorable. The following example
may provide an explanation.

Let H be a complete graph of order four. Let a, b, c, d be vertices of H . The
line graph L(H) of H contains six vertices ab, cd, ac, bd, ad, bc. Now, we divide

them into three groups {ab, cd}, {ac, bd}, {ad, bc}. Connect every two vertices
in the same group with an edge. The resulting graph G is a complete graph of

order six. Thus, it cannot be 5-colorable. However, we can have m = 3, n = 3
and m + n − 1 = 5 (note: m ≤ n). Actually, in this example, each group has

size 2 (less than 3). Therefore, this is also an example to explain why we need

condition m ≤ n. In fact, if we remove the condition m ≤ n, then the example

fits the condition m = 3 and n = 2. In this case, m + n = 5. However, G is not

5-colorable.

Theorem 1. Conjecture 1 holds for m = 2 and 3.

Proof. It is a well-known fact that every graph with maximum degree ∆ ≥ 3
must be (∆ + 1)-colorable and, furthermore, it is ∆-colorable unless the graph
contains a subgraph isomorphic to the complete graph of order ∆ + 1, i.e., a clique
of size∆+1 [2]. Note that the resulting graph in Conjecture 1 has maximum degree
2(m − 1) + n − 1. For m = 2, (2(m− 1) + n − 1) + 1 = m + n and for m = 3,
2(m− 1) + n− 1 = m + n. Thus, it suffices to show that for m = 3, the resulting
graph does not contain a clique of size n + 4. For contradiction, suppose that the
resulting graph contains a clique Q of size n + 4. Since it has maximum degree
n + 3, the clique Q must be a connected component of it. Thus, we may assume,

without loss of generality, that the resulting graph itself is the clique Q. Now, we
want to prove that Q cannot be obtained in the way described in Conjecture 1. To

do so, we consider the problem of removing disjoint cliques of size at most n to
obtain a graph with maximum degree at most 2(m− 1) = 4. Since every vertex in
Q has degree m + n = n + 3, each removed clique has to have size n in order to

have degree n − 1 at each vertex. It follows that n|(n + 4). Since n ≥ m = 3, we
must have n = 4. Thus, Q is a clique of size 8. Removing two disjoint cliques of

size 4 from Q results in a graph P as shown in Figure 2. This graph P cannot be

the line graph L(H) of a graph H with maximum degree at most three. In fact, P

is 4-regular. If P = L(H), then H must be 3-regular. So, each vertex of P must
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FIG. 2. Graph P .

be adjacent to four vertices which can be divided into two pairs such that vertices

in the same pair are adjacent. However, this is not true to P , a contradiction.

Now, we propose a direct generalization of DHH-Erdös conjecture as follows.

Conjecture 2. Consider a m-regular m-connected graph H . Let L(H) be the
line graph of H . Suppose all vertices of L(H) can be divided into disjount groups
of size exactly n. Add a clique of size n on vertices in each group. The resulting
graph is (m + n − 2)-colorable.

The results in [6, 5] show that this conjecture holds for m = 2.

3. AN APPLICATION TO SWITCHING NETWORKS

Conjecture 1 has an application in switching networks. To see it, let us first

introduce some concepts in switching networks.

A three-stage Clos network C(n1, n3, r1, r2, r3) consists of r1 many n1 × r2

crossbars in the first stage, r2 many r1 × r3 crossbars in the second stage, and r2

many r2 × n3 crossbars in the third stage. Every crossbar in the first stage has an

outlet connected to an inlet of every crossbar in the second stage and every crossbar

in the second stage has an outlet connected to an inlet of every crossbar in the third

stage (Figure 3). There are totally r1n1 inlets in the first stage and totally r3n3

outlets in the third stage. Denote by I the set of all r1n1 inlets in the first stage

and by O the set of all r3n3 outlets in the third stage. Then a connection in a

three-stage Clos network is a pair (x, y), where x ∈ I and y ∈ O. A route is
a path in the network joining an input crossbar (i.e., a crossbar in the first stage)

to an output crossbar (i.e., a crossbar in the third stage) and a route r realizes a

connection (x, y) if x and y belong to the input crossbar and the output crossbar
joined by r, respectively.
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FIG. 3. Three-stage Clos network.

A set of connections is compatible if for every x ∈ I , there are at most n1

connections involving x and for every y ∈ O, there are at most n3 connections

involving y. A configuration is a set of routes and it is compatible if every edge in

the network is used only once. A set of connections is said to be realizable if there

exists a compatible configuration which contains routes realizing all connections in

the set. A network is said to be rearrangeable if every compatible set of connections

is realizable. It is well-known that a three-stage Clos network C(n1, n3, r1, r2, r3)
is rearrangeable if and only if min(n1, n3) ≤ r2.

A connection c is said to be compatible with a compatible set C of connections

if C ∪ {c} is still compatible. A route r is said to be compatible with a compatible
configuration R if R ∪ {r} is still compatible. A network is said to be strictly
nonblocking if for every compatible configuration R realizing a connection set C

and every connection c compatible withC, there exists a route r such that r realizes c
and is compatible withR. A three-stage Clos network C(n1, n3, r1, r2, r3) is strictly
nonblocking if and only if m ≥ n1 + n3 − 1.

Above concepts can be easily extended to one-to-many connections. A 1-to-k

connection is a (k+1)-tuplc (x; y1, y2 · · · , yk), where x ∈ I and y1, y2, · · · , yk ∈ O.
Note that for those yj’s lying in the same output crossbar, the path from x can

branch at that output crossbar to reach these yj’s. But for yj ’s lying in different

output crossbars, the branching has to take place either in the input crossbar or

at a center crossbar. It is well-known [8] that if branching at imput crossbars is

allowed, then C(n, m, r) = C(n, n, r, m, r) is rearrangeable for 1-to-k connections
if m ≥ kn. However, the case that imput switches do not have the branching

capability remains an open problem. Hwang and Lin [7] conjectured that C(n, m, r)
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is rearrangeable for 1 − to − 2 connections and meanwhile strictly nonblocking for
1-to-1 connection if m ≥ 2n. This conjecture can be extended to asymmetric
three-stage Clos networks. In fact, this extension has connection to Conjecture 1.

Theorem 2. Suppose Conjecture 1 holds. If r2 ≥ n1 + n3 and n1 ≥ n3, then
C(n1, n3, r1, r2, r3) is rearrangeble for 1-to-2 connections.

Proof. Suppose {(xi; y2i−1, y2i)} is a set of compatible 1-to-2 connections.
That is, at most n1 many xi’s are the same and at most n3 many yj ’s are the same.

First, consider the case that for each 1-to-2 connection (xi; y2i−1, y2i), y2i−1 6=
y2i. Let H be the graph with vertex set O and edge set {(y2i−1, y2i)}. Then H has

maximum degree at most n3. Let L(H) be the line graph of H . Divide all vertices
of L(H) into disjoint groups such that two vertices (y2i−1, y2i) and (y2j−1, y2j) are
in the same group if and only if xi = xj . Thus, each group has size at most n1.

Connect all vertices in each group into a clique. Since Conjecture 1 is assumed to be

true, the resulting graph is (n1+n3)-colorable. Note that if two vertices (y2i−1, y2i)
and (y2j−1, y2j) are in the same color, then we must have xi 6= xj . Note that each

vertex (y2i−1, y2i) represents a connection (xi; y2i−1, y2i). Therefore, if we arrange
all 1-to-2 connections in the same color to pass through the same middle switch,

then each input switch has at most one connection to this middle switch. Moreover,

the middle switch has at most one connection to each output switch since two 1-

to-2 connections have the same component in output switches must be adjacent in

L(H). Therefore, if r2 ≥ n1 + n3, C(n1, n3, r1, r2, r3) is rearrangeable for 1-to-2
connections.

Now, we consider the general case. If y2i−1 = y2i for some 1-to-2 connection

(xi; y2i−1, y2i), then we may add a new output switch and change y2i to the new

output switch. In this way, we can reduce the general case to the first case.

4. DISCUSSION

The connection of Conjecture 1 to the rearrangeability for 1-to-2 connections

may suggest a generalization of Conjecture 1, corresponding to the rearrangeability

for 1-to-k connections.

Let V1 and V2 be two disjoint sets of vertices. A (h, k)-bipartite hypergraph
(V1, V2, E) is a hypergraph such that each hyper-edge e ∈ E contains at most h
vertices in V1 and at most k vertices in V2. The degree of each vertex is the number

of hyper-edges containing the vertex. The generalization can be stated as follows:

Consider a (1, k)-bipartite hypergraph G(V1, V2, E). Suppose each vertex in V1 has

degree at most n and each vertex in V2 has degree at most m. If m ≤ n, then G
is (n + 1 + (k − 1)(m − 1))-edge-colorable, i.e., all hyper-edges of G can be in

(n + 1 + (k − 1)(m− 1)) colors such that any two hyper-edges in the same color
are not adjacent.
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Unfortunately, this generalization is false. The following is a conterexample.

Choose V1 = {I1, I2, I3} and V2 = {O1, O2, · · · , O9}. Consider the following
edge set E:

(I1; O1, O2, O3), (I1; O4, O5, O6), (I1; O7, O8, O9),

(I2; O1, O4, O7), (I2; O2, O5, O8), (I2; O3, O6, O9),

(I3; O1, O5, O8), (I3; O2, O4, O9), (I3; O3, O5, O7).

Then we have k = m = n = 3. But, G is not 8-edge-colorable. In fact, the edge

graph of G is a complete graph of order 9.
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