
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 5, No. 2, pp. 297-315, June 2001

This paper is available online at http://www.math.nthu.edu.tw/tjm/

COUPLED SINE-GORDON EQUATIONS AS

NONLINEAR SECOND ORDER EVOLUTION EQUATIONS

Shin-ichi Nakagiri and Jun-hong Ha

Abstract. The existence, uniqueness and continuous dependence of global

weak solutions of coupled sine-Gordon equations are established in the frame-

work of variational method due to Dautray and Lions. As an application of

weak solutions, we solve the quadratic optimal control problems for the control

systems described by coupled sine-Gordon equations.

1. INTRODUCTION

In [6] and [3], we proved the existence and uniqueness of weak global solutions

of a single damped sine-Gordon equation

∂2y

∂t2
+ α

∂y

∂t
− β∆y + γ sin y = f(1.1)

and studied the numerical analysis based on the finite element method. The equation

(1.1) describes the dynamics of a Josephson junction driven by a current source by

taking account of damping effect. It is numerically verified in Bishop et al. [1] that

this equation shows the most interesting physical phenomena. That is, the numerical

solutions of this equation with periodic boundary conditions lead to the nontrivial

dynamics which is called the chaotic behaviour. However, there are no proofs of

existence, uniqueness and chaotic behaviour of solutions in [1]. After [1], Levi [7]

studied a system of coupled sine-Gordon equations of the form





∂2y1
∂t2

+
∂y1
∂t

− ∆y1 + sin y1 + k(y1 − y2) = f1,

∂2y2
∂t2

+
∂y2
∂t

− ∆y2 + sin y2 + k(y2 − y1) = f2,

(1.2)

Received May 27, 2000; revised October 16, 2000.

Communicated by S.-Y. Shaw.

2001 Mathematics Subject Classification: 35L70, 35Q53, 49K20.

Key words and phrases: Coupled sine-Gordon equation, weak solution, optimal control.

297



298 Shin-ichi Nakagiri and Jun-hong Ha

and observed the chaotic behaviour of numerical solutions under similar periodic

boundary conditions as in [1]. Also in Temam [12], the non-gradient coupled sine-

Gordon equations of the form





∂2y1
∂t2

+
∂y1
∂t

− ∆y1 + sin(y1 + y2) = f1

∂2y2
∂t2

+
∂y2
∂t

− ∆y2 + sin(y1 − y2) = f2

(1.3)

is studied. The existence and uniqueness of the strong solutions of the Cauchy

problem for (1.1), (1.2) and (1.3) with Dirichlet and Neumann boundary conditions

has been studied by Lions [8] and Temam [12] in the evolution equation setting.

In this paper, we study the system of coupled sine-Gordon equations described

by





∂2y1
∂t2

+α11
∂y1
∂t

+ α12
∂y2
∂t

− β1∆y1 + γ1 sin(δ11y1 + δ12y2)

+k11y1 + k12y2 = f1,

∂2y2
∂t2

+α21
∂y1
∂t

+ α22
∂y2
∂t

− β2∆y2 + γ2 sin(δ21y1 + δ22y2)

+k21y1 + k22y2 = f2,

(1.4)

where αij ∈ R, βi > 0, γi, δij , kij ∈ R are physical constants and fi are forcing

functions, i, j = 1, 2. This system is proposed to describe the dynamics of coupled
Josephson junctions driven by current sources, in which the constants αij , δij , kij

in (1.4) are chosen suitably to represent the effects of coupling and damping. This

system covers (1.2) and (1.3). The numerical analysis of (1.4) based on the finite

element method is studied in Elgamal and Nakagiri [4].

The chaotic behaviour suggests that the problem of controlling the solutions of

equations for (1.4) by forcing and initial functions is very delicate and important.

For this, we should take a weak solution approach of the equation (1.4) to obtain the

solutions under less regularities of data. Thus we utilize the variational formulation

of weak solutions due to Dautray and Lions [2] and formulate the weak solution

setting for the nonlinear system (1.4). Under the setting, we state and prove the

results of existence, uniqueness and continuous dependence of weak solutions. We

note that the existence proof by Temam in [12] is a sketch for more general equations

and the detailed proof and the proof of continuous dependence are not given in there.

As an application of the results, we solve quadratic optimal control problems

for the control system described by (1.4).
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2. EXISTENCE, UNIQUENESS AND CONTINUOUS DEPENDENCE

Let Ω be an open bounded set of Rn with a piecewise smooth boundary Γ = ∂Ω.
Let Q = (0, T ) × Ω and Σ = (0, T ) × Γ. We consider the coupled and damped
sine-Gordon equations described by





∂2y1
∂t2

+α11
∂y1
∂t

+ α12
∂y2
∂t

− β1∆y1 + γ1 sin(δ11y1 + δ12y2)

+k11y1 + k12y2 = f1 in Q,

∂2y2
∂t2

+α21
∂y1
∂t

+ α22
∂y2
∂t

− β2∆y2 + γ2 sin(δ21y1 + δ22y2)

+k21y1 + k22y2 = f2 in Q,

(2.1)

where αij ∈ R, βi > 0, γi, δij , kij ∈ R, i, j = 1, 2, and ∆ is a Laplacian and

fi, i = 1, 2, are given functions. The boundary condition is the Dirichlet condition

yi = 0 on Σ, i = 1, 2,(2.2)

and the initial values are given by

yi(0, x) = yi
0(x) in Ω and

∂yi

∂t
(0, x) = yi

1(x) in Ω, i = 1, 2.(2.3)

We define two Hilbert spaces H and V by H = L2(Ω) and V = H1
0(Ω), respec-

tively. We endow these spaces with the usual inner products and norms

(ψ, φ) =
∫

Ω

ψ(x)φ(x)dx, |ψ| = (ψ, ψ)1/2, for all φ, ψ ∈ L2(Ω),(2.4)

((ψ, φ)) =
n∑

i=1

∫

Ω

∂

∂xi
ψ(x)

∂

∂xi
φ(x)dx, ‖ψ‖ = ((ψ, ψ))1/2,

for all φ, ψ ∈ H1
0(Ω).

(2.5)

Then the pair (V,H) is a Gelfand triple space with a notation, V ↪→ H ≡ H ′ ↪→ V ′

and V ′ = H−1(Ω), which means that embeddings (V ⊂ H) and H ⊂ V ′ are
continuous, dense and compact. To use a variational formulation, let us introduce

the bilinear form

a(φ, ϕ) =
∫

Ω
∇φ · ∇ϕdx = ((φ, ϕ)), ∀φ, ϕ ∈ V = H1

0 (Ω).(2.6)

The form (2.6) is symmetric, bounded on V × V = H1
0(Ω)2 and coercive

a(φ, φ) ≥ ‖φ‖2, ∀φ ∈ V.(2.7)
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Then we can define the bounded operator A = −∆ ∈ L(V, V ′) and the problem
(2.1)-(2.3) is reduced to the following system of Cauchy problems in H :





d2y1
dt2

+ α11
dy1
dt

+ α12
dy2
dt

+ β1Ay1

+γ1 sin(δ11y1 + δ12y2) + k11y1 + k12y2 = f1(t) in (0, T ),

d2y2
dt2

+ α21
dy1
dt

+ α22
dy2
dt

+ β2Ay2

+γ2 sin(δ21y1 + δ22y2) + k21y1 + k22y2 = f2(t) in (0, T ),

yi(0) = yi
0 ∈ V, dyi

dt
(0) = yi

1 ∈ H, i = 1, 2.

(2.8)

The operator A in (2.8) is an isomorphism from V onto V ′ and it is also considered
as a self-adjoint operator in H with dense domain D(A) in V and in H ,

D(A) = {φ ∈ V | Aφ ∈ H}.

In this case, A is an unbounded selfadjoint operator in H .

We introduce the solution space and the space of distributions. The space

W (0, T ) is defined by

W (0, T ) = {g|g ∈ L2(0, T ;V ), g′ ∈ L2(0, T ;H), g′′ ∈ L2(0, T ;V ′)}.

The notation D′(0, T ) denotes the space of distributions on (0, T ).
Now we give a vectorial representation of (2.8). For the sake of simplicity, we

shall write the coupled and damped sine-Gordon equations (2.8) as the following

vectorial form

{
y′′ +αy′ + βAy + γ sinδy + ky = f in (0, T ),

y(0) = y0, y′(0) = y1,
(2.9)

where

y =
[
y1
y2

]
, f =

[
f1
f2

]
, y′ =

dy
dt

=

[ dy1
dt

dy2

dt

]
, y′′ =

d2y
dt2

=




d2y1

dt2

d2y2

dt2


 ,

A =
[
A 0
0 A

]
, δ =

[
δ11 δ12

δ21 δ22

]
, siny =

[
sin y1
sin y2

]
,

α =
[
α11 α12

α21 α22

]
, β =

[
β1 0
0 β2

]
, γ =

[
γ1 0
0 γ2

]
, k =

[
k11 k12

k21 k22

]
,

y0 =
[
y1
0

y2
0

]
, y1 =

[
y1
1

y2
1

]
.
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The norm |α| of the 2× 2 matrix α is defined by
∑

i,j=1,2 |αij |. For the treatment
of (2.9),we introduce the following two product spaces:

V = V × V and H = H ×H

with the inner products defined respectively by

((φ,ψ)) = ((φ1, ψ1)) + ((φ2, ψ2)), φ = [φ1, φ2]t, ψ = [ψ1, ψ2]t ∈ V ,

(φ,ψ) = (φ1, ψ1) + (φ2, ψ2), φ = [φ1, φ2]t, ψ = [ψ1, ψ2]t ∈ H,

where [·, ·]t denotes the transpose of [·, ·]. Then the dual space V ′ = V ′ × V ′ and
the dual pairing between V ′ and V are denoted by

〈φ,ψ〉 = 〈φ1, ψ1〉 + 〈φ2, ψ2〉, ∀φ = [φ1, φ2]t ∈ V ′, ψ = [ψ1, ψ2]t ∈ V .

By the embeddings V ↪→ H ↪→ V ′, it is easily verified that the pair (V ,H) is a
Gelfand triple space with the notation V ↪→ H ↪→ V ′. The norms of V and H are

denoted simply by ‖ψ‖ and |ψ|, respectively.
Here we give a definition of weak solutions for (2.9).

Definition 2.1. A function y is said to be a weak solution of (2.9) if y ∈
W(0, T ) = W (0, T )×W (0, T ) and y satisfies

〈y′′(·),φ〉 + (αy′(·),φ) + ((βy(·),φ)) + (γ sin δy(·),φ) + (ky(·),φ)

= (f(·),φ) for all φ ∈ V in the sense of D′(0, T ),
(2.10)

y(0) = y0, y′(0) = y1.(2.11)

For the existence and uniqueness of weak solutions for (2.9), we can state the

following theorem.

Theorem 2.1. Let αij ∈ R, βi > 0, γi, δij , kij ∈ R, i, j = 1, 2, and f , y0, y1

be given satisfying

f ∈ L2(0, T ;H), y0 ∈ V , y1 ∈ H.(2.12)

Then the problem (2.9) has a unique weak solution y in W(0, T ). The solution y
has the regularity

y ∈ C([0, T ];V), y′ ∈ C([0, T ];H).(2.13)

The existence and uniqueness of strong solutions of (2.8) is also proved in

Temam [12] under the stronger assumption that fi ∈ C1([0, T ];H), yi
0 ∈ D(A),
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yi
1 ∈ H1

0(Ω). Since the proof is a sketch and the detailed proof is not given in there,
we give a complete proof of Theorem 2.1 in the next section.

For the continuous dependence of weak solutions for (2.9), we have the following

theorem.

Theorem 2.2. Assume that the assumption in Theorem 2.1 holds. Let yA =
[yA1, yA2]t (resp., yB = [yB1, yB2]t) be a weak solution of (2.9) with initial
values (yA0,yA1) ∈ V × H (resp., (yB0,yB1) ∈ V × H) and fA ∈ L2(0, T ;H)
(resp., fB ∈ L2(0, T ;H)). Then there exists a constant C > 0 depending only on
α,β,γ, δ and T such that, for each t ∈ [0, T ],

‖yA(t) − yB(t)‖2 + |y′
A(t) − y′

B(t)|2

≤ C

(
‖yA0 − yB0‖2 + |yA1 − yB1|2 +

∫ t

0

|fA(σ)− fB(σ)|2dσ
)
.

(2.14)

Lastly in this section we give the meaning of weak solutions for (2.9). We

suppose that

fi ∈ L2(Q) and yi
0 ∈ H1

0(Ω), yi
1 ∈ L2(Ω), i = 1, 2.

Then by standard manipulations (cf. Lions and Magenes [10]), we can verify that

the weak solutions (y1(t, x), y2(t, x)) satisfy




∂2y1
∂t2

+ α11
∂y1
∂t

+ α12
∂y2
∂t

− β1∆y1 + γ1 sin(δ11y1 + δ12y2)

+k11y1 + k12y2 = f1 in Q,

∂2y2
∂t2

+ α21
∂y1
∂t

+ α22
∂y2
∂t

− β2∆y2 + γ2 sin(δ21y1 + δ22y2)

+k21y1 + k22y2 = f2 in Q,

yi = 0 on Σ,

yi(0, x) = yi
0(x) in Ω and

∂yi

∂t
(0, x) = yi

1(x) in Ω, i = 1, 2,

(2.15)

in the sense of distribution D′
(Q), and

yi,
∂yi

∂t
,
∂yi

∂xj
∈ L2(Q), i = 1, 2, j = 1, · · · , n.
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3. PROOFS OF THEOREMS

Since the embedding of V into H is compact and A is selfadjoint, there exists
an orthonormal basis of H , {wj}∞j=1, consisting of eigenfunctions of A such that

{
Awj = λjwj , ∀j,

0 < λ1 ≤ λ2 ≤ · · · , λj → ∞ as j → ∞.
(3.1)

We denote by Pm the orthogonal projection on H(or V ) onto the space spanned by
{w1, · · · , wm}. We define Pm = (Pm, Pm). Then Pm is an orthogonal projection

on H (or V).

Proof of Theorem 2.1. First we consider the existence part of Theorem 2.1. The

proof of existence is divided into 3 steps.

Step 1. Approximate solutions

We use the Faedo-Galerkin method. As a basis {wm}∞m=1 we use the set of

eigenfunctions wj of the operator A which is orthonormal in H .
For each m ∈ N , we define an approximate solution of the problem (2.9) by

ym(t) = [y1
m(t), y2

m(t)]t =




m∑

j=1

g1
jm(t)wj,

m∑

j=1

g2
jm(t)wj




t

,(3.2)

where ym(t) satisfies




d2

dt2
(ym(t), [wj, 0]t) +

d

dt
(αym(t), [wj, 0]t) + ((βym(t), [wj, 0]t))

+(γ sinδym(t), [wj, 0]t) + (kym(t), [wj, 0]t)

= (f(t), [wj, 0]t), t ∈ [0, T ], 1 ≤ j ≤ m,

d2

dt2
(ym(t), [0, wj]t) +

d

dt
(αym(t), [0, wj]t) + ((βym(t), [0, wj]t))

+(γ sinδym(t), [0, wj]t) + (kym(t), [0, wj]t)

= (f(t), [0, wj]t), t ∈ [0, T ], 1 ≤ j ≤ m,

ym(0) = Pmy0 = [Pmy
1
0, Pmy

2
0 ]t,

d

dt
ym(0) = Pmy1 = [Pmy

1
1 , Pmy

2
1 ]t.

(3.3)

We set y0m = [y1
0m, y

2
0m]t = Pmy0 and y1m = [y1

1m, y
2
1m]t = Pmy1. Then

y0m → y0 in V , y1m → y1 in H as m→ ∞.(3.4)
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Let

~gm = [~g1
m, ~g

2
m]t = [(g1

1m, · · · , g1
mm), (g2

1m, · · · , g2
mm)]t.

Then the equation (3.3) can be written as the system of two m vector differential

equations

d2

dt2
~gm + α

d

dt
~gm + β[Λ,Λ]t~gm = ~F (t) − ~N(t, ~gm)(3.5)

with initial values

~gm(0) = [(y1
0m, w1), · · · , (y1

0m, wm), (y2
0m, w1), · · · , (y2

0m, wm)]t,

d

dt
~gm(0) = [(y1

1m, w1), · · · , (y1
1m, wm), (y2

1m, w1), · · · , (y2
1m, wm)]t.

Here in (3.5), Λ = diag (λi : i = 1, · · · , m),

~F (t) = [(f1(t), w1), · · · , (f1(t), wm), (f2(t), w1), · · · , (f2(t), wm)]t

and
~N(t, ~gm) = [ ~N1(t, ~g1

m, ~g
2
m), ~N2(t, ~g1

m, ~g
2
m)]t

with

~N1(t, ~g1
m, ~g

2
m) =

[
γ1

(
sin

(
δ11

m∑

j=1

g1
jmwj + δ12

m∑

j=1

g2
jmwj

)
, w1

)

+
(
k11

m∑

j=1

g1
jmwj + k12

m∑

j=1

g2
jmwj , w1

)
, · · · ,

γ1

(
sin

(
δ11

m∑

j=1

g1
jmwj + δ12

m∑

j=1

g2
jmwj

)
, wm

)

+
(
k11

m∑

j=1

g1
jmwj + k12

m∑

j=1

g2
jmwj , wm

)]t

,

and

~N2(t, ~g1
m, ~g

2
m) =

[
γ2

(
sin

(
δ21

m∑

j=1

g1
jmwj + δ22

m∑

j=1

g2
jmwj

)
, w1

)

+
(
k21

m∑

j=1

g1
jmwj + k22

m∑

j=1

g2
jmwj , w1

)
, · · · ,

γ2

(
sin

(
δ21

m∑

j=1

g1
jmwj + δ22

m∑

j=1

g2
jmwj

)
, wm

)

+
(
k21

m∑

j=1

g1
jmwj + k22

m∑

j=1

g2
jmwj , wm

)]t

,
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The nonlinear forcing function vector ~N is Lipschitz continuous. Indeed, for ~gm =
[
∑m

j=1 g
1
jmwj ,

∑m
j=1 g

2
jmwj ]t and ~hm = [

∑m
j=1 h

1
jmwj ,

∑m
j=1 h

2
jmwj ]t, it follows

by

∫

Ω
| sinψ(x)− sinφ(x)|2dx ≤

∫

Ω
|ψ(x)− φ(x)|2dx, ∀ψ, φ ∈ H,(3.6)

and Schwarz inequality that

| ~N1(t, ~g1
m, ~g

2
m) − ~N1(t,~h1

m,
~h2

m)|

≤ |γ1|
( m∑

i=1

∣∣∣∣
(

sin
(
δ11

m∑

j=1

g1
jmwj + δ12

m∑

j=1

g2
jmwj

)

− sin
(
δ11

m∑

j=1

h1
jmwj + δ12

m∑

j=1

h2
jmwj

)
, wi

)∣∣∣∣
2) 1

2

+
( m∑

i=1

∣∣∣∣
((
k11

m∑

j=1

g1
jmwj + k12

m∑

j=1

g2
jmwj

)

−
(
k11

m∑

j=1

h1
jmwj + k12

m∑

j=1

h2
jmwj

)
, wi

)∣∣∣∣
2) 1

2

≤|γ1|m
1
2

∣∣∣∣sin(δ11

m∑

j=1

g1
jmwj + δ12

m∑

j=1

g2
jmwj)

− sin(δ11

m∑

j=1

h1
jmwj + δ12

m∑

j=1

h2
jmwj)

∣∣∣∣

+m
1
2

∣∣∣∣(k11

m∑

j=1

g1
jmwj + k12

m∑

j=1

g2
jmwj) − (k11

m∑

j=1

h1
jmwj + k12

m∑

j=1

h2
jmwj)

∣∣∣∣

≤|γ1|m
1
2

∣∣∣∣(δ11

m∑

j=1

g1
jmwj + δ12

m∑

j=1

g2
jmwj) − (δ11

m∑

j=1

h1
jmwj + δ12

m∑

j=1

h2
jmwj)

∣∣∣∣

+m
1
2

∣∣∣∣k11

m∑

j=1

(g1
jm − h1

jm)wj

∣∣∣∣+m
1
2

∣∣∣∣k12

m∑

j=1

(g2
jm − h2

jm)wj

∣∣∣∣

≤|γ1|m
1
2

{
|δ11|

∣∣∣∣
m∑

j=1

(g1
jm − h1

jm)wj

∣∣∣∣ + |δ12|
∣∣∣∣

m∑

j=1

(g2
jm − h2

jm)wj

∣∣∣∣
}

+m
1
2

{
|k11|

∣∣∣∣
m∑

j=1

(g1
jm − h1

jm)wj

∣∣∣∣ + |k12|
∣∣∣∣

m∑

j=1

(g2
jm − h2

jm)wj

∣∣∣∣
}

≤ (1 + |γ1|)m(|δ11| + |δ12| + |k11|+ |k12|)

×
{( m∑

j=1

|g1
jm − h1

jm|2
) 1

2

+
( m∑

j=1

|g2
jm − h2

jm|2
) 1

2
}
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≤
√

2(1 + |γ1|)(|δ11| + |δ12| + |k11| + |k12|)m

×
[ m∑

j=1

|g1
jm − h1

jm|2 + |g2
jm − h2

jm|2)
] 1

2

=
√

2(1 + |γ1|)(|δ11| + |δ12| + |k11| + |k12|)m|~gm − ~hm|.

By similar calculations, we can verify

| ~N2(t, ~g1
m, ~g

2
m) − ~N2(t,~h1

m,
~h2

m)|

≤
√

2(1 + |γ2|)(|δ21| + |δ22| + |k21| + |k22|)m|~gm − ~hm|.

So that

| ~N(t, ~gm) − ~N(t,~hm)| ≤ | ~N1(t, ~g1
m, ~g

2
m)− ~N1(t,~h1

m,
~h2

m)|

+| ~N2(t, ~g1
m, ~g

2
m) − ~N2(t,~h1

m,
~h2

m)|

≤
√

2(1 + |γ|)(|δ| + |k|)m|~gm − ~hm|.

This proves the Lipschitz continuity of the nonlinear term ~N . Therefore, this system

of second order vector differential equation admits a unique solution ~gm = [~g1
m, ~g

2
m]t

on [0, T ], by reducing this to a first order system and applying Carathéodory-type
existence theorem. Hence we can construct the approximate solutions ym(t) =
[y1

m(t), y2
m(t)]t of (2.9).

Step 2. A priori estimates

In this step, we shall derive a priori estimates of approximate solutions ym(t) =
[y1

m(t), y2
m(t)]t. We multiply both sides of the first and second equations of (3.3)

by g1′
jm(t) and g2′

jm(t), respectively, sum over j, and add these equations to have

(y′′
m(t),y′

m(t)) + (αy′
m(t),y′

m(t)) + ((βym(t),y′
m(t)))

+(γ sinδym(t),y′
m(t)) + (kym(t),y′

m(t)) = (f(t),y′
m(t)).

(3.7)

Since

((βym(t),y′
m(t))) =

1
2
d

dt
‖
√
βym(t)‖2, (y′′

m(t),y′
m(t)) =

1
2
d

dt
|y′

m(t)|2,(3.8)

by substituting (3.8) to (3.7), we have

1
2
d

dt

[
|y′

m|2 + ‖
√
βym‖2

]
+(αy′

m,y
′
m) + (kym,y′

m)

+(γ sinδym,y′
m) = (f ,y′

m).
(3.9)
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It is easily verified that

|(αy′
m,y

′
m)| ≤ |α||y′

m|2,(3.10)

2|(f ,y′
m)| ≤ (|f |2 + |y′

m|2).(3.11)

Let c1 be the imbedding constant such that |φ| ≤ c1‖φ‖ for all φ ∈ V . Then by

(3.6) the remaining terms appearing in (3.9) are estimated as follows:

(3.12) 2|(kym,y′
m)| ≤ 2|k||ym| · |y′

m| ≤ |k|c1(‖ym‖2 + |y′
m|2),

(3.13) 2|(γ sinδym,y′
m)| ≤ 2|γ|| sinδym| · |y′

m| ≤ |γ||δ|c1(‖ym‖2 + |y′
m|2).

Integrating (3.9) on [0, t] and using the estimates (3.10)-(3.12), we obtain the
following inequality

|y′
m(t)|2 + ‖

√
βym(t)‖2 ≤|y1m|2 + ‖

√
βy0m‖2 +

∫ t

0
|f(σ)|2dσ

+(|k|+ |γ||δ|)c1
∫ t

0
‖ym(σ)‖2dσ

+(1 + 2|α| + |k|c1 + |γ||δ|c1)
∫ t

0
|y′

m(σ)|2dσ.

(3.14)

Since ‖y0m‖ ≤ ‖y0‖ and |y1m| ≤ |y1|, it follows from (3.14) that

|y′
m(t)|2 + ‖

√
βym(t)‖2 ≤|y1|2 + ‖

√
βy0‖2 + ‖f‖2

L2(0,T ;H)

+C0

∫ t

0

(|y′
m(σ)|2 + ‖ym(σ)‖2)dσ,

(3.15)

where C0 = 1+2|α|+ |k|c1+ |γ||δ|c1. By the inequalitymin{β1, β2}‖ym(t)‖2 ≤
‖
√
βym(t)‖2, we divide (3.15) by β = min{β1, β2, 1} > 0 to have

‖ym(t)‖2 + |y′
m(t)|2 ≤ C1 + C2

∫ t

0
(‖ym(σ)‖2 + |y′

m(σ)|2)dσ,(3.16)

where

C1 =
1
β

[|y1|2 + ‖
√
βy0‖2 + ‖f‖L2(0,T ;H)], C2 =

C0

β
.

Therefore, by Bellman-Gronwall’s inequality we have the uniform boundedness

‖ym(t)‖2 + |y′
m(t)|2 ≤ C1 exp(C2t) ≤ C1 exp(C2T ), ∀t ∈ [0, T ].(3.17)
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Step 3. Passage to the limit

The estimate (3.17) implies that

{ym} is bounded in L∞(0, T ;V),

{y′
m} is bounded in L∞(0, T ;H).

Hence, by the extraction theorem of Rellich’s, we can find a subsequence {ymk
}

of {ym} and find

z ∈ L∞(0, T ;V) ⊂ L2(0, T ;V), z̄ ∈ L∞(0, T ;H) ⊂ L2(0, T ;H)

such that

ymk
→ z weak star in L∞(0, T ;V) and weakly in L2(0, T ;V),(3.18)

y′
mk

→ z̄ weak star in L∞(0, T ;H) and weakly in L2(0, T ;H).(3.19)

By the classical compactness theorem (cf. Temam [11, Thm. 2.3, Chap. III]), these

convergences imply

ymk
→ z strongly in L2(0, T ;H).(3.20)

Hence, by (3.20),

sinδymk
→ sinδz strongly in L2(0, T ;H).(3.21)

We shall show that z̄ = z′ and z(0) = y0. For t ∈ [0, T ),

ymk
(t) = ymk

(0) +
∫ t

0

y′
mk

(σ)dσ(3.22)

in the V (and henceH) sense. Moreover, ymk
(0) = y0mk

→ y0 in the V and hence
H sense, whereas for each t,

∫ t
0 y′

mk
(σ)dσ →

∫ t
0 z̄(σ)dσ weakly in H by (3.19).

Hence, taking the limit in the weak H sense in (3.22) we obtain

z(t) = y0 +
∫ t

0
z̄(σ)dσ for t ∈ [0, T ).(3.23)

This shows that z′(t) exists a.e. in theH sense and z̄ = z′ ∈ L2(0, T ;H), z(0) = y0

(cf. [2, p. 564]).

Let j be fixed. Multiply the first equations of (3.3) by the scalar function ζ(t)
with

ζ ∈ C1([0, T ]), ζ(T ) = 0,(3.24)
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and put φj = ζ(t)[wj, 0]t. Integrating these over [0, T ] for mk > j and using

integration by parts, we have

∫ T

0

[−(y′
mk

(t),φ′
j(t)) + (αy′

mk
(t),φj(t)) + ((βymk

(t),φj(t)))

+(γ sinδymk
(t),φj(t)) + (kymk

(t),φj(t))]dt

=
∫ T

0
(f(t),φj(t))dt− (y1mk

,φj(0)).

(3.25)

If we take k → ∞ in (3.25) and use (3.4), (3.18)-(3.21), then we have

∫ T

0
[−(z′(t),φ′

j(t)) + (αz′(t),φj(t)) + ((βz(t),φj(t)))

+(γ sinδz(t),φj(t)) + (kz(t),φj(t))]dt

=
∫ T

0
(f(t),φj(t))dt− (y1,φj(0)),

(3.26)

so that

∫ T

0
ζ ′(t)(−z′(t), [wj, 0]t)dt

+
∫ T

0
ζ(t){(αz′(t), [wj, 0]t) + ((βz(t), [wj, 0]t)) + (γ sinδz(t), [wj, 0]t)

+(kz(t), [wj, 0]t) − (f(t), [wj, 0]t)}dt = −ζ(0)(y1, [wj, 0]t).

(3.27)

If we take ζ ∈ D(0, T ) in (3.27), then

d

dt
(z′(·), [wj, 0]t) + (αz′(·), [wj, 0]t) + ((βz(·), [wj, 0]t))

+(γ sinδz(·), [wj, 0]t) + (kz(·), [wj, 0]t) = (f(·), [wj, 0]t)
(3.28)

in the sense of distribution D′(0, T ). Similarly, we have

d

dt
(z′(·), [0, wj]t) + (αz′(·), [0, wj]t) + ((βz(·), [0, wj]t))

+(γ sinδz(·), [0, wj]t) + (kz(·), [0, wj]t) = (f(·), [0, wj]t)
(3.29)

in the sense of distributionD′(0, T ). Since {
∑m

j=1 ξj [wj, 0]t+
∑m

j=1 ηj [0, wj]t| ξj , ηj ∈
R, m ∈ N} is dense in V , we conclude by (3.28) and (3.29) that for all φ ∈ V ,

〈z′′(·),φ〉V ′,V + (αz′(·),φ) + ((βz(·),φ)) + (γ sinδz(·),φ)

+(kz(·),φ) = (f(·),φ)
(3.30)
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in the sense of D′(0, T ), and that z′′ = −βAz − αz′ − γ sinδz − kz + f ∈
L2(0, T ;V ′), and hence z ∈ W(0, T ). Multiplying both sides of (3.28) and (3.29)
by ζ in (3.24) and using integration by parts, we have from (3.26) that

(z′(0), [wj, 0]t)ζ(0) = (y1, [wj, 0]t)ζ(0),

(z′(0), [0, wj]t)ζ(0) = (y1, [0, wj]t)ζ(0)

and that (z′(0), [wj, 0]t) = (y1, [wj, 0]t), (z′(0), [0, wj]t) = (y1, [0, wj]t). Since
the span of {[wj, 0]t, [0, wj]t}∞j=1 is dense in H, we obtain z′(0) = y1. This proves

that z is a weak solution of the problem (2.9). This completes the proof of the
existence part of Theorem 2.1.

The uniqueness part of Theorem 2.1 follows immediately from Theorem 2.2.

Proof of Theorem 2.2.

For the proof of Theorem 2.2, we need the following proposition on energy

equality.

Proposition 3.1. Assume that the assumption in Theorem 2.1 holds. Let y =
[y1, y2]t be a weak solution of (2.9). Then, for each t ∈ [0, T ],we have the following
equality

|y′(t)|2 + ‖
√
βy(t)‖2 + 2

∫ t

0
(αy′(σ),y′(σ))dσ

+2
∫ t

0
(γ sin δy(σ),y′(σ))dσ+ 2

∫ t

0
(ky(σ),y′(σ))dσ

= |y1|2 + ‖
√
βy0‖2 + 2

∫ t

0
(f(σ),y′(σ))dσ.

(3.31)

Since sin δy(t) ∈ L2(0, T ;H), by considering this nonlinear term as a forcing

function term, the equality (3.31) can be proved by the regularization method for

linear equations as proved in Lions and Magenus [10, pp. 276-279].

Now we give a proof of Theorem 2.2. Let z = yA − yB. Since z is a weak
solution of (2.9) with γ = O and f(t) = γ(sinδyA(t)−sin δyB(t))+(fA(t)−fB(t))
with initial values z0 = yA0 −yB0, z1 = yA1 −yB1, by Proposition 3.1, we have

|z′(t)|2 + ‖
√
βz(t)‖2 + 2

∫ t

0
(αz′(σ), z′(σ))dσ

+2
∫ t

0
(γ(sinδyA(σ)− sin δyB(σ)), z′(σ))dσ+ 2

∫ t

0
(kz(σ), z′(σ))dσ

= |z1|2 + ‖
√
βz0‖2 + 2

∫ t

0
(fA(σ)− fB(σ), z′(σ))dσ.

(3.32)
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Since

2|(γ(sinδyA(t) − sin δyB(t)), z′(t))| ≤ |γ||δ|c1(‖z(t)‖2 + |z′(t)|2),

2|(fA(t) − fB(t), z′(t))| ≤ |fA(t) − fB(t)|2 + |z′(t)|2,

by substituting these into (3.32), as in the proof of Step 2 of Theorem 2.1, we have

|z′(t)|2 + ‖
√
βz(t)‖2 ≤ |z1|2 + ‖

√
βz0‖2 + ‖fA − fB‖2

L2(0,T ;H)

+C0

∫ t
0 (|z′(σ)|2 + ‖z(σ)‖2)dσ

(3.33)

for some C0 > 0. So that by min {β1, β2}‖z‖2 ≤ ‖
√
βz‖2 ≤ max {β1, β2}‖z‖2,

‖z(t)‖2 + |z′(t)|2 ≤C1(‖z0‖2 + |z1|2 + ‖fA − fB‖2
L2(0,T ;H))

+C2

∫ t

0
(‖z(σ)‖2 + |z′(σ)|2)dσ

(3.34)

for some C1, C2 > 0. Then by applying Bellman-Gronwall’s lemma to (3.34), we
obtain

‖z(t)‖2 + |z′(t)|2 ≤ C1(‖z0‖2 + |z1|2 + ‖fA − fB‖2
L2(0,T ;H)) expC2T,

t ∈ [0, T ],
(3.35)

which proves the inequality (2.14). This completes the proof of Theorem 2.2.

4. OPTIMAL CONTROL PROBLEMS

In this section, we give an application to optimal control problems for the coupled

sine-Gordon equations. Consider the following control system described by the

nonlinear sine-Gordon equations (CS):





∂2y1
∂t2

+ α11
∂y1
∂t

+ α12
∂y1
∂t

− β1∆y1 + γ1 sin(δ11y1 + δ12y2)

+k11y1 + k12y2 = B1v1(t, x) in Q,

∂2y2
∂t2

+ α21
∂y1
∂t

+ α22
∂y2
∂t

− β2∆y2 + γ2 sin(δ21y1 + δ22y2)

+k21y1 + k22y2 = B2v2(t, x) in Q,

yi = 0 on Σ,

yi(0, x) = Ei
0w

i
0(x),

∂yi

∂t
(0, x) = Ei

1w
i
1(x) in Ω, i = 1, 2.

(4.1)

Here vi and w
i
0, w

i
1 are forcing and initial functions control variables, and Bi and E

i
j

are bounded operators (controllers) from the Hilbert spaces Vi andW
i
j into the spaces
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which admit the unique existence of weak solutions of (4.1) (i = 1, 2, j = 0, 1).
More precisely, we assume that

(4.2) vi ∈ Vi ≡ Hilbert space, i = 1, 2,

(4.3) wi
0 ∈W i

0 ≡ Hilbert space, i = 1, 2,

(4.4) wi
1 ∈W i

1 ≡ Hilbert space, i = 1, 2,

and that




Bi ∈ L(Vi, L
2(0, T ;L2(Ω))), i = 1, 2,

Ei
0 ∈ L(W i

0, H
1
0(Ω)), i = 1, 2,

Ei
1 ∈ L(W i

1, L
2(Ω)), i = 1, 2.

(4.5)

We set v = [v1, v2]t, w0 = [w1
0, w

2
0]

t, and w1 = [w1
1, w

2
1]

t and define the following

product Hilbert spaces of control variables:

V = V1 × V2, W0 = W 1
0 ×W 2

0 , W1 = W 1
1 ×W 2

1 .(4.6)

The inner products of V, W0, W1 are denoted by (·, ·)V, (·, ·)W0, (·, ·)W1, re-

spectively. Also we define the vectors of bounded operators B, E0 and E1 by

B =
[
B1 O

O B2

]
∈ L(V, L2(0, T ;H)),(4.7)

E0 =
[
E1

0 O

O E2
0

]
∈ L(W0,V), E1 =

[
E1

1 O

O E2
1

]
∈ L(W1,H).(4.8)

Then the system (4.1) can be written as the following system of vector form





∂2y
∂t2

+ α
∂y
∂t

− β∆y + γ sin δy + ky = Bv in Q,

y = 0 on Σ,

y(0, x) = E0w0(x),
∂y
∂t

(0, x) = E1w1(x), x ∈ Ω,

(4.9)

or of the evolution equation form

{
y′′ +αy′ + βAy + γ sin δy + ky = Bv in (0, T ),

y(0) = E0w0, y′(0) = E1w1.
(4.10)

Now we define the product Hilbert space of total control variables

U = V× W0 ×W1.(4.11)
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The inner product and the norm of U are denoted by (·, ·)U and ‖ · ‖U , respectively.
An element u = (v,w0,w1) ∈ U is called a control of (CS).

By virtue of Theorems 2.1 and 2.2, for each u = (u,w0,w1) ∈ U there exists
a unique weak solution y(u) = y(u; t) ∈ W(0, T ) of (4.1), which is continuous
in the control variables u = (v,w0,w1) ∈ U . Then we can define uniquely the
continuous solution map u → y(u) of U into W(0, T ).

The observation of the state is assumed to be given by

z(u) = Cy(u) = C[y1(u), y2(u)]t ∈ M,(4.12)

where C is an operator called the observer, andM is a Hilbert space of observation

variables.

In this paper, we restrict ourselves the observation to the cases of distributive

observations and terminal value observations. The cost J(u) attached with (CS) is
given by the following quadratic cost:

J(u) =κ1

∫

Q
|y(u; t, x)− zQ(t, x)|2dxdt

+κ2

∫

Ω
|y(u;T, x)− zΩ(x)|2dx

+(Rv,v)V + (M0w0,w0)W0 + (M1w1,w1)W1 ,

∀u = (v,w0,w1) ∈ U ,

(4.13)

where κ1, κ2 ≥ 0, R,M0,M1 are nonnegative operators on V,W0,W1, respec-

tively, and zQ = (z1
Q, z

2
Q) ∈ L2(Q)2, zΩ = (z1

Ω, z
2
Ω) ∈ L2(Ω)2 are desired values

in L2(Q)2 and L2(Ω)2, respectively.
Our main concern in this section is to solve the optimal control problem for the

nonlinear control system (4.1) with the cost (4.13). Let Uad be a closed and convex

subset of U , which is called the admissible set. The quadratic cost optimal control
problem is usually devide into two problems:

( i ) Find an element u∗ ∈ Uad such that infu∈Uad
J(u) = J(u∗).

(ii) Give a characterization of u∗.

Since the control system (4.1) includes a nonlinear term, it is not easy to solve

the problem (i). By using the compactness imbedding theorem in Temam [11], we

can prove the following theorem.

Theorem 4.1. Assume that the conditions of Theorem 2.1 hold, the cost J(u)
is given by (4.13). If all R, M0 and M1 are positive or Uad is bounded, then

there exists at least one optimal control u∗ for the cost J(u) in (4.13) subject to
the control system (CS).
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For (ii) we solve the problem by giving necessary optimality conditions. We can

prove the following criterion on necessary optimality conditions associated with the

cost (4.13) along the line of Ha and Nakagiri [5] based on the work by Lions [9].

Theorem 4.2. The optimal cost u∗ = (v∗,w∗
0,w

∗
1) such that min{J(u) :

u ∈ Uad} = J(u∗) for the cost (4.13) is characterized by the following system of
equations and inequality:





∂2y
∂t2

+ α
∂y
∂t

− β∆y + γ sin δy + ky = Bv∗ in Q,

y = 0 on Σ,

y(u∗; 0, x) = E0w∗
0(x),

∂y
∂t

(u∗; 0, x) = E1w∗
1(x), x ∈ Ω,

y ∈ W(0, T ),





∂2p
∂t2

−αt∂p
∂t

− β∆p + γδt cosδy(u∗; t)p + ktp

= κ1(y(u∗) − zQ) in Q,

p = 0 on Σ,

p(T, x) = 0,
∂p
∂t

(T, x) = κ2(y(u∗;T )− zΩ), x ∈ Ω,

p ∈ W(0, T ),
∫

Q
(p(u∗; t, x))B(v− v∗)(t, x)dxdt

+
∫

Ω
(αtp(u∗; 0, x)− ∂p

∂t
(u∗; 0, x))E0(w0 − w∗

0)(x)dx

+
∫

Ω
(p(u∗; 0, x))E1(w1 − w∗

1)(x)dx

+(Rv∗,v− v∗)V + (M0w∗
0,w0 − w∗

0)W0 + (M1w∗
1,w1 −w∗

1)W1 ≥ 0,

∀u = (v,w0,w1) ∈ Uad.

Since it requires too long calculations to prove this theorem, we omit the proof. The

further study of optimal control problems for (CS) will appear elsewhere.
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