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THE NUMBER OF MAXIMUM INDEPENDENT SETS
IN GRAPHS

Min-Jen Jou and Gerard J. Chang

Abstract. In this paper, we study the problem of determining the
largest number of maximum independent sets of a graph of order n.
Solutions to this problem are given for various classes of graphs, including
general graphs, trees, forests, (connected) graphs with at most one cycle,
connected graphs and triangle-free graphs. Extremal graphs achieving
the maximum values are also given.

1. INTRODUCTION

In a graph G, an independent set is a subset S of V (G) such that no
two vertices in S are adjacent. A maximal independent set is an independent
set that is not a proper subset of any other independent set. A maximum
independent set is an independent set of maximum size. Note that a maximum
independent set is maximal but the converse is not always true. The set of
all independent sets (respectively, maximal independent sets and maximum
independent sets) of a graph G is denoted by I(G) (respectively, MI(G) and
XI(G)) and its cardinality by i(G) (respectively, mi(G) and xi(G)).

Erdős and Moser raised the problem of determining the maximum value
of mi(G) for a general graph G of order n and those graphs achieving this
maximum value. This problem was solved by Erdős, and later Moon and Moser
[25]. Two decades later, the problem was extensively studied for various classes
of graphs, including trees, forests, (connected) graphs with at most one cycle,
bipartite graphs, connected graphs, k-connected graphs, triangle-free graphs
and connected triangle-free graphs; for a survey see [16].
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Although the problem of finding the size α(G) of a maximum independent
set of a graph G has been extensively studied (see [6]), there are very few
works about counting the number of maximum independent sets (see [9, 10,
14, 17, 21, 28]). The purpose of this paper is to determine the largest number
of maximum independent sets for various classes of graphs, including general
graphs, trees, forests, (connected) graphs with at most one cycle, connected
graphs and triangle-free graphs. Extremal graphs achieving the maximum
values are also given.

2. PRELIMINARY

Denote by Kn a complete graph with n vertices, Cn a cycle with n vertices,
Pn a path with n vertices and Km,n a complete bipartite graph whose partite
sets have m and n vertices respectively. A graph is triangle-free if it does not
contain a K3 as an induced subgraph.

The neighborhood NG(x) of a vertex x is the set of vertices adjacent to
x and the closed neighborhood NG[x] is NG(x) ∪ {x}. The degree of x is
degG(x) = |NG(x)|. A vertex is isolated if degG(x) = 0, and is a leaf if
degG(x) = 1. Two vertices x and y are duplicated if NG(x) = NG(y).

For a set A ⊆ V (G), the deletion of A from G is the graph G−A obtained
from G by removing all vertices in A and their incident edges. Two graphs
G and H are disjoint if V (G) ∩ V (H) = ∅. The union of two disjoint graphs
G and H is the graph G ∪H with vertex set V (G ∪H) = V (G) ∪ V (H) and
edge set E(G∪H) = E(G)∪E(H). nG is the short notation for the union of
n copies of disjoint graphs isomorphic to G.

The distance dG(x, y) from a vertex x to another vertex y is the minimum
number of edges in an x-y path. The distance dG(x, S) from a vertex x to a
set S is min

y∈S
dG(x, y).

For a vertex x, let XIx(G) = {S ∈ XI(G) : x ∈ S} and XI−x(G) = {S ∈
XI(G) : x 6∈ S}. The cardinalities of XIx(G) and XI−x(G) are denoted by
xix(G) and xi−x(G), respectively.

Lemma 1. For any graph G, xi(G) ≤ mi(G).

Proof. The lemma follows from the fact that any maximum independent
set is maximal.

Lemma 2. If G = ∪k
i=1Gi, then xi(G) = Πk

i=1xi(Gi).

Proof. The lemma follows from the fact that S is a maximum independent
set of G if and only if S = ∪k

i=1Si, where Si is a maximum independent set of
Gi for 1 ≤ i ≤ k.
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Lemma 3. For any vertex x in G, xi(G) = xix(G)+xi−x(G) and xix(G) ≤
xi(G−NG[x]).

Proof. For any vertex x, xi(G) = xix(G) + xi−x(G) follows from the fact
that XI(G) is the disjoint union of XIx(G) and XI−x(G). Also, xix(G) ≤
xi(G − NG[x]) follows from the fact that if S ∈ XIx(G) then S − {x} ∈
XI(G−NG[x]).

Lemma 4. If x1, x2, · · · , xk are k ≥ 2 leaves adjacent to the same vertex
y in a graph G, then xi(G) = xi(G− {x1, x2, · · · , xk, y}).

Proof. Suppose there exists a set S ∈ XIy(G). Then S′ = (S − {y}) ∪
{x1, x2, · · · , xk} is an independent set of G with |S′| = |S|−1+k > |S|, a con-
tradiction. So, xiy(G) = 0. By Lemma 3, xi(G) = xiy(G)+xi−y(G) = xi−y(G).
The mapping f : XI−y → XI(G − {x1, x2, · · · , xk, y}) defined by f(S) =
S−{x1, x2, · · · , xk} is a bijection. Thus, xi−y(G) = xi(G−{x1, x2, · · · , xk, y})
and so the lemma holds.

Lemma 5. If x is a leaf adjacent to y in a graph G, then xi(G) ≤ 2xi(G−
{x, y}). Moreover, xi(G) = 2xi(G − {x, y}) implies that T ∩ NG(y) = ∅ for
any maximum independent set T of G− {x, y}.

Proof. For any S ∈ XI−x(G), we have y ∈ S, for otherwise S∪{x} is a larger
independent set than S in G. Then, the mapping f : XI−x → XI(G− {x, y})
defined by f(S) = S − {y} is one-to-one. Thus, xi−x(G) ≤ xi(G − {x, y}).
By Lemma 3, xi(G) = xix(G) + xi−x(G) ≤ 2xi(G − {x, y}). Also, xi(G) =
2xi(G−{x, y}) implies xix(G) = xi−x(G) = xi(G−{x, y}). Hence the mapping
f is onto, i.e., for any T ∈ XI(G−{x, y}), there exists some S ∈ XI−x(G) such
that y ∈ S and T = S − {y}. Hence, T ∩NG(y) = ∅.

3. MAIN RESULTS

Erdős, and later Moon and Moser [25] established an upper bound of mi(G)
for a general graph G of order n. This gave the first result of counting maximal
independent sets.

Theorem 6. If G is a graph of order n ≥ 2, then

mi(G) ≤ g(n) =





3s, if n = 3s,
4 · 3s−1, if n = 3s + 1,
2 · 3s, if n = 3s + 2.
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Furthermore, mi(G) = g(n) if and only if

G ∼= G(n) =





sK3, if n = 3s,
K4 ∪ (s− 1)K3 or 2K2 ∪ (s− 1)K3, if n = 3s + 1,
K2 ∪ sK3, if n = 3s + 2.

Theorem 7. If G is a graph of order n ≥ 2, then xi(G) ≤ g(n). Further-
more, xi(G) = g(n) if and only if G ∼= G(n).

Proof. The theorem follows from Lemma 1, Theorem 6, and the fact
that xi(G(n)) = mi(G(n)) = g(n). Note that we use Lemma 2 to compute
xi(G(n)).

Two decades later, Wilf [27] studied the problem of counting maximal
independent sets for trees. His proof was algebraic in nature. Cohen [2]
provided the first graph-theoretical proof. Sagan [26] finally presented an
elegant proof, in which trees attaining the upper bound were also found (as
did Griggs and Grinstead [7] independently). Jou and Chang [13, 14, 15] gave
alternative proofs for the same result.

Theorem 8. If G is a tree of order n ≥ 1, then

mi(G) ≤ t(n) =
{

2s−1 + 1, if n = 2s,
2s, if n = 2s + 1.

Furthermore, mi(G) = t(n) if and only if

G ∼= T (n) ∈
{

B(2, s− 1) or B(4, s− 2), if n = 2s,
B(1, s), if n = 2s + 1,

where B(i, j) is the set of batons, which are the graphs obtained from a path
P of i ≥ 1 vertices by attaching j ≥ 0 paths of length two to the endpoints of
P in all possible ways (see Figure 1).

Unlike general graphs, trees have different upper bounds for xi(G) from
mi(G) when n is odd. The following result was first established by Zito [28]
by means of a structure theorem. We now give a simple proof.

Theorem 9. If G is a tree of order n ≥ 2, then

xi(G) ≤ t′(n) =
{

2s−1 + 1, if n = 2s,
2s−1, if n = 2s + 1.
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Figure 1. Batons.
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Figure 2. The graph T ′(n).

Furthermore, xi(G) = t′(n) if and only if G ∼= T ′(n), where T ′(n) is as in
Figure 2. The vertex z in T ′(n) is called the central vertex of T ′(n).

Proof. It is straightforward to check that α(T ′(n)) = dn/2e and xi(T ′(n)) =
t′(n).

For n = 2s, since T ′(n) ∈ B(2, s− 1), the theorem follows from Lemma 1,
Theorem 8 and the fact that xi(T (n)) < mi(T (n)) for those T (n) that are not
T ′(n) and xi(T ′(n)) = mi(T (n)) = t(n) = t′(n).

So, we only need to prove the theorem for a tree G of order n = 2s+1 ≥ 3.
The theorem is trivial when G is a star K1,n−1. Suppose now G is not a star.
Then n ≥ 5. Choose a vertex y that is adjacent to k = degG(y)− 1 ≥ 1 leaves
x1, x2, · · · , xk. Such a vertex exists, as, for instance, the vertex adjacent to
the end vertex of a longest path in G is as desired. Note that G′ = G −
{x1, x2, · · · , xk, y} is a tree of order n− k− 1. For the case in which k ≥ 2, by
Lemma 4 and the induction hypothesis,

xi(G)= xi(G′) ≤ t′(n− k − 1) ≤ max{t′(n− 3), t′(n− 4)}
= max{2s−2 + 1, 2s−3} ≤ t′(n).
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Also, xi(G) = t′(n) implies n = 5 and xi(G′) = t′(2). By the result for even
n, G′ ∼= K2 and so G ∼= T ′(5). For k = 1, by Lemma 5 and the induction
hypothesit,

xi(G) ≤ 2xi(G−NG[x]) ≤ 2t′(n− 2) = t′(n).

Also, xi(G) = t′(n) implies xi(G − NG[x]) = t′(n − 2) and xi(G) = 2xi(G −
NG[x]). By the induction hypothesis, G−NG[x] ∼= T ′(n− 2). By Lemma 5, y
is adjacent to a vertex in G−NG[x] that is not in any maximal independent
set of G −NG[x] ∼= T ′(n − 2). The only possible vertex with this property is
the central vertex of T ′(n− 2). Thus G ∼= T ′(n).

Jou and Chang [13, 14, 15] derived a result of mi(G) for forests (see The-
orem 10 below) and then applied this result to derive an alternative proof of
Theorem 8. They also used this method to get results on (connected) graphs
with at most one cycle (see Theorems 12 and 14 below).

Theorem 10. If G is a forest of order n ≥ 1, then

mi(G) ≤ f(n) =
{

2s, if n = 2s,
2s, if n = 2s + 1.

Furthermore, mi(G) = f(n) if and only if

G ∼= F (n) =
{

sK2, if n = 2s,
B(1, s− r) ∪ rK2 for some 0 ≤ r ≤ s, if n = 2s + 1.

Theorem 11. If G is a forest of order n ≥ 1, then xi(G) ≤ f(n). Fur-
thermore, xi(G) = f(n) if and only if

G ∼= F ′(n) =
{

sK2, if n = 2s,
K1 ∪ sK2, if n = 2s + 1.

Proof. By Lemma 1 and Theorem 10, we have xi(G) ≤ mi(G) ≤ miF (n)) =
f(n). Moreover, xi(G) = f(n) if and only if xi(G) = mi(G) = mi(F (n)) =
f(n). However, xi(B(1, s − r)) = 1 = 2s−r = mi(B(1, s − r)) if and only if
s = r. Therefore, xi(G) = f(n) if and only if G ∼= F ′(n).

Theorem 12. If G is a graph of order n ≥ 2 with at most one cycle, then

mi(G) ≤ c(n) =
{

2s, if n = 2s,
3 · 2s−1, if n = 2s + 1.
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Furthermore, for n ≥ 6, mi(G) = c(n) if and only if

G ∼= C(n) =
{

sK2, if n = 2s,
K3 ∪ (s− 1)K2, if n = 2s + 1.

Theorem 13. If G is a graph of order n ≥ 2 with at most one cycle, then
xi(G) ≤ c(n). Furthermore, for n ≥ 6, xi(G) = c(n) if and only if G ∼= C(n).

Proof. This is the same as the proof of Theorem 7 except that now Theorem
12 is used.

Theorem 14. If G is a connected graph of order n ≥ 3 with at most one
cycle, then

mi(G) ≤ d(n) =
{

3 · 2s−2, if n = 2s,
2s + 1, if n = 2s + 1.

Furthermore, for n ≥ 6, mi(G) = d(n) if and only if G ∼= D(n) (see Figure
3). More precisely, for n = 2s, D(n) is the graph obtained from B(1, s − 2)
by adding a K3 and a new edge joining a vertex of K3 and the only vertex in
the basic path of B(1, s− 2). For n = 2s + 1, D(n) is the graph obtained from
B(1, s − 1) by adding a K3 with one vertex identified with the only vertex in
the basic path of B(1, s− 1).

Theorem 15. If G is a connected graph of order n ≥ 2 with at most one
cycle, then

xi(G) ≤ d′(n) =
{

t′(n) = 2s−1 + 1, if n = 2s,
d(n) = 2s + 1, if n = 2s + 1.

Furthermore, for n 6= 5, xi(G) = d′(n) if and only if

G ∼= D′(n) =
{

T ′(n), if n = 2s,
D(n), if n = 2s + 1.
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Figure 3. The graph D(n).
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Proof. According to Theorem 9 and a straightforward computation, we
have xi(D′(n)) = d′(n).

The theorem is true for the case in which n = 2s+1 by Lemma 1, Theorem
14 and the fact that xi(D′(n)) = mi(D(n)) = d(n) = d′(n).

We shall prove the theorem for n = 2s by induction. It is trivial for
n = 2, 4. Suppose it is true for all n′ < n and G is a connected graph of order
n = 2s ≥ 6. If G is a tree, then the theorem follows from Theorem 9. So, we
may assume that G contains a unique cycle C. Let r be the largest distance
from a vertex to C and Vi = {v : dG(v, C) = i} for 0 ≤ i ≤ r. Note that
V0 = C and all vertices in Vr are leaves when r ≥ 1.

If r = 0, then G ∼= Cn and so xi(G) = 2 < d′(n). So r ≥ 1. Choose a
vertex y ∈ Vr−1 that is adjacent to k ≥ 1 vertices x1, x2, · · · , xk in Vr. Note
that G′ = G−{x1, x2, · · · , xk, y} is a connected graph of order n− k− 1 with
at most one cycle. For k ≥ 2, by Lemma 4 and the induction hypothesis,

xi(G)= xi(G′) ≤ d′(n− k − 1) ≤ max{d′(n− 3), d′(n− 4)}
= max{2s−2 + 1, 2s−3 + 1} = 2s−2 + 1 < d′(n).

So, k = 1. Suppose G−NG[x1] 6∼= T ′(n− 2). By Lemma 5 and the induction
hypothesis,

xi(G) ≤ 2xi(G−NG[x1]) ≤ 2(d′(n− 2)− 1) = 2s−1 < d′(n).

So, G − NG[x1] ∼= T ′(n − 2), which is a tree. This is possible only when
r = 1 and y ∈ C is adjacent to two vertices in C. Therefore, n = 6 or 8 and
C = Cm with s ≤ m ≤ s+2. There are six such graphs. By a straightforward
calculation, xi(G) < d′(n).

Answering a question of Wilf [27], Griggs et al. [8] gave the maximum
value of mi(G) for a connected graph G of order n ≥ 6 and the extremal
graphs achieving this value. Fűredi [5] presented the same result for n ≥ 50.

Theorem 16. If G is a connected graph of order n ≥ 6, then

mi(G) ≤ h(n) =





2 · 3s−1 + 2s−1, if n = 3s,
3s + 2s−1, if n = 3s + 1,
4 · 3s−1 + 3 · 2s−2, if n = 3s + 2.

Furthermore, mi(G) = h(n) if and only if G ∼= H(n), where H(n) is shown
as in Figure 4. More precisely, if n = 3s + r with 0 ≤ r ≤ 2, then H(n) is
obtained from (s− r)K3 ∪ rK4 by fixing a copy of Kdr/2e+3 and a vertex x in
it, and then adding edges joining x to a vertex in each of the other copies of
K3 or K4.
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Figure 4. The graph H(n) for n ≥ 6.

Theorem 17. If G is a connected graph of order n ≥ 6, then xi(G) ≤ h(n).
Furthermore, xi(G) = h(n) if and only if G ∼= H(n).

Proof. This is the same as the proof of Theorem 7 except that now Theorem
16 is used.

Hujter and Tuza [11] discovered the maximum value of mi(G) for a triangle-
free graph G of order n ≥ 4 and found the extremal graphs achieving this
value.

Theorem 18. If G is a triangle-free graph of order n ≥ 4, then

mi(G) ≤ `(n) =
{

2s, if n = 2s,
5 · 2s−2, if n = 2s + 1.

Furthermore, mi(G) = `(n) if and only if

G ∼= L(n) =
{

sK2, if n = 2s,
C5 ∪ (s− 2)K2, if n = 2s + 1.

Theorem 19. If G is a triangle-free graph of order n ≥ 4, then xi(G) ≤
`(n). Furthermore, xi(G) = `(n) if and only if G ∼= L(n).

Proof. This is the same as the proof of Theorem 7 except that now Theorem
18 is used.
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