
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 4, No. 4, pp. 661-668, December 2000

EQUIVALENT DOUBLE-LOOP NETWORKS

S. H. Huang, F. K. Hwang and Y. H. Liu

Abstract. Hwang and Xu defined equivalent double-loop networks and
gave one such result showing that the L-shapes of the two equivalent
networks are recombinations of three rectangles. Recently, Rödseth gave
an elegant algebraic theorem for equivalent multi-loop networks. We
show that its double-loop version yields equivalent networks of the 3-
rectangle version. We also show that other seemingly different geometric
recombinations also all turn out to be special cases of the 3-rectangle
version.

1. INTRODUCTION

A double loop DL(n; a, b) has n nodes 0, 1, · · · , n − 1 and 2n links of 2
types:

a-links: i → i + a (mod n), i = 0, 1, · · · , n− 1,
b-links: i → i + b (mod n), i = 0, 1, · · · , n− 1.

Double loops have been widely studied (see [4] for literature) as architecture
for local area networks.

The minimum-distance diagram L(n; a, b) of a double loop gives a shortest
path from node u to node v for any u, v. Since a double loop is node-symmetric,
it suffices to give a shortest path from node 0 to any other node. Let 0 occupy
the (0,0)-cell. Then v occupies the (i, j)-cell if a shortest path from 0 to v
consists of i a-links and j b-links. Wong and Coppersmith [6] proved that the
diagram is always an L-shape (a rectangle is considered a degeneration). See
Figure 1 for two examples.

Two double loops DL(n; a, b) and DL(n; a′, b′) are called isomorphic [2] if
there exists an h prime to n such that {a′, b′} = {ha, hb}. Let d(k) denote the
number of cells (i, j) in an L-shape such that i + j = k. Hwang and Xu [3]
defined two double loops to be equivalent if they have the same d(k) for
every k. In
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Figure 1. Two examples of L-shapes

Figure 2. The 3-rectangle transformation

particular, two equivalent double loops have the same diameter and average
distance. Trivially, isomorphic implies equivalent. Also note that if A and B
are isomorphic, C and D are isomorphic, then B and C are equivalent implies
A and D are.

Hwang and Xu proved that DL(n; 1, s) and DL(n; 1, n + 1− s) are equiv-
alent by showing that they correspond to different ways of piling up three
rectangles. We call this the 3-rectangle transformation; see Figure 2.

Rödseth [5] considered the multi-loop ML(n; S), where S = s1, · · · , sl and
the type-j links are i → i + sj (mod n), j = 1, · · · , l. Let S̄ = {S, 0}. He
proved that ML(n;S) and ML(n;S′) are equivalent if S′ = S̄ − si for some
si ∈ S (the other part of Rödseth’s theorem states that isomorphic double
loops are equivalent). For l = 2, we will write (a, b, 0) in the order (a, 0, b).
Then DL(n; a, b) is equivalent to DL(n; n− a, b− a) and DL(n; a− b, n− b).
Since −1 is prime to n, DL(n; (−1)(n − a), (−1)(b − a)) = DL(n; a, a − b) is
also equivalent to DL(n; a, b). The Hwang-Xu result then corresponds to the
special case a = 1.

It is curious to know whether Rödseth’s theorem on double loops yields
transformations other than the 3-rectangle kind. We are also interested in the
following two kinds of transformations (see Figure 3) proposed by Fiol, Yebra,
Alegre and Valero [2], which clearly preserves equivalence:

In this paper we prove that Rödseth’s theorem yields only the 3-rectangle
mapping, and the top-turning mapping and the shadow-turning mapping are
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special cases of the 3-rectangle mapping.
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(a) top-turning (b) shadow-turning

Figure 3. Two geometric transformations

Figure 4. L-shape with parameters

2. RÖDSETH’S THEOREM AND THE 3-RECTANGLE TRANSFORMATION

Let the segments of an L-shape be labeled as shown in Figure 4.
Fiol, Yebra, Alegre and Valero [2] showed that an L-shape always tes-

sellates the plane. In such a tessellation, the length of a step is the usual
Euclidean distance, not just one step-unit as shown in drawing an L-shape.
By considering their relative positions of lattice points, Fiol et al. derived the
following congruence:

la− nb ≡ 0 (mod N),

−pa + hb ≡ 0 (mod N).
(1)

They also stated that the solution (a, b) of (1) is unique up to isomorphism.
Let T (L) denote the L-shape obtained from L through a 3-rectangle trans-

formation. Then the parameters of T (L) can be expressed by the parameters
of L as shown in Figure 5.

Theorem 1. L(N ;N − a, b − a) can be obtained from L(N ; a, b) through
the 3-rectangle transformation.
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Figure 5. The 3-rectangle transformation with parameters

Figure 6. The dual 3-rectangle transformation

Proof. It suffices to show that (N − a, b − a) is a solution of (1) with the
parameters of T (L). Note that

(m + q)(N − a)− q(b− a) ≡ −(ma + qb) ≡ 0 (mod N),

since in L, m a-steps and q b-steps reach the cell at the upper corner of the
L-shape which contains the element 0. Furthermore,

−(n− p + q)(N − a) + (n + q)(b− a) ≡ −pa + hb ≡ 0 (mod N).

By symmetry, we can define a dual 3-rectangle transformation as shown
in Figure 6, denoted by T ′(L).

By an argument analogous to the proof of theorem 1, we have

Theorem 2. L(N ; a − b,N − b) can be obtained from L(N ; a, b) through
the dual 3-rectangle transformation.

Chen and Hwang [1] proved that L(N ; a, b) always satisfies ` ≥ n and
h > p. So L is well-defined, and L(N ; a, b) always has the 3-rectangle trans-
formation as well as its dual.
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Example 1.

Figure 7. An example

3. SPECIAL CASES

Three types of 2-rectangle transformations (see Figure 8) have been men-
tioned in [1].

Let us also denote the two L-shapes obtained by interchanging rows and
columns of T (L) and T ′(L) by T−1(L) and T

′−1(L). By comparing Figure 8
(b), (c), (d) with T (L), T ′(L), T−1(L) and T

′−1(L), we obtain

Theorem 3.

(1) If n = p, then (d) = T (L), (b) = T ′(L).

(2) If p = q, then (c) = T (L).

(3) If m = n, then (c) = T ′(L).

(4) If m + p = n + q, then (d) = T
′−1(L), (b) = T−1(L).

Example 2. Since n = p = 2 in L(20; 3, 2), L(20; 17, 19) is the side-turning
transformation and L(20; 1, 18) is the top-turning transformation.
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Example 3. Since p = q = 2 in L(14; 3, 4), L(14, 11, 1) is the shadow-
turning transformation.
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Figure 8. Some 2-rectangle transformations

Figure 9. p = q

Example 4. Since m = n = 3 in L(19; 1, 8), L(19; 12, 11) is the shadow-
turning transformation.

Example 5. Since m + p = n + q = 5 in L(16; 1, 7), the inverse of
L(16; 15, 6), which is L(16; 6, 15), is a top-turning transformation, and the
inverse of L(16; 10, 9), which is L(16; 9, 10), is a side-turning transformation.
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Figure 10. m = n

Figure 11. m + p = n + p

4. CONCLUSION

One of the main criteria in designing a local area network is its diameter (or
sometimes average distance). Since equivalent double-loop networks have the
same diameter and average distance, instead of searching over all networks
for minimum diameter (or average distance), we could search just over the
equivalent classes, a significant reduction of work.

In this paper, we showed that all equivalent transformations obtained from
Rödseth’s theorem are 3-rectangle transformations and their duals, a surpris-
ing relation between the algebraic analysis and the geometric interpretation.
We also showed that other seemingly different geometric transformations are
special cases of the 3-rectangle transformation. Our findings raise the inter-
esting question whether two L-shapes are equivalent if and only if one is a
3-rectangle (or dual) transformation of the other. (This question was settled
in the negative recently by a forthcoming paper of Chen and Hwang.)
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