
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 4, No. 4, pp. 599-619, December 2000

MIXED VOLUME COMPUTATION VIA LINEAR
PROGRAMMING

Tangan Gao and T. Y. Li∗

Abstract. A renewed algorithm is presented to calculate the mixed vol-
ume of the support A = (A1, . . . ,An) of a polynomial system P (x) =
(p1(x), . . . , pn(x)) in Cn. The key ingredient is a specially tailored appli-
cation of LP feasibility tests, which allows us to calculate the mixed cells,
their volumes constituting the mixed volume, in a mixed subdivision of
A more efficiently.

The problem of finding mixed cells plays a crucial role in polyhedral
homotopy methods for finding all isolated zeros of P (x). Our new algo-
rithm advances the speed of mixed volume computation by a considerable
margin, illustrated by numerical examples.

1. INTRODUCTION

For a system of polynomials P (x) = (p1(x), . . . , pn(x)) with x = (x1, . . . , xn),
write

pi(x) =
∑

a∈Ai

ci,axa, i = 1, . . . , n,

where a = (a1, . . . , an) ∈ Nn, ci,a ∈ C∗ = C\{0} and xa = xa1
1 · · ·xan

n . Here
Ai, a finite subset of Nn, is called the support of pi(x), and A = (A1, . . . ,An)
is called the support of P (x).

By a cell of A we mean an n-tuple C = (C1, . . . , Cn) of subsets Ci ⊆ Ai

for i = 1, . . . , n, and the volume of a cell C is the n-dimensional Euclidean
volume of

conv (C) := conv (C1) + · · ·+ conv (Cn)

= conv ({c1 + · · ·+ cn | c1 ∈ C1, . . . , cn ∈ Cn}).
0 Received August 2, 2000; revised October 4, 2000.

Communicated by P. Y. Wu.
2000 Mathematics Subject Classification: Primary 52A39; Secondary 65H10, 65H20, 90C05.
Key words and phrases: Mixed volume computation, polyhedral homotopies, system of poly-
nomials, linear programming.
∗Research was supported in part by NSF under Grant 9804846.

599

600 Tangan Gao and T. Y. Li

The type of C is the vector (dim(conv (C1)), . . . , dim(conv (Cn))), and a face of
C is a subcell F = (F1, . . . , Fn) of C, where Fi ⊆ Ci and some linear functional
α ∈ (Rn)∨ attains its minimum over Ci at Fi for i = 1, . . . , n. We call such
an α an inner normal of F . If F is a face of C, then conv (Fi) is a face of the
polytope conv (Ci) for i = 1, . . . , n.

Definition 1. A fine mixed subdivision ofA is a collection {C(1), . . . , C(m)}
of cells of A, C(j) = (C(j)

1 , . . . , C
(j)
n), j = 1, . . . , m, such that

(a) each conv (C(j)
i) is a simplex of dimension #C

(j)
i − 1 and for each j,

dim(conv (C(j))) = dim(conv (C(j)
1)) + · · ·+ dim(conv (C(j)

n)) = n,

(b) conv (C(j))∩conv (C(k)) is a common face of conv (C(j)) and conv (C(k))
when it is nonempty for j 6= k,

(c)
⋃m

j=1 conv (C(j)) = conv (A).

The cells of type (1, . . . , 1) in a fine mixed subdivision of A are called fine
mixed cells of the subdivision. It is known [7] that the sum of the volumes
of those fine mixed cells is equal to the mixed volume of the support A =
(A1, . . . ,An) defined as follows. Let Qi = conv (Ai) for i = 1, . . . , n. For
positive numbers λ1, . . . , λn, the n-dimensional volume of the Minkowski sum

λ1Q1 + · · ·+ λnQn ≡ {λ1q1 + · · ·+ λnqn |qi ∈ Qi, i = 1, . . . , n}

is a homogeneous polynomial of degree n in the variables λ1, . . . , λn. The
mixed volume of A = (A1, . . . ,An), denoted by M(A), is defined to be the
coefficient of λ1 × · · · × λn in this polynomial.

By the Bernshtein theory [1], the mixed volume M(A) of the support
A = (A1, . . . , An) of the polynomial system P (x) = (p1(x), . . . , pn(x)) pro-
vides an upper bound for the number of its isolated zeros in (C∗)n, counting
multiplicities. And this bound can be reached if the coefficients of P (x) are
generic. This root count in (C∗)n has been extended to root count in Cn in
[8, 11, 12, 13, 14]. They are, in general, significantly much sharper than the
classical Bézout number and its variants.

In this paper, we present a renewed algorithm for the computation of
the mixed volume M(A) by first computing all the fine mixed cells of a fine
mixed subdivision of the support A = (A1, . . . ,An), and the mixed volume
M(A) is then obtained by adding the volumes of all those fine mixed cells.
A fine mixed subdivision of A = (A1, . . . ,An) can usually be obtained by
the following standard process [7, 9, 10]: The n-tuple ω = (ω1, . . . , ωn) with
ωi : Ai → R for each i = 1, . . . , n is called a lifting function on A, and ωi is said

Mixed Volume Computation via Linear Programming 601

to lift Ai to its graph Âi(ω) = {(q, ωi(q)) |q ∈ Ai} ⊂ Rn+1. This notation is
extended in the obvious way: q̂(ω) = (q, ωi(q)), Â(ω) = (Â1(ω), . . . , Ân(ω)),
etc. A lower face of Â(ω) = (Â1(ω), . . . , Ân(ω)) is a face having an inner
normal with positive (n + 1)th coordinate and a lower facet is a lower face Ĉ
with dim(conv (Ĉ)) = n. If ω = (ω1, . . . , ωn) is chosen at random, then the
collection

Sω = {C = (C1, . . . , Cn) cells of A | Ĉ(ω) is a lower facet of Â(ω)}
gives a fine mixed subdivision of A = (A1, . . . ,An) induced by the lifting func-
tion ω [7].

The fine mixed cells in Sω, the cells of type (1, . . . , 1), can be found by iden-
tifying their corresponding lower facets of Â(ω) of the same type. Namely, if
Ĉ(ω) = ({â1, â′1}, . . . , {ân, â′n}) is a lower facet of Â(ω) of the type (1, . . . , 1),
then C = ({a1,a′1}, . . . , {an,a′n}) gives a fine mixed cell in Sω. Existing algo-
rithms [4, 5, 16] as well as our algorithm in the current paper all work with
n-tuples of edges of the lower hulls of the input Newton polytopes. While ear-
lier algorithms simply perform a brute-force search to find the mixed cells, our
algorithm takes a more economical enumeration by finding each lower facet
of Â(ω) adjacent to a vertex using one Linear Programming pivot operation
after one of them is obtained, and then marching along such vertices. We
also incorporate and utilize many other special structures of the problem to
speed up the algorithm. Evidenced by the numerical results on a considerable
varieties of examples, our algorithm advances the speed of computation by a
great margin.

The computation of the mixed volumeM(A) of the supportA = (A1, . . . ,An)
for root count of the polynomial system P (x) = (p1(x), . . . , pn(x)) is interest-
ing in its own right. Recently, based on this combinatorial root count, the
so-called polyhedral homotopies were established to approximate all the iso-
lated zeros of P (x) by a nonlinear homotopy continuation method, which
offers a dramatic improvement over the classical continuation method using
linear homotopies [7, 9, 10]. When the polyhedral homotopy is employed to
find all isolated zeros of P (x), the process of locating all the fine mixed cells
in a fine mixed subdivision of the support A during our computation of the
mixed volume M(A) plays a crucially important role. It always dominates
the majority of the computation of the algorithm and therefore dictates the
efficiency of the method as well as the scope of its application.

2. A BASIC LINEAR PROGRAMMING ALGORITHM

We begin by introducing some basic terminologies and the simplex method
in Linear Programming that will be used in our algorithms. They can be found
in many standard Linear Programming textbooks, e.g., [2].

602 Tangan Gao and T. Y. Li

Consider the model problem

min 〈c,x〉
〈ai,x〉 ≤ bi, i = 1, . . . ,m,

(1)

where c ∈ Rn, ai ∈ Rn, bi ∈ R, x = (x1, . . . , xn), m > n and 〈·, ·〉 denotes the
standard inner product in Rn. Let R be the feasible region of (1).

Let x0 be a nondegenerate extreme point of (1) and J = {j1, . . . , jn} be
the set of indices of currently active constraints at x0, that is,

〈ai,x0〉 = bi, if i ∈ J,

and
〈ai,x0〉 < bi, if i 6∈ J.

Let
DT = [aj1 , . . . ,ajn]

be the matrix of the gradients of currently active constraints at x0. Since x0

is nondegenerate, D must be nonsingular. Let D−1 = [c1, . . . , cn]. Then for
any σ > 0 and 1 ≤ k ≤ n, we have

〈ai,x0 − σck〉 = 〈ai,x0〉 − σ〈ai, ck〉 = 〈ai,x0〉 = bi, if i ∈ J\{jk},
〈ajk

,x0 − σck〉 = 〈ajk
,x0〉 − σ〈ajk

, ck〉 = bjk
− σ < bjk

,
(2)

and for small σ > 0,

〈ai,x0 − σck〉 = 〈ai,x0〉 − σ〈ai, ck〉 < bi, for i 6∈ J.

Thus the n edges of the feasible region R emanating from x0 can be represented
in the form

x0 − σck, σ > 0, k = 1, . . . , n.

These edges provide possible search directions to minimize the cost function
〈c,x〉. Let x1 = x0 − σci with σ > 0. Then the value of the cost function at
x1 is

〈c,x1〉 = 〈c,x0〉 − σ〈c, ci〉,
and it decreases when 〈c, ci〉 > 0. It can be easily shown that x0 is an optimal
solution of (1) if 〈c, ci〉 ≤ 0 for all i = 1, . . . , n. If some of the 〈c, ci〉’s are
positive, then the greatest rate of decrease of the cost function is obtained by
choosing k such that

〈c, ck〉 = max{〈c, ci〉|1 ≤ i ≤ n}.

Mixed Volume Computation via Linear Programming 603

Let s = ck be the next search direction. From (2), for all positive σ, the ith
constraint is still active at x1 = x0 − σs for every i ∈ J\{jk}, and the jkth
constraint becomes inactive but stays feasible. To make x1 feasible, we must
choose σ > 0 such that

〈ai,x0 − σs〉 = 〈ai,x0〉 − σ〈ai, s〉 ≤ bi, for i 6∈ J.(3)

If 〈ai, s〉 ≥ 0 for all i 6∈ J , then the inequalities in (3) are valid for all σ > 0 and
thus the problem (1) is unbounded from below with no solutions. Otherwise,
from (3), the largest possible σ for x1 to stay feasible is

σ0 = min
{ 〈ai,x0〉 − bi

〈ai, s〉

∣∣∣∣ all i 6∈ J with 〈ai, s〉 < 0
}

.

Let l be the smallest integer such that

σ0 =
〈al,x0〉 − bl

〈al, s〉 .

Then x1 = x0 − σ0s is a new nondegenerate extreme point of the feasible
region R in (1) with reduced value of the cost function. This procedure can be
continued until an optimal solution is reached or the problem is determined
to be unbounded from below.

For our problem of finding all fine mixed cells of the support A, feasible
points are always available but they may not be extreme points. Suppose x0

is a feasible point of (1), but not a nondegenerate extreme point. Choose a
nonsingular matrix DT = [d1, . . . ,dn] whose columns are either the gradients
of the constraints active at x0 or generically chosen vectors which make D
invertible. Let D−1 = [c1, . . . , cn], and J = {j1, . . . , jn} where ji = k if
di = ak and ji = 0 if di is an arbitrarily chosen column. Consider the search
direction ci with ji = 0. If 〈c, ci〉 > 0 and σ > 0, then 〈c,x0 − σci〉 =
〈c,x0〉 − σ〈c, ci〉 < 〈c,x0〉. Thus s = ci gives a feasible search direction. If
〈c, ci〉 < 0, then s = −ci is a feasible search direction since 〈c,x0 − σs〉 =
〈c,x0〉 + σ〈c, ci〉 < 〈c,x0〉. On the other hand, the greatest rate of decrease
of the cost function among those directions can be determined by choosing k
such that

|〈c, ck〉| = max{|〈c, ci〉| | all i with ji = 0}.
With s = sign (〈c, ck〉)ck being the next search direction and continuing the
process as in the case where x0 is a nondegenerate extreme point described
above, we replace dk in DT by a gradient al of certain constraint. If 〈c, ci〉 = 0
for all i with ji = 0, then the search direction s may be chosen from the ci’s
with ji 6= 0 and proceed as before.

604 Tangan Gao and T. Y. Li

We summarize the simplex method outlined above in Algorithm 1 below
[2]. For locating fine mixed cells in our algorithm, we only need to consider
the special case of (1) with c = (1, 0, . . . , 0).

Algorithm 1. Solving the model problem (1) with c = (1, 0, . . . , 0).

Step 0. Choose a feasible point x0 of (1). Let ai1 , . . . ,ais be the linearly
independent gradients of the constraints active at x0, 0 ≤ s ≤ n. When
s = n, let DT = [d1, . . . ,dn] = [ai1 , . . . ,ais] and J = {j1, . . . , jn} =
{i1, . . . , is}. When s < n, let DT = [d1, . . . ,dn] = [ai1 , . . . ,ais ,ds+1, . . . ,dn],
where ds+1, . . . ,dn are generically chosen for which D is nonsingular, and
J = {j1, . . . , jn} = {i1, . . . , is, js+1, . . . , jn} with js+1 = · · · = jn = 0.

Step 1. Computation of the search direction s.
Let D−1 = [cij] = [c1, . . . , cn]. If ji ≥ 1 for i = 1, . . . , n, go to Step 1.2.
Otherwise, go to Step 1.1.

Step 1.1. Determine the smallest index k such that

|〈c, ck〉| = |c1k| = max{|〈c, ci〉| = |c1i| | all i with ji = 0}.
If c1k = 0, go to Step 1.2. Otherwise, set s = sign (c1k)ck and go to
Step 2.

Step 1.2. Determine the smallest index k such that

〈c, ck〉 = c1k = max{〈c, ci〉 = c1i | all i with ji ≥ 1}.
If c1k ≤ 0, stop with an optimal solution x0. Otherwise, set s = ck

and go to Step 2.

Step 2. Compute the maximum feasible step size σ.
If 〈ai, s〉 ≥ 0 for i = 1, . . . , m, print the message “problem is unbounded
from below” and stop. Otherwise, compute the smallest index l and σ
such that

σ =
〈al,x0〉 − bl

〈al, s〉 = min
{〈ai,x0〉 − bi

〈ai, s〉

∣∣∣∣ all i 6∈ J with 〈ai, s〉 < 0
}

,

and go to Step 3.

Step 3. Update.
Set x0 := x0 − σs. Replace the kth column of DT by al and update the
inverse D−1. Replace the kth element of J by l. Go to Step 1.

The process of obtaining the next feasible solution from a given feasible
solution with one execution round of Steps 1, 2 and 3 is called a Linear Pro-
gramming pivot operation.

Mixed Volume Computation via Linear Programming 605

3. LOCATE ALL LOWER FACETS SHARING A VERTEX

A lower face of a polytope in Rn+1 is a face having an inner normal with
positive (n+1)th coordinate and a lower facet is an n-dimensional lower face.
Let B = {a0, a1, . . . ,am} be a finite subset of Zn and ω : B → R be a generic
lifting function. Let B̂(ω) = {â = (a, ω(a)) |a ∈ B}. One of the main steps
of our algorithm is the identification of all the lower facets of conv (B̂(ω)) in
Rn+1.

It is clear that conv (B̂(ω)) has no lower facets when dim(Span (B)) < n.
Therefore, we assume dim(Span (B)) = n. To find all the lower facets of
conv (B̂(ω)), our strategy is, for each fixed âi, i = 0, 1, . . . , m − 1, we look
for all the lower facets of conv (B̂(ω)) which contains âi as a vertex. When
a particular point âi is considered, by parallel transformation of the axes, we
may assume âi = 0 ∈ Rn+1. Therefore, we will let B = {0,a1,a2, . . . ,am}
and describe our algorithm for finding all lower facets of conv (B̂(ω)) which
contain 0 as a vertex.

3.1. Locate the First Lower Facet

Since the lifting function ω is generic, each lower facet of conv (B̂(ω)) con-
tains exactly n + 1 points in B̂(ω). For each lower facet of conv (B̂(ω)) having
vertex 0 with inner normal (α, 1) = (α1, . . . , αn, 1), we have

0 ≤ 〈âi, (α, 1)〉, i = 1, 2, . . . , m,

or, equivalently,

〈−ai, α〉 ≤ ω(ai), i = 1, 2, . . . , m,(4)

and the equality is reached when âi is a vertex of the facet. On the other
hand, if α ∈ Rn satisfies (4) with exactly n equalities, say,

〈−aij , α〉 = ω(aij), j = 1, . . . , n,

and {ai1 , . . . ,ain} is linearly independent, then conv ({0, âi1 , . . . , âin}) gives a
lower facet of conv (B̂(ω)) having vertex 0 with inner normal (α, 1).

The existence of α ∈ Rn which satisfies inequalities in (4) is known as the
feasibility test in Linear Programming. It can be dealt with by considering
the linear optimization problem:

min ε

−ε ≤ 0

〈−ai, α〉 − ε ≤ ω(ai), i = 1, 2, . . . , m

(5)

606 Tangan Gao and T. Y. Li

with the variables (ε, α) = (ε, α1, . . . , αn). Obviously, if (ε, α) = (0, α∗) for
certain α∗ ∈ Rn is an optimal solution of this problem, then all the inequalities
in (4) are valid, or feasible, with α = α∗. For an optimal solution (ε∗, α∗) of
the problem with ε∗ > 0, there exists 1 ≤ i0 ≤ m such that

〈−ai0 , α〉 ≥ ω(ai0) + ε∗

for all α ∈ Rn. Consequently, inequalities in (4) become infeasible, or no
α ∈ Rn can make them all valid. Therefore, we may determine a lower facet
of conv (B̂(ω)) with 0 as one of its vertices by looking for the optimal solution
(0, α∗) of the linear optimization problem in (5).

To solve problem (5), let

ε0 = max{0,−ω(a1), . . . ,−ω(am)}.

It is clear that (ε0, 0, . . . , 0) is a feasible point of the constraints in (5). Ap-
plying Algorithm 1 in Section 2 with this initial feasible point, we obtain an
optimal solution (ε∗, α∗) = (ε∗, α∗1, . . . , α

∗
n) with its corresponding J , DT and

D−1. When ε∗ = 0, the constraint −ε ≤ 0 is active at the optimal solution.
We may therefore assume that the gradient (−1, 0, . . . , 0) of this constraint is
the first column of DT , and write

D−1 = [c0, c1, c2, . . . , cn] =

−1 0 · · · 0
∗ ∗ · · · ∗
...

...
...

∗ ∗ · · · ∗

 =

−1 0 · · · 0
∗
... b̄1 · · · c̄n

∗

 .(6)

Now, if the rest of the n columns of DT are all gradients of the constraints in
(5), say (−1,ai1), . . . , (−1,ain), then as discussed before, conv ({0, âi1 , . . . , âin})
gives a lower facet of conv (B̂(ω)). If some of the columns of DT are not gradi-
ents of the constraints in (5), let’s choose any one of them, say the kth column
dk. Since the first entry of ck in (6) is zero and the direction of the cost
function ε is c = (1, 0, . . . , 0), moving in either direction of ck = (0, c̄k) will
keep the cost function ε staying at the minimal value 0. Furthermore, since
dim(Span (B)) = n, there exists a constraint gradient (−1,ai) 6∈{the columns
of DT } such that

〈(−1,−ai), ck〉 = 〈(−1,−ai), (0, c̄k)〉 = 〈−ai, c̄k〉 6= 0,

say, 〈−ai, c̄k〉 < 0. Then, apparently the pivot operation can be carried out
further by moving in the positive direction of ck and remaining feasible, and an
appropriate gradient (−1,al) can be found to replace dk in DT . This process
may be continued until the columns of DT , starting from the second one, all

Mixed Volume Computation via Linear Programming 607

become constraint gradients in (5). By then, a lower facet of conv (B̂(ω)),
containing 0 as one of its vertices, is located.

Summarizing the above discussion, we now modify Algorithm 1 described
in the last section to serve our purpose.

Algorithm 2. Find the first lower facet of conv (B̂(ω)) having vertex 0.

First apply Algorithm 1 to the optimization problem (5). When a resulting
optimal solution x0 = (ε∗, α∗) is obtained in Step 1.2 of Algorithm 1, if ε∗ > 0,
then no lower face of conv (B̂(ω)) having vertex 0 exists, and stop. If ε∗ = 0,
then execute

Step 4. If all elements of J are positive, a lower facet of conv (B̂(ω)) is pro-
duced, and stop. Otherwise, some elements of J is zero, say, jk = 0. Go
to Step 4.1.

Step 4.1. If 〈(−1,−ai), ck〉 = 0 for all i = 1, . . . , m, then dim(Span (B)) <
n, and no lower facet of conv (B̂(ω)) having vertex 0 exists. The
face conv ({0} ∪ ⋃

ji∈J

ji 6=0
âji) corresponding to the constraints cur-

rently active at x0 is the largest lower face of conv (B̂(ω)) having
vertex 0 which contains all the lower edges of conv (B̂(ω)) having
vertex 0. Store this face, and stop.
If 〈(−1,−ai), ck〉 < 0 for some i, let s = ck. Otherwise, let s = −ck.
Compute the smallest index l and σ such that

σ =
〈(−1,−al),x0〉 − ω(al)

〈(−1,−al), s〉

= min
{ 〈(−1,−ai),x0〉 − ω(ai)

〈(−1,−ai), s〉

∣∣∣∣ all i 6∈ J with 〈(−1,−ai), s〉 < 0
}

,

and go to Step 4.2.
Step 4.2. Update.

Set x0 := x0 − σs. Replace kth column of DT by (−1,−al) to
update the inverse D−1. Replace the kth element of J by l. Go to
Step 4.

3.2. Generate All Lower Facets Sharing Vertex 0

Recall the equivalence of the existence of an optimal solution in (5) with
0 optimal value to the feasibility of the inequalities

〈−ai, α〉 ≤ ω(ai), i = 1, . . . , m,(7)

608 Tangan Gao and T. Y. Li

in (4) as described in the last section. Let H be the polyhedron defined by
the half spaces in (7). For α ∈ H, if

〈−ak, α〉 = ω(ak) for k ∈ {1, . . . , m},

we say the constraint ak is active at α, or α has active constraint ak, and
denote by Act (α) the set of active constraints of α. Since the lifting function
ω is generically chosen, any vertex α∗ of H is nondegenerate in the sense
that α∗ has exactly n linearly independent active constraints, aj1 , . . . ,ajn ,
and consequently, conv {0, âj1 , . . . , âjn} is a lower facet of conv (B̂(ω)) having
vertex 0 with inner normal (α∗, 1). On the other hand, when a lower facet
Ĉ∗

0 of conv (B̂(ω)) having vertex 0 with inner normal (α∗, 1) is produced by
Algorithm 2 in the last section, α∗ becomes a vertex of H. Thus, to generate
all other lower facets of conv (B̂(ω)) having vertex 0 from Ĉ∗

0 is equivalent
to generating all the vertices of H from the vertex α∗. This task can be
carried out by employing Algorithm 1 in Section 2 with certain modifications.
Without loss of generality, write Ĉ∗

0 = conv {0, â1, . . . , ân}. Then the basis
matrix corresponding to the optimal solution (0, α∗) in (5) can be written as

DT =
[−1 −1 · · · −1

0 −a1 · · · −an

]

with

D−1 =
[−1 0 · · · 0

c0 c1 · · · cn

]
.

To use Algorithm 1 to find all the vertices of H, the cost function 〈c,x〉 in
(1) which determines the possible search direction as well as the termination
of the algorithm no longer exists. Thus, at the vertex α∗ with J̄ = {1, . . . , n},
D̄T = [−a1, . . . ,−an] and D̄−1 = [c1, . . . , cn], we will search for other vertices
of H along each ci, i = 1, . . . , n, direction. For each fixed ci, i = 1, . . . , n, if
there exists j ≥ n + 1 such that

〈−aj , ci〉 < 0,(8)

then with

σ0 ≡ 〈−al, α
∗〉 − ω(al)

〈−al, ci〉 = min
{〈−aj , α

∗〉 − ω(aj)
〈−aj , ci〉

∣∣∣∣ j ≥ n + 1 and 〈−aj , ci〉<0
}

,

α∗∗ = α∗ − σ0ci becomes a new vertex of H with J̄ ← (J̄\{i}) ∪ {l} and

D̄T = [−a1, . . . ,−ai−1,−al,−ai+1, . . . ,−an].

Of course, the search terminates along ci direction if (8) fails for all j ≥ n+1.

Mixed Volume Computation via Linear Programming 609

This search procedure may be applied to every newly discovered vertex of
H and the algorithm terminates when all possible search directions from all
existing vertices of H are exhausted. In the process, one may easily reproduce
an already existed vertex. This wasteful computation can be prevented based
on the following observations.

Let α(1) and α(2) be two vertices of H with active constraints Act(α(1)) =
{aj1 , . . . ,ajn} and Act(α(2)) = {aj2 , . . . ,ajn+1}, respectively, namely, they
share n− 1 active constraints.

Lemma 1. For any α ∈ H, Act (α) ⊃ Act (α(1))∩Act (α(2)) = {aj2 , . . . ,ajn}
if and only if α ∈ conv (α(1), α(2)).

Proof. (1) ⇒) Since both α− α(1) and α(2) − α(1) belong to the kernel of
the matrix [aj2 , . . . ,ajn] which is one-dimensional, so

α− α(1) = t(α(2) − α(1)) for some t ∈ R,

or,
α = α(1) + t(α(2) − α(1)) = (1− t)α(1) + tα(2).

But,
〈−aj1 , α〉 = (1− t)〈−aj1 , α

(1)〉+ t〈−aj1 , α
(2)〉

= ω(aj1) + t(〈−aj1 , α
(2)〉 − ω(aj1)) ≤ ω(aj1).

So, t ≥ 0 since 〈−aj1 , α
(2)〉 < ω(aj1). Similarly,

〈−ajn+1 , α〉 = (1− t)〈−ajn+1 , α
(1)〉+ t〈−ajn+1 , α

(2)〉
= (1− t)〈−ajn+1 , α

(1)〉+ tω(ajn+1) ≤ ω(ajn+1),

or,
(1− t)(〈−ajn+1 , α

(1)〉 − ω(ajn+1)) < 0.

Hence, t ≤ 1 since 〈−ajn+1 , α
(1)〉 < ω(ajn+1), and α ∈ conv (α(1), α(2)).

(2) ⇐) It is obvious.

Lemma 2. α(1) and α(2) are the only two vertices of H which share the
active constraints Act (α(1)) ∩Act (α(2)).

Proof. The existence of an extra vertex α of H active at Act (α(1)) ∩
Act (α(2)) would imply, by Lemma 1,

α = (1− t0)α(1) + t0α
(2) for some t0 ∈ [0, 1]

610 Tangan Gao and T. Y. Li

and
α(1) = (1− t1)α(2) + t1α for some t1 ∈ [0, 1].

This would result in α(1) = α(2).

Let DT
1 = [−aj1 , . . . ,−ajn], DT

2 = [−aj2 , . . . ,−ajn+1] and D−1
1 = [cj1 , . . . , cjn],

D−1
2 = [c′j2 , . . . , c

′
jn+1

].

Mixed Volume Computation via Linear Programming 611

Lemma 3.

(1) cj1 = −kc′jn+1
for k ≥ 0,

(2) 〈−ajn+1 , cj1〉 < 0 and 〈−aj1 , c′jn+1
〉 < 0.

Proof. (1) Since both cj1 and c′jn+1
are in the kernel of the matrix [−aj2 , . . . ,

−ajn], we have
α(1) − α(2) = l1cj1 = l2c′jn+1

.

Now,

l1 = l1〈−aj1 , cj1〉 = 〈−aj1 , α
(1) − α(2)〉 = ω(aj1)− 〈−aj1 , α

(2)〉 > 0

and

l2 = l2〈−ajn+1 , c
′
jn+1

〉 = 〈−ajn+1 , α
(1) − α(2)〉 = 〈−ajn+1 , α

(1)〉 − ω(ajn+1) < 0.

So, cj1 = −kc′jn+1
for k = −l2/l1 > 0.

(2) 〈−ajn+1 , cj1〉 = −k〈−ajn+1 , c′jn+1
〉 = −k < 0,

and 〈−aj1 , cjn+1〉 = −〈−aj1 , cj1〉/k = −(1/k) < 0.

It follows from (2) in the above lemma that if one starts from the vertex
α(1), searches along cj1 direction for the replacement of the active constraint
aj1 and arrives at the vertex α(2), then from α(2), c′jn+1

will surely be a suc-
cessful search direction, namely, constraint ajn+1 can be replaced, because (8)
is fulfilled. And, when ajn+1 is replaced, the resulting vertex obtained must
be α(1) by Lemma 2.

Therefore, for a given vertex α of H with Act (α) = {aj1 , . . . ,ajn}, every
vertex of H adjacent to α can be generated by one Linear Programming pivot
operation. To eliminate waste of computation, when a new vertex is produced
by replacing aji for certain 1 ≤ i ≤ n, one must store the set of constraints
Act (α)\{aji} in a counter, say, Aω. Then, before pursuing the replacement of
any active constraint of a vertex, we must verify the existence of the remaining
active constraints of the vertex, as a unit, in Aω. When a positive answer is
pronounced, the proceeding of the replacement should be prohibited to prevent
the reproduction of existing vertices.

When the algorithm terminates, we will obtained all vertices of H since
for any two vertices α′, α′′ ∈ H, there exists a chain of vertices α(1), . . . , α(k)

in H with α(1) = α′, α(k) = α′′ and each line segment conv (α(i), α(i+1)) for
i = 1, . . . , k − 1 is an edge of H. (While this assertion is intuitively clear, a
rigorous proof is given in the appendix.) Then, by Lemma 1, the number of
constraints in Act (α(i)) ∩ Act (α(i+1)) equals n − 1 for each i = 1, . . . , k − 1

612 Tangan Gao and T. Y. Li

and, as a consequence of Lemma 3, the algorithm may reach α(i+1) from α(i)

for each i and therefore connects α′ and α′′.
We summarize the above discussion in the following algorithm.

Algorithm 3. Enumerate all lower facets of conv (B̂(ω)) sharing the ver-
tex 0.

Step 1. Apply algorithm 2 to the linear optimization problem (5). If no
lower facet of conv (B̂(ω)) having vertex 0 exists, stop. Otherwise, the
optimal solution (ε∗, α∗) corresponding to 0 optimal value gives the first
lower facet of conv (B̂(ω)) having vertex 0 with inner normal (α∗, 1).
Equivalently, α∗ is also the first vertex of the polyhedron H defined by
the half spaces in (7) being found. Let Nω = {α∗}, Fω = ∅ and Aω = ∅.
Go to Step 2.

Step 2. Pick a point α, a vertex of H, from Nω. Let Act (α) = {aj1 , . . . ,ajn}
and D−1 = [c1, . . . , cn] be the inverse of the matrix DT = [−aj1 , . . . ,−ajn].

Step 2.1. For each fixed ck, k = 1, . . . , n, if Act (α)\{ajk
} 6∈ Aω and in

the meantime,
〈−aj , ck〉 < 0

for certain aj 6∈ Act (α), then with

σ0 ≡ 〈−al, α〉 − ω(al)
〈−al, ck〉

= min
{〈−aj , α〉 − ω(aj)

〈−aj , ck〉

∣∣∣∣aj 6∈ Act (α) and 〈−aj , ck〉 < 0
}

,

α′ = α − σ0ck becomes a new vertex of H. Save α′ in Nω and
Act (α)\{aik}, as a unit, in Aω.

Step 2.2. Save α and Act (α), as a unit, in Fω and delete α from Nω.
If Nω is empty, stop. Fω contains all the vertices of H, or all the
lower facets of B̂(ω) have vertex 0. Otherwise, go to Step 2.

4. FIND ALL FINE MIXED CELLS

For the supportA = (A1, . . . ,An) of a polynomial system P (x) = (p1(x), . . . ,
pn(x)), write Ai = {ai1, . . . ,aimi}, mi ≥ 2, for i = 1, . . . , n. Recall that with a
random lifting function ω = (ω1, . . . , ωn) which lifts A to Â(ω) = (Â1(ω), . . . ,
Ân(ω)), the collection

Sω = {C = (C1, . . . , Cn) cells of A | Ĉ(ω) is a lower facet of Â(ω)}

Mixed Volume Computation via Linear Programming 613

yields a fine mixed subdivision of A = (A1, . . . ,An). Our goal in this section
is to find all the fine mixed cells, the cells of type (1, · · · , 1), in Sω.

For a cell C = (C1, . . . , Cn) of type (1, . . . , 1) in Sω, write

C = (C1, . . . , Cn) = ({a1,a′1}, . . . , {an,a′n}),
where {ai,a′i} ⊂ Ai, i = 1, . . . , n. Then,

Ĉ(ω) = ({â1, â′1}, . . . , {ân, â′n})
is a lower facet of Â(ω) = (Â1(ω), . . . , Ân(ω)). It follows that, for fixed â1 ∈
Â1(ω), . . . , ân ∈ Ân(ω), the cell

Ĉ0(ω) = ({0, â′1 − â1}, . . . , {0, â′n − ân})
forms a lower facet of B̂(ω) = (B̂1(ω), . . . , B̂n(ω)), where

B̂i(ω) = {âij − âi | j = 1, . . . ,mi}, i = 1, . . . , n.(9)

This means

conv (Ĉ0(ω)) = conv ({0, â′1 − â1}) + · · ·+ conv ({0, â′n − ân})
is a lower facet of the polytope

conv (B̂(ω)) = conv (B̂1(ω)) + · · ·+ conv (B̂n(ω)).

Notice that 0 is a vertex of both conv (Ĉ0(ω)) and conv (B̂(ω)).
So, to find all the fine mixed cells in Sω, we may proceed as follows. For any

fixed (a1, . . . ,an) ∈ (A1, . . . ,An) and its corresponding B̂(ω) = (B̂1(ω), . . . , B̂n(ω))
as in (9), we search for all the lower facets of conv (B̂(ω)) with their vertices
consisting of {0, b̄1, . . . , b̄n}, where b̄i ∈ B̂i(ω) for each i = 1, . . . , n. Then,
with â′i = âi + b̄i, i = 1, . . . , n, the cell

C = ({a1,a′1}, . . . , {an,a′n})
gives a fine mixed cell in Sω. Evidently, one must carefully organize the
procedure for this search in order to avoid potentially huge amount of wasteful
computations. In the following, we will present our approach to locate all the
lower facets of conv (B̂(ω)) in a proper order so that all the fine mixed cells in
Sω can be found most efficiently.

For a fixed combination (a1, . . . ,an) ∈ (A1, . . . ,An) together with its cor-
responding B̂(ω) = (B̂1(ω), . . . , B̂n(ω)) as in (9), consider, for k < n, the lower
faces of (B̂1(ω), . . . , B̂k(ω)) of the type

Ĉ0,k = ({0, â′1 − â1}, . . . , {0, â′k − âk}),

614 Tangan Gao and T. Y. Li

where â′i ∈ Âi(ω) for each i = 1, . . . , k. We say Ĉ0,k is extendable if there
exists â′k+1 ∈ Âk+1 for which the cell

Ĉ0,k+1 := ({0, â′1 − â1}, . . . , {0, â′k+1 − âk+1})

is a lower face of (B̂1(ω), . . . , B̂k+1(ω)). And the corresponding lower face
Ĉk = ({â1, â′1}, . . . , {âk, â′k}) of (Â1, . . . , Âk) is said to be extended to a lower
face Ĉk+1 = ({â1, â′1}, . . . , {âk+1, â′k+1}) of (Â1, . . . , Âk+1). Obviously, when
k = n−1, an extendable cell Ĉ0,k yields fine mixed cells in Sω with its extended
cells (possibly several). Thus, our search procedure will mainly concentrate
on the possibility of extending all the one-dimensional lower faces of B̂1(ω) of
the type conv ({0, â′1 − â1}), step by step, to k = n, so that the cell

Ĉ0,n = ({0, â′1 − â1}, . . . , {0, â′n − ân})

for certain (â′1, . . . , â
′
n) ∈ (Â1(ω), . . . , Ân(ω)) becomes a lower facet of conv (B̂(ω))

and a fine mixed cell

Cn = ({a1,a′1}, . . . , {an,a′n})

of Sω is thus obtained.
When A1 has more than n points, namely, m1 > n, then one-dimensional

lower faces of B̂1(ω) of the type conv ({0, â′1 − â1}) are available when lower
facets of B̂1(ω) with vertex 0 are found by applying Algorithm 3 to B̂1(ω). If
m1 ≤ n, we will start our extension procedure from each edge conv ({0, â1j −
â1}) for j = 1, . . . , m1 with a1j 6= a1.

Now, for k ≥ 1, for the extendability of the cell

Ĉ0,k = ({0, â′1 − â1}, . . . , {0, â′k − âk}),

consider the linear optimization problem

min ε

−ε ≤ 0,

〈ai − a′i, α〉 = ωi(a′i)− ωi(ai), i = 1, . . . , k,

〈ai − ai,j , α〉 − ε ≤ ωi(ai,j)− ωi(ai),

j = 1, . . . , mi,ai,j 6= ai, i = 1, . . . , k,

〈ak+1 − ak+1,j , α〉 − ε ≤ ωk+1(ak+1,j)− ωk+1(ak+1),

j = 1, . . . , mk+1,ak+1,j 6= ak+1.

(10)

Mixed Volume Computation via Linear Programming 615

It is clear that an optimal solution of (10) with ε = 0 corresponds to a lower
facet of (B̂1(ω), . . . , B̂k+1(ω)) which includes Ĉ0,k as its face. And among those
lower facets corresponding to 0 optimal solutions only those which possess an
active constraint ak+1 − ak+1,j for certain j = 1, . . . , mk+1 contain cells

Ĉ0,k+1 = ({0, â′1 − â1}, . . . , {0, âk+1,j − âk+1})

as extended cells of Ĉ0,k in (B̂1(ω), . . . , B̂k+1(ω)).
To solve (10), we may eliminate k variables of α by using the first k equality

constraints and use Algorithm 3 in the last section on the resulting linear
optimization problem instead. If none of the 0 optimal solutions found by the
algorithm contains active constraint ak+1− ak+1,j for certain j = 1, . . . , mk+1

with ak+1 6= ak+1,j , then the cell Ĉ0,k will be considered nonextendable. And,
when Ĉ0,k is extendable, we continue our extension attempt from each of the
extended cells Ĉ0,k+1 until a fine mixed cell in Sω is produced.

Algorithm 4. Given A = (A1, . . . ,An), Ai = {ai,1, . . . ,ai,mi}, mi ≥ 2,
i = 1, . . . , n, find all fine mixed cells in Sω.

Step 0. Use a random lifting ω to lift A to Â(ω).

Step 1. Find all the lower edges {â1, â′1} of conv (Â1(ω)). Store all these
edges {a1,a′1} in C1. Let k = 1. Go to Step 2.

Step 2. Pick a cell Ck from Ck, say,

Ck = ({a1,a′1}, . . . , {ak,a′k}).

Define
B̂i(ω) = {âi,j − âi | j = 1, . . . ,mi}, i = 1, . . . , k.

Go to Step 2.1.

Step 2.1. For each point ak+1 ∈ Ak+1\{ak+1,mk+1
}, define

B̂k+1(ω) = {âk+1,j − âk+1 | j = 1, . . . , mk+1}.

Extend Ĉk to all possible lower faces Ĉk+1 = ({â1, â′1}, . . . , {âk+1,
â′k+1}) of (Â1(ω), . . . , Âk+1(ω)) by applying Algorithm 3 to the
optimization problem in (10) to find all possible lower facets of
(B̂1(ω), . . . , B̂k+1(ω)) containing the cell Ĉ0,k = ({0, â′1−â1}, . . . , {0, â′k−
âk}). When the dimension of the polytope conv (B̂1(ω)) + · · · +
conv (B̂k+1(ω)) is less than n, find the largest lower face of (B̂1(ω), . . . , B̂k+1(ω))
containing the cell Ĉ0,k. Store these new lower faces Ck+1 found in
Ck+1. Go to Step 2.2.

616 Tangan Gao and T. Y. Li

Step 2.2. Delete the cell Ck from Ck. If k + 1 = n, go to Step 2.3. If
Ck+1 6= ∅, then let k := k + 1 and go to Step 2. Otherwise, go to
Step 2.3.

Step 2.3. Find the largest index i with 1 ≤ i ≤ k such that Ci is not
empty. If no such i exists, then all fine mixed cells in the fine mixed
subdivision Sω of A induced by the lifting ω have been found and
stored in Cn, stop. Otherwise, let k = i, and go to Step 2.

Remark 1. There are several strategies we may use in Step 2.1 to speed
up the computation. Here, we list several most important ones.

1. When the algorithm moves from Step 2.2 directly to Step 2, the points in
Âk(ω) which never appear in Ck should not be used to form constraints
in (10) in Step 2.1 since these points never enter the lower faces when
we intend to extend Ĉk.

2. Since elimination of variables is used in every extension attempt, the
elimination result from previous steps should be carried over to the cur-
rent step.

3. When extending a cell Ĉk in Ck to all possible lower faces Ĉk+1 of
(Â1(ω), . . . , Âk+1(ω)) which contains âk+1 ∈ Âk+1(ω) in Step 2.1, and
when a lower facet of (B̂1(ω), . . . , B̂k+1(ω)) containing an edge {0, â′k+1−
âk+1} with â′k+1 ∈ Âk+1(ω) is identified, then J and D−1 associated with
the optimal solution should be stored if the extension attempt of Ĉk to
lower faces Ĉk+1 of (Â1(ω), . . . , Âk+1(ω)) which contain â′k+1 has not
been performed. So, when we intend to extend Ĉk to lower faces Ĉk+1

which contain â′k+1, the first lower facet of (B̂1(ω), . . . , B̂k+1(ω)) with

B̂k+1(ω) = {âk+1,j − â′k+1 | j = 1, . . . , mk+1}

is available from J and D−1 in storage. Thus, the calculation of Step 1
of Algorithm 3 becomes unnecessary.

5. THE COMPUTATION OF THE MIXED VOLUMES AND NUMERICAL RESULTS

As mentioned in Section 1, it is known [7, 9] that the mixed volume of the
support A = (A1, . . . ,An) can be computed by the summation of the volumes
of all fine mixed cells in the fine mixed subdivision Sω induced by a generic
lifting ω = (ω1, . . . , ωn) on A. Let C = ({a1,a′1}, . . . , {an,a′n}) be such a fine
mixed cells in Sω. Then, since

dim(C) = dim(conv {a1,a′1}+ · · ·+ conv {an,a′n}) = n,

Mixed Volume Computation via Linear Programming 617

it follows that the set of vectors

{a′1 − a1, . . . ,a′n − an}
is linearly independent. Hence,

Vol (C) = Vol (conv {a1,a′1}+ · · ·+ conv {an,a′n})

=

∣∣∣∣∣∣∣
det

a′1 − a1
...

a′n − an

∣∣∣∣∣∣∣
.

(11)

Therefore, when all the fine mixed cells in Sω are obtained by Algorithm 4 in
the last section, the sum of the volumes of those cells computed in (11) gives
the mixed volume of A = (A1, . . . ,An).

Our algorithm has been successfully implemented in Fortran 77 and tested
on a large variety of polynomial systems, and the numerical results we obtained
clearly indicate our method has made a great progress in promoting the speed
of computation of the mixed volume. Here, we elect to present our results
on the widely considered benchmark system, the cyclic-n root problem [3]:
P (x) = (p1(x), . . . , pn(x)), x = (x1, . . . ,xn), where

p1(x) = x1 + x2 + · · ·+ xn,

p2(x) = x1x2 + x2x3 + · · ·+ xn−1xn,

· · · · · ·
pn(x) = x1x2 · · ·xn − 1.

System Mixed Volume CPU time

Cyclic-8 2560 20s

Cyclic-9 11016 4m 10s

Cyclic-10 35940 46m 25s

Cyclic-11 184756 11h 14m 55s

The computations were carried out on a SPARCsever-1000 (50 MHz, 256M
RAM). As a reference, we also list some results of CPU time computed on the
same machine by the publicly available codes MVLP [4, 5] and PHC [16]:

618 Tangan Gao and T. Y. Li

System MVLP PHC

Cyclic-8 4m 35s 6m 57s

Cyclic-9 48m 44s 1h 37m 43s

Cyclic-10 6h 5m 34s 21h 23m 26s

APPENDIX

Proposition 1. For any two vertices α′ and α′′ of the polyhedron H
defined by the half spaces in Rn:

〈ai, α〉 ≤ bi, i = 1, . . . ,m,

there exists a chain of vertices α(1), . . . , α(k) of H with α(1) = α′ and α(k) = α′′

and each line segment conv (α(i), α(i+1)), i = 1, . . . , k − 1, is an edge of H.

Proof. Let α(1) = α′. Without loss of generality, we assume both α(1) and
α′′ are nondegenerate and

Act (α(1)) ∩Act (α′′) = {a1, . . . ,aj}, 0 ≤ j < n.

We claim that

Lemma 4. There exist vertices α(2), . . . , α(s) of H such that for each
i = 1, . . . , s− 1, conv (α(i), α(i+1)) is an edge of H and α(s) and α′′ share j +1
common active constraints.

By applying this lemma repeatedly, the assertion of the proposition is
obvious.

Proof of the Lemma. Let Act (α(1)) = {a1, . . . ,aj , a′j+1, . . . , a′n} and
Act (α′′) = {a1, . . . ,aj , a′′j+1, . . . ,a

′′
n} with DT = [a1, . . . ,aj ,a′j+1, . . . ,a

′
n] and

D−1 = [c1, . . . , cn]. Let P be the polyhedron defined by

〈ai, α〉 = bi for 1 ≤ i ≤ j

and
〈a′′i , α〉 ≤ b′′i for j + 1 ≤ i ≤ n.

Mixed Volume Computation via Linear Programming 619

Let H1 = P ∩ H. Clearly, α(1) is a relative interior point of P. Moreover, a
vertex of H1 is automatically a vertex of H. Now, since both α(1) and α′′ are
vertices of H1, there must exist j + 1 ≤ l ≤ n such that

〈ai, cl〉 < 0 for certain j < i ≤ m;

otherwise, α(1) would be the only vertex of H1. This means that the active
constraint a′l of α(1) may be replaced by a constraint ai0 with i0 > j to reach
a new vertex ᾱ of H1 with conv (α(1), ᾱ) being an edge of H as we described
in Section 2. The vertex ᾱ may share j + 1 common active constraints with
α′′, namely, ai0 = a′′t for certain j + 1 ≤ t ≤ n. In that case, we let α(2) = ᾱ
and the conclusion of the lemma is reached with s = 2. Otherwise, let

B = {ᾱ | ᾱ vertex of H1 and ᾱ and α(1) have n− 1 common
active constraints, i.e., conv (ᾱ, α(1)) is an edge of H}.

This set represents all the vertices of H1 that can be reached by applying
one step of pivoting on α(1) as described in Section 2. Now, let α(2) be the
vertex of H1 in B for which

|α(2) − α′′| = min
ᾱ∈B

|ᾱ− α′′|.

Obviously, α(2) is a relative interior point of P. We may repeat the same
argument on α(2) and so on. This will eventually lead to a sequence of vertices
of H1,

α(2), . . . , α(s),

where conv (α(i), α(i+1)) are edges of H for all 1 ≤ i ≤ s− 1 and α(s) reaches
the relative boundary of P. Namely, α(s) and α′′ share j + 1 common active
constraints.

REFERENCES

1. D. N. Bernshtein, The number of roots of a system of equations, Funct. Anal.
Appl. 9 (1975), 183-185.

2. M. J. Best and K. Ritter, Linear Programming: Active Set Analysis and Com-
puter Programs, Prentice-Hall, New Jersey, 1985.

3. G. Björck and R. Fröberg, A faster way to count the solutions of inhomogeneous
systems of algebraic equations, with applications to cyclic n-roots, J. Symbolic
Comput. 12 (1991), 329-336.

620 Tangan Gao and T. Y. Li

4. I. Z. Emiris and J. F. Canny, A practical method for the sparse resultant, in:
Proceedings of the 1993 International Symposium on Symbolic and Algebraic
Computation, ACM, 1993, pp. 183-192.

5. I. Z. Emiris and J. F. Canny, Efficient incremental algorithms for the sparse
resultant and the mixed volume, J. Symbolic Comput. 20 (1995), 117-149.

6. T. Gao, T. Y. Li and X. Wang, Finding all isolated zeros of polynomial systems
in Cn via stable mixed volume, J. Symbolic Comput. 28 (1999), 187-211.

7. B. Huber and B. Sturmfels, A polyhedral method for solving sparse polynomial
systems, Math. Comp. 64 (1995), 1541-1555.

8. B. Huber and B. Sturmfels, Bernshtein’s theorem in affine space, Discrete Com-
put. Geom. 17 (1997), 137-141.

9. T. Y. Li, Numerical solution of multivariate polynomial systems by homotopy
continuation methods, in: Acta Numerica, Cambridge Univ. Press, Cambridge,
1997, pp. 399-436.

10. T. Y. Li, Solving polynomial systems by polyhedral homotopies, Taiwanese J.
Math. 3 (1999), 251-279.

11. T. Y. Li and X. Wang, The BKK root count in Cn, Math. Comp. 65 (1997),
1477-1484.

12. J. M. Rojas, A convex geometric approach to counting the roots of a polynomial
system, Theoret. Comput. Sci. 133 (1994), 105-140.

13. J. M. Rojas, Toric intersection theory for affine root counting, J. Pure Appl.
Algebra 136 (1999), 67-100.

14. J. M. Rojas and X. Wang, Counting affine roots of polynomial systems via
pointed Newton polytopes, J. Complexity 12 (1996), 116-133.

15. J. Verschelde, Homotopy Continuation Methods for Solving Polynomial Sys-
tems, Ph.D. thesis, Department of Computer Science, Katholieke Universiteit
Leuven (Leuven, Belgium), 1996.

16. J. Verschelde, HCPACK: A general-purpose solver for polynomial systems by
homotopy continuation, ACM Trans. Math. Software 25 (1999), 251-276.

Tangan Gao
Department of Mathematics, California State University
Long Beach, CA 90840, U.S.A.

T. Y. Li
Department of Mathematics, Michigan State University
East Lansing, MI 48824, U.S.A.

