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A SURVEY OF THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS

Benôıt Desjardins and Chi-Kun Lin

Abstract. This paper presents mathematical properties of solutions
to the Navier-Stokes equations for compressible fluids. We first review
existence results for the Cauchy problem, and describe some regularity
properties of solutions in the presence of possibly vanishing densities.
Finally, we address the problem of the low Mach number limit leading to
incompressible models.

1. Introduction

Let us consider a gas of density ρ ≥ 0, temperature T , velocity field u,
pressure p(ρ, T ), internal energy density e(ρ, T ) and entropy density s(ρ, T )
contained in a domain Ω, which denotes either a bounded, unbounded, or
periodic domain of RN (N ≥ 1). The compressible isentropic Navier-Stokes
equations in D′(R+ × Ω) read as follows

∂tρ + div (ρu) = 0,(1.1)

∂t(ρu) + div (ρu⊗ u) = ρf + div Σ,(1.2)

∂t

(
ρ
(
e +

|u|2
2

))
+div

(
ρu

(
e +

|u|2
2

))
= ρu · f+div (Σ ·u+k∇T ),(1.3)

where Σ = 2µD(u)+(λ(div u)− p) I is the internal stress tensor, f the external
forces and k ≥ 0 the thermal conduction parameter. The viscosity coefficients
λ, µ are assumed to satisfy µ > 0 and λ + 2µ > 0 which in particular covers
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the case of Stokes law Nλ + 2µ = 0. The strain tensor D(u) is defined as the
symmetric part of the gradient of the velocity u:

D(u) =
1
2
(∇u +t ∇u).

When Ω is a domain of RN , we enforce the boundary conditions u|∂Ω = 0
and ∂T

∂n |∂Ω
= 0. Even though similar results are available for more general

state laws, we will focus in the sequel on the ideal gas case corresponding
to e = CvT , p = ρRT for some constants Cv > 0, R > 0, and define γ =
1+R/Cv. Then, equation (1.3) can be replaced by an equation on the entropy
s = Cv log(T/ργ−1):

∂t(ρs) + div (ρus)

= div
(

k
∇T

T

)
+ k

|∇T |2
T 2

+
2µD(u) : D(u) + λ(div u)2

T
.

(1.4)

Here A : B denotes the matrix product,

A : B ≡ tr(AtB) =
∑

i,j

aijbij .

Finally, the above system (1.1) (1.2) (1.4) is supplemented with initial condi-
tions

ρ|t=0 = ρ0 ≥ 0, ρu|t=0 = m0, and ρs|t=0 = S0.

A particular model which was studied by many authors over the past few
years is the so-called barotropic (p only depends on ρ) or isentropic model,
obtained by assuming that the volumetric entropy s remains constant as the
time evolves. This simplification consists first in neglecting the quadratic term
involving the velocity u at the right-hand side of (1.4), and setting k = 0, so
that the entropy is purely transported by the fluid

∂t(ρs) + div (ρus) = 0,(1.5)

and assuming next that the initial entropy s0 = S0/ρ0 is constant. The system
(1.1) (1.2) then reduces to

∂tρ + div (ρu) = 0,(1.1)

∂t(ρu) + div (ρu⊗ u) = µ∆u +∇(ξdiv u)−∇p(ρ) + ρf,(1.6)

where ξ = λ + µ and p(ρ) = aργ for some positive constant a. Because the
above compressible model is of mixed type, parabolic in u and essentially
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hyperbolic in ρ, most of the global-in-time existence results restrict to initial
data close to equilibrium, which means that ρ0 and T0 are taken close to some
positive constants ρ̄ and T̄ , and u0 chosen small enough. This allows to derive
global-in-time positive lower bounds for the density and parabolic estimates
for the velocity u. The one-dimensional problem was addressed in the late ’70s
by Kazhikhov and Shelukhin [19] for smooth enough data, and in the mid ’80s
by Serre [40] [41] and Hoff [13] for discontinuous initial data, but still bounded
away from zero. A similar approach for the multidimensional problem (1.1)
(1.2) (1.3) was given in the early ’80s by Matsumura and Nishida [34] [35],
who proved global existence of smooth solutions for data close to equilibrium,
and later by Hoff in the ’90s for discontinuous initial data [14] [15] [16]. As
far as existence issues are concerned, the major breakthrough is due to P.L.
Lions [28] [29] [31] in 1993. The only restriction on initial data is that the
initial energy is finite, so that the density is allowed to vanish. He obtains
global existence of weak solutions - defined as solutions with finite energy -
when the exponent γ is large enough. However, this theorem only applies to
the isentropic case (1.1) (1.6), or to the slightly more general model (1.1) (1.2)
(1.5) consisting in a pure transport of entropy. Indeed, the existence of global
weak solutions to the full Navier-Stokes equations (1.1) (1.2) (1.3) is still open.

The regularity and uniqueness of solutions is also an important issue, when
no smallness assumption is made on the initial data. In the isentropic case,
the local-in-time problem was first analyzed by Solonnikov in the mid ’70s
[42]. The question whether the formation of vacuum in some regions, and
whether concentration phenomena on the density play a role in the formation
of singularity is still widely open. In some two-dimensional simplified models,
global well-posedness results are available since the work of Kazhikhov [20] [21].
However, a very interesting spherically symmetric counterexample by Weigant
[46] gives some evidence for blow-up of smooth solutions in finite time in any
dimension, at least if nonzero external forces are considered. Without external
forcing, the long time behavior of smooth solutions is an open problem. In
dimension two, partial results obtained by Desjardins in [6] show that the
maximal norm of the density controls the breakdown of weak solutions, even
if vacuum forms in the fluid. In a recent paper [47], Xin considers the full
Navier-Stokes equations (1.1) (1.2) (1.3) and proves that in general, local
smooth solutions with compactly supported densities do not persist for all
times, which gives an additional evidence for finite time blow-up.

As usual in fluid mechanics problems, a dimensional analysis on the phys-
ical quantities in the Navier-Stokes equations gives rise to dimensionless pa-
rameters such as the Mach number, Reynolds number, Prandlt number, Peclet
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number, etc. One of the fundamental questions of fluid dynamics (e.g. the
Navier-Stokes equations and the Euler’s equations) is that of dependence on
the physical parameters. Typically, problems in this class involve a singular
limit as such a parameter tends to some value. The incompressible limit of
the compressible Navier-Stokes equations is a physical problem involving dis-
sipation when such a singular limiting process is interesting. Here are two of
the most important questions of this nature:

(a) Are the incompressible equations the limit of the slightly compressible
equations?

(b) Are the Euler’s equations the inviscid limit of the Navier-Stokes equa-
tions?

The first problem is a classical one: for inviscid flow, it was addressed in the
early ’80s by Klainerman–Majda [22] [23] and Ebin [9], later by Ukai [44] and
recently by Beirao da Veiga [1] [2] [3] for both inviscid and viscous flows; these
authors were working with classical (smooth) – and therefore local-in-time –
solutions. For viscous flows, the incompressible Navier-Stokes equations have
global weak solutions constructed by Leray in 1934; generically it remains
unknown whether a Leray solution remains regular or is unique. Therefore,
the methods used by Klainerman, Majda, Ebin, Ukai and Beirao da Veiga
do not apply in such cases. Quite recently, P. L. Lions [28] announced the
global existence of weak solutions to the isentropic compressible Navier-Stokes
equations and its incompressible limit [29] [32] in 1993. The rigorous proof of
the barotropic compressible Navier-Stokes equation (time discreted case) and
its incompressible limit is given by C.-K. Lin [25].

Besides including the molecular viscosity self-consistently, the role of en-
tropy in an ideal fluid was also considered by C.-K. Lin in 1997 [26] [27]
and recently by P. L. Lions [32] and B. Desjardins and C.-K. Lin [7]. For
inviscid fluid it had been studied by Schochet in 1986 [37]. With the inclu-
sion of entropy it is found that two distinct routes to incompressibility are
possible, distinguished according to the relative magnitudes of the entropy
fluctuation. This leads to two distinct models for pure transport of entropy,
nearly incompressible polytropic compressible Navier-Stokes equations. When
entropy variations are extremely small the low Mach number limit of the com-
pressible model is the incompressible Navier-Stokes equations. However, when
entropy variations are large, the singular limit system for the compressible
Navier-Stokes equations as the Mach number vanishes is the nonhomogeneous
Navier-Stokes equations.

Regarding to the second question for the incompressible model in the ab-
sence of boundaries, the answer is yes for short times (Kato, 1972 [17]) or at
least as long as the Euler solution is smooth (Constantin, 1986; Constantin
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and Foias 1988 [4]). In the presence of boundaries the answer is not clear, be-
cause of discrepancies in the boundary behavior – boundary layers – (see the
work of Kato [18] and recent progress by Grenier [11]). The central problem
of describing the inviscid limit is open in this case for both incompressible and
compressible models.

2. Existence of Solutions

As emphasized by many authors working on compressible fluid mechanics,
vacuum is a major difficulty as far as existence of strong solutions for the
Navier-Stokes equations is concerned. One way to avoid possibly vanishing
densities is to consider an initial density close enough to a positive constant ρ̄,
an initial temperature close enough to a positive reference temperature T̄ and
a small enough initial velocity field. In that case, global existence results can
be derived for the full Navier-Stokes equations (1.1) (1.2) (1.3) since positive
lower bounds on the density persist for all time. Moreover, uniqueness results
can be obtained as long as enough regularity is assumed on the data. The one
dimensional problem was first analyzed by Kazhikhov and Shelukhin [19] at
the end of the ’70s and the case N ≥ 2 by Matsumura and Nishida [34] [35],
Valli and Zajaczkowski [45] in the ’80s. One way to weaken the assumptions on
the data is to allow discontinuous initial conditions, which is very important
in the physical theory of nonequilibrium thermodynamics as well as in the
mathematical theory of inviscid models for compressible fluids. This question
has been studied by Serre [40] [41] in the one-dimensional case, and Hoff [14]
[15] [16] for N ≥ 2. In [14], Hoff explains why the effective viscous flux defined
by F = (λ + 2µ)div u − p(ρ, T ) + p(ρ̄, T̄ ) and the vorticity ∇ × u play a
crucial role in the derivation of a priori bounds, since these two quantities
gain some Sobolev regularity. Moreover, the effective viscous flux F reveals
the underlying hyperbolic effect on the density, since global L∞ bounds on
ρ are obtained writing an evolution equation on ρ in terms of F . However,
global existence of weak solutions for the full Navier-Stokes equations remains
open for large initial conditions.

Another way to allow more general data has been investigated by Kazhikh-
ov [20] [21], who considers barotropic simplified models at low Reynolds num-
bers, such as the potential flow or the Stokes approximation. In these two
cases as well as in the case when the viscosity coefficient λ is a suitably in-
creasing function of the density, he obtains global existence and uniqueness of
strong solutions in dimension N = 2 without assuming that the data are close
to equilibrium, but still for initial density bounded away from zero.

For the N -dimensional system (N ≥ 2), the most natural functional spaces
for the Cauchy problem are the energy spaces, which do not require positive
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lower bounds on the density. In the case of barotropic fluids (1.1) (1.6) with a
γ-type pressure law (γ > 1) and when the external forces f vanish, the energy
estimate reads as

∫

Ω

(
1
2
ρ|u|2 +

aργ

γ − 1

)
(t)+

∫ t

0
ds

∫

Ω

(
µ|∇u|2 + ξ(div u)2

)

≤
∫

Ω

(
|m0|2
2ρ0

+
aργ

0

γ − 1

)
.

(2.1)

Following the methodology of Leray, weak solutions can be defined as finite
energy solutions, namely, ρ ∈ L∞(0, T ;Lγ(Ω)),

√
ρu ∈ L∞(0, T ;L2(Ω))N , and

u ∈ L2(0, T ; H1
0 (Ω))N . Assuming that the initial data satisfy

ρ0 ∈ L1(Ω) ∩ Lγ(Ω), ρ0 ≥ 0, m0 ∈ L
2γ

γ+1 (Ω)N and |m0|2/ρ0 ∈ L1(Ω),

Lions proved in 1993 [28] [31] a global existence and stability theorem for weak
solutions (ρ,u). Here, we agree that

|m0|2/ρ0 = 0 on {x ∈ Ω : ρ0(x) = 0} .

Assuming in addition that γ is large enough: γ ≥ 3/2 if N = 2, γ ≥ 9/5 if
N = 3, γ > N/2 if N ≥ 4, he proved

Theorem 1. There exists (ρ,u) ∈ L∞(0,∞;Lγ(Ω))× L2(0,∞; H1
0 (Ω))N

solution of (1.1) (1.6) satisfying in addition: ρ ∈ C([0,∞);Lp(Ω)) if 1 ≤ p < γ,
ρ|u|2 ∈ L∞(0,∞; L1(Ω)), ρ ∈ Lq

loc([0,∞);Lq(Ω)) for 1 ≤ q ≤ γ − 1 + 2γ/N .
Moreover, the energy inequality holds for almost all t ≥ 0.

Let us point out the gain of Lp regularity for t > 0 on the density, although
the system has hyperbolic features in ρ. Notice also that the same result
holds with an external force f which is integrable enough in space and time.
Moreover, the more general model given by (1.1) (1.2) and the pure transport
of entropy (1.5) can also be handled under the same restrictions on γ as soon
as the initial entropy S0 satisfies S0/ρ0 ∈ L∞(Ω). However, such a result for
the full Navier-Stokes problem (1.1) (1.2) (1.3) seems very difficult to handle,
since the energy bounds are not sufficient to define a reasonable notion of
weak solutions. Moreover, the range of γ for which Theorem 1 holds does
not cover the physically interesting cases γ = 5/3 and γ = 7/5 corresponding
respectively to monoatomic and diatomic gases in dimension N = 3. Notice
however that in the stationary case, as well as in the case of time-discretized
models, where all the quantities derived with respect to time are replaced
by their finite difference approximations, existence of solutions for barotropic
models are proven [31] for γ > 5/3 in dimension N = 3 and γ > N/2 when
N 6= 3.
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3. Regularity Problems

We want now to focus on the regularity problem for the barotropic Navier-
Stokes equations without smallness assumptions on the data. Starting from
initial densities that have positive lower bounds, local existence of smooth
solutions can be proven by classical means, since lower bounds on the density
persist for small enough time. Considering suitably smooth initial density
and velocity, Solonnikov proved in 1976 [42] a local existence and uniqueness
theorem in any space dimension N ≥ 1. For C2 pressure laws, a given q > N ,
external forces f ∈ Lq((0, T ) × Ω)N for all T < +∞, and initial data (ρ0,u0)
satisfying 0 < m ≤ ρ0 ≤ M < +∞, ρ0 ∈ W 1,q(Ω) and u0 ∈ W

2−2/q,q
0 (Ω)N , he

proved

Theorem 2. There exists a positive time T0 ∈ (0,∞] and a unique solution
(ρ,u) on [0, T0) of (1.1) (1.6) such that for all t ∈ [0, T0), the density at
time t is also bounded and bounded away from zero and for all T < T0, ρ ∈
L∞(0, T ; W 1,q(Ω)), ∂tρ ∈ Lq((0, T ) × Ω), 0 < m(t) ≤ ρ(t, .) ≤ M(t) < +∞,
u ∈ Lq(0, T ; W 2,q

0 (Ω))N , and ∂tu ∈ Lq((0, T )× Ω)N .

In [46], Weigant exhibits a counterexample with spherical symmetry: for
γ ∈ [1, N

N−1) and all q > N , there exist initial data (ρ0,u0) and external forces
f satisfying the assumptions of Theorem 2 such that for some T∗ < +∞, the
unique local smooth solution (ρ,u) blows up in L∞ norm

lim
t→T−∗

|ρ(t, .)|L∞(TN ) = +∞.

The natural question is then to ask whether vacuum plays a role in the forma-
tion of singularities. Moreover, it can be asked conversely whether solutions
remain smooth if the density ρ has L∞ bounds. These two questions have
been investigated by Desjardins in [6] in the bounded two-dimensional case.
When γ > 1, it turns out that the maximun norm of the density |ρ(t, .)|L∞
controls the breakdown of local solutions. In other words, as long as ρ is
bounded in L∞((0, T0) × Ω), the solutions keep some smoothness expressed
in terms of the effective viscous flux F and vorticity ∇ × u, no matter how
much vacuum appears when the time evolves. Hence, vacuum does not yield
additional singularities in two dimensions.

Let us emphasize that the counterexample by Weigant holds in the range
γ ∈ [3/2, 2) in dimension N = 2 for which weak solutions are known to exist
for all time in view of Theorem 1. The question whether there exists a critical
exponent q∗ > 2γ − 1 such that ρ blows up in Lq∗ norm is a very challenging
open problem in the two-dimensional case.
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Finally, let us mention recent progress due to Xin [47], who gives sufficient
conditions on the blow-up of smooth solutions to the full Navier-Stokes equa-
tions with initial density of compact support. As a consequence of this result,
he proves that in the absence of heat conduction (k = 0), solutions will blow
up in finite time as soon as the initial density has compact support.

4. Singular Limits

We will now focus on the incompressible limit problem in this section. For
a discussion on the physical motivations and on the mathematical setup, the
reader is referred to [22] [23] [32] [33] and references therein. The question of
the incompressible limit in fluid dynamics has received considerable attention.
Some fundamental facts on this problem have been established by Klainerman
and Majda in [22] [23] (see also [33]). The basic result, which has been proven
in various contexts, is that slightly compressible fluid flows are close to incom-
pressible flows even though the equations for the latter are related to those
for the former via a singular limit. This justifies the use of the incompressible
flow equations for certain real fluids that are actually slightly compressible (see
[22] [23] [33] etc.). In particular, Klainerman and Majda ([22] [23]) studied the
convergence of classical solutions of the compressible fluid equations to their
incompressible limit as the Mach number becomes small. However, to insure
that the solution is close to a solution of the incompressible equation, one
has to prepare the initial data. The principle is the initialization one chooses
the initial data so that a certain number of time derivatives at t = 0 remains
bounded independently of the compressibility.

In two dimensions and under periodic boundary conditions, the solution of
the incompressible Navier-Stokes equations is known to remain smooth for all
time. Hagstrom and Lorenz [12] showed a similar result in T2 for the isentropic
compressible Navier-Stokes equations if the Mach number is sufficiently small
and the initial data are almost incompressible. It is not assumed that the
initial data are small and the solution, to the leading order, consists of the
corresponding incompressible flow plus a highly oscillatory part describing the
acoustic waves.

For the ill-prepared case, the presence of rapidly oscillating waves makes
the passage to the limit in the nonlinear term ρεuε ⊗ uε rather difficult. The
inviscid model was studied by Ukai [44] in the whole space. In the case of
the Navier-Stokes equations, due to the lack of a priori estimates of the global
weak solutions the limiting process for the pressure is much more involved and
the oscillations on the initial data generate an additional pressure term at the
incompressible limit (which may be called eddy pressure term). Adapting the
method introduced by Schochet [37] and Grenier [10], P. L. Lions proved in [29]
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and [32] that when the density becomes constant and the Mach number goes
to zero the global weak solutions built in [28] [31] tend to the Leray-Hopf’s
global weak solutions of the incompressible Navier-Stokes equations. Various
asymptotic results concerning the global weak solutions of the compressible
isentropic Navier-Stokes equations are also obtained (see [29] and [32]).

The compressible isentropic Navier-Stokes equations in appropriate nondi-
mensional form are defined by the equations:

∂tρε + div (ρεuε) = 0 ,(4.1)

∂t(ρεuε) + div (ρεuε ⊗ uε) +
a

ε2
∇ργ

ε = µε∆uε + ξε∇div uε,(4.2)

(ρε, ρεuε)|t=0 = (ρ0
ε ,m

0
ε ), ρ0

ε ≥ 0.(4.3)

On the other hand, the incompressible Navier-Stokes equations describing
the evolution of the velocity field u = u(x, t) of an ideal fluid over a given
domain Ω in RN are given by

∂tu + div (u⊗ u)− µ∆u +∇π = 0, div u = 0, u|t=0 = u0(x).(4.4)

J. Leray published in 1934 his famous result establishing the existence of global
weak solutions of (4.4) for arbitrary initial data with finite energy. It is not
known if the initial data determine the Leray solutions uniquely. Thus, dif-
ferent constructive process procedure might conceivably lead to different so-
lutions. The basic property of these weak solutions is that they satisfy the
energy inequality

∫

Ω

1
2
|u|2(t) +

∫ t

0
ds

∫

Ω
µ|∇u|2 ≤

∫

Ω

1
2
|u0|2 .(4.5)

Let us consider a sequence of solutions (ρε,uε) of the compressible Navier-
Stokes equations (4.1) (4.2) (4.3) with periodic boundary conditions and as-
sume that

ρε ∈ L∞(0,∞;Lγ(TN )) ∧ C(0,∞; Lp(TN )), ∀1 ≤ p ≤ γ,

uε ∈ L2(0,∞; H1(TN ))N , ρε|uε|2 ∈ L∞(0,∞; L1(TN )),
(4.6)

and

ρεuε ∈ C([0,∞);L2γ/(γ+1)(TN )− w)N ,(4.7)

i.e., pεuε is continuous with respect to t ≥ 0 with values in L2γ/(γ+1)(TN )
endowed with the weak topology. To obtain the incompressible limit the initial
data are required to satisfy

ρ0
ε ∈ Lγ(TN ), m0

ε ∈ L2γ/(γ+1)(TN ), ρ0|u0
ε |2 ∈ L1(TN ),

m0
ε = 0 a.e. on {ρ0

ε = 0} and u0
ε = 0 a.e. on {ρ0

ε = 0}.
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Furthermore, let us assume that
√

ρ0
εu

0
ε converges weakly in L2(TN ) to some

ũ0 and
∫

TN
ρ0

ε |u0
ε |2 +

1
ε2

∫

TN

(
(ρ0

ε )
γ − γρ0

ε (ρ̄ε)γ−1 + (γ − 1)(ρ̄ε)γ
)
≤ C,(4.8)

where
ρ̄ε =

1
(2π)N

∫

TN
ρ0

ε → 1 .

Under the above assumptions, P.L. Lions proved in 1993 [29] and 1998 [32]
the following convergence result concerning the incompressible limit of the
Navier-Stokes equations.

Theorem 3. Assume γ > N
2 . Then ρε converges to 1 in C([0, T ];Lγ)

and uε is bounded in L2(0, T ; H1) for all T ∈ (0,∞). In addition, for any
subsequence of uε (still denoted by uε) weakly converging in L2(0, T ;H1) (∀T ∈
(0,∞)) to some u, u is a solution of the incompressible Navier-Stokes equation
corresponding to the initial condition u0 = P ũ0, where P is the orthogonal
projection onto incompressible vector fields.

Notice that similar results hold in the whole space case and in bounded
domains if the boundary conditions are slightly modified [32]. Indeed, the
same analysis cannot be carried out for Dirichlet boundary conditions. Let us
also observe that Theorem 3 assumes the existence of global weak solutions
to the Navier-Stokes equations, which is provided by Theorem 2, at least for
large enough γ.

In many respects, Lions’ global existence theory of the isentropic com-
pressible Navier-Stokes equations is analogous to the Leray’s theory for the
incompressible Navier-Stokes equations. This theorem shows how the Leray
solutions can be understood as an appropriate singular limit (incompressible
limit) of a sequence of Lions’ solutions.

Majda [33] has drawn attention to the importance of understanding both
viscous hydrodynamics and the effects of thermal conduction in the nearly
incompressible limit. P.L. Lions also proved in [31] the more general model
given by (1.1) (1.2) and the pure transport of entropy (1.5) under the same
restrictions on γ, as soon as the initial entropy S0 satisfies S0/ρ0 ∈ L∞(Ω).

Let us then consider the following system of nondimensional equation in a
periodic domain TN :

∂tρε + div (ρεuε) = 0 , ∂t(ρεaε) + div (ρεaεuε) = 0 ,(4.9)
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∂t(ρεuε) + div (ρεuε ⊗ uε) +
1
ε2
∇(ρεaε)γ = µε∆uε + ξε∇div uε,(4.10)

(ρε, ρεaε, ρεuε)|t=0 = (ρ0
ε , ρ

0
εa

0
ε ,m

0
ε ),

ρ0
ε ≥ 0, 0< amin ≤ a0

ε ≤ amax < +∞.
(4.11)

In addition, we assume that the viscosity coefficients ξε = 0,uε = u is a fixed
constant and

1
(2π)N

∫

TN
ρ0

εa
0
εdx = 1 ∀ε > 0, |a0

ε − ā|L∞(TN ) ≤ Cε ,

1
ε2

((
a0

ερ
0
ε

)γ − 1− γ
(
a0

ερ
0
ε − 1

))
is bounded in L1(TN ) uniformly in ε.

In this case the energy inequality reads as
∫

TN

(
1
2
ρε|uε|2 +

(aερε)γ − 1− γ(aερε − 1)
ε2(γ − 1)

)
dx +

∫ t

0

∫

TN
µ|∇uε|2dxds

≤
∫

TN

(
1
2
ρ0

ε |u0
ε |2 +

(a0
ερ

0
ε )

γ − 1− γ(a0
ερ

0
ε − 1)

ε2(γ − 1)

)
dx.

(4.12)

The density variations in real fluids are related to both pressure and en-
tropy variations, even in the incompressible limit. The behavior of density
variations depends crucially on the relative size of the pressure, temperature,
and entropy fluctuations. Indeed, for this model we have

Theorem 4. Assume either that γ is large enough as in Theorem 1, or
γ > N

2 and weak solutions exist for all time. Then ρε converges to ρ̄ = ā−1 in
C([0, T ]; Lγ(TN )) and uε is bounded in L2(0, T ; H1(TN )) for all T ∈ (0,∞).
In addition, for any subsequence of uε (still denoted by uε) weakly converging
in L2(0, T ; H1(TN )) (∀T ∈ (0,∞)) to some ū, the weak limit ū satisfies

∂t(ρ̄ ū) + div (ρ̄ ū⊗ ū) +∇π = µ∆ū, div ū = 0, ū|t=0 = P ũ.(4.13)

Moreover, if in addition σ0
ε = (a0

ε− ā)/ε converges strongly in L1(TN ) to some
σ̄0, then σε ≡ (aε − ā)/ε converges to some σ̄ in C([0, T ]; Lq(TN )) ∀q < ∞,
where σ̄ is the unique solution of the transport equation

∂tσ̄ + div (σ̄ū) = 0, σ̄|t=0 = σ̄0.(4.14)

The details of the theorem and its proof are given by Desjardins and C.-K.
Lin in [7]. Finally let us mention some interesting open problems. For suf-
ficiently small initial data, Nishida and Matsumura [34] [35] have proved the
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global existence of classical solutions for the full compressible Navier-Stokes
equations at a fixed Mach number. Recently, Hoff [16] proved the global
existence of weak solutions to the Navier-Stokes equations for compressible,
heat-conducting flow when the initial density and temperature are close to
constants. The global convergence as the Mach number tends to zero to clas-
sical or weak solutions of the incompressible Navier-Stokes equations is a very
challenging problem. Moreover, large fluctuations of entropy seem to yield at
the limit nonhomogeneous incompressible models, but this question is still far
from being understood. Besides the discussion of incompressible limits above
there are other very interesting physical systems of equations with a myriad
of singular limits. The equations of meteorology and magnetohydrodynamics
are typical examples.
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