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NONLINEAR MEAN ERGODIC THEOREMS II

Isao Miyadera

Abstract. The purpose of this paper is to improve the previous results
due to the author.

INTRODUCTION

Throughout this paper, let C' be a nonempty subset of a real Hilbert space
H and T : C — C be a (nonlinear) mapping. The purpose of this paper is to
improve the results in [4]. We emphasize that the closedness and convexity of
C and the asymptotic nonexpansivity of T' are not assumed in this paper.

It is known that if {z,} is a bounded sequence in H, then there exists a
unique element y in H such that lim, ||z, —y|| < limy, e ||2n — 2| for every
z € H\{y}. The element y is called the asymptotic center of {x,} (see [2]).

Definition 0.1. A sequence {z,} in H is said to be strongly (resp. weakly)
almost-convergent to an element x in H if lim, o0 (1/n) S04 2444 = 2 (vesp.
w - limy, 0o (1/n) 770 @44 = 2) uniformly in k = 0,1,2,..., where lim(resp.
w - lim) denotes the strong (resp. weak) limit.

The set of fized points of T will be denoted by F(T').
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We consider the following conditions in this section.

Condition (ag). For every u,v € C and integer k > 0, there exists a
Ok (u,v) > 0 with limg_,o dx(u, v) = 0 such that

1T*u — T*o[P <agllu — o|]? + clagull? — [|T*u|?
() + agl[ol|P = [ T0]|P] + 05 (u, v),
where ag, c and p are nonnegative constants independent of u and v such that
limp .ar=1and p > 1.
Condition (). For every bounded set B C C,v € C and integer k > 0,
there exists a 0x(B,v) > 0 with limg_.., dx(B,v) = 0 such that

IT%u + T P < apllu+ vl|P + clagJull? — | T*ul”

(B1)
+ ag||v||P = | T*v||P] + 6x(B,v) for u € B,

where ay, c and p are nonnegative constants independent of B and v such that
limg_,soar =1 and p > 1.

Condition ((3). For every bounded set B C C,v € C and integer k > 0,
there exists a 0x(B,v) > 0 with limg_,o 05 (B, v) = 0 such that

lu —v]|P <agl| THu — T*o||P + clar| T*u|]” — [lul”

(83)
+ ag||T*v||P — ||v||P] + 6(B,v) for u € B,

where ag, c and p are the same constants as in ().

It is easy to see that T satisfies

(1.1) klim |T*u — T*v|| < |ju—v|| for every u,v € C
— 00

if and only if T satisfies condition (ag) with ¢ = 0 and p = 1. (1.1) is
a condition of asymptotically nonexpansive type. This condition (1.1) has
been considered in [5]. Clearly, condition (a;) in [4] implies condition ()
above, and conditions (a2) and (a3) in [4] imply conditions (ag) and (03)
above, respectively. Therefore, Theorem 1.1 improves [4, Theorem 1.1], and
Theorems 1.2 and 1.3 improve [4, Theorems 1.2 and 1.3], respectively.

Theorem 1.1. Suppose condition (51) holds. Then for every x € C,{T"z}
1s strongly almost-convergent to its asymptotic center.

Proof. Let z € C' and n be a nonnegative integer. By condition (1) with
B = {T"z} (singleton) and v = v = Tz, we get ||T*"z|P < ap||T™z|? +
(1/(2P4+2¢))6({T"x}, T"x) for k > 0. Letting k — oo, we have limy,_. || T*z|| <
IT™x||, which implies
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(1.2) {||T"x||} is convergent.

Let n > m > 0. By condition (3;) with B = {T%z;¢ > 0},u = T™ iz, v =
T™z and k =n — m, we have

1T+ + T 2||P < aneml| T e + T™||P + clan—m | T a||P — | T 2P
+ ape || T™2||P — || T"2||P] + 6 (B, T™x)
<||T™ iz + Tx||P + [(2M)P + 2 MP)|an—m — 1]
+ ([T |P — T2 |]P + || TP — | T ?)
+ O (B, T™x) for i > 0,

where M = supys ||T%||. Combining this with (1.2) we obtain

lim lim sup {HT”“:U + T"||P — | T + meHp} <0

m—0o00 N—0oo >
which implies

lim lim sup {HT"J”IU + Tnl“H2 HTmHCU + meHQ} <0

m—00 N—00 >

Therefore by [4, Proposition 1.5(I)], {T™z} is strongly almost-convergent to
its asymptotic center. [ |

Theorem 1.2. Suppose condition (az2) holds. If either F(T') #0 orc >0
in (a2), and if x € C satisfies

(1.3) lim lim sup || 77+ — T"a||? — [Tz — T"2)2] <0

then {T™z} is strongly almost-convergent to its asymptotic center.

Proof. We first consider the case when ¢ > 0 in (a3). Let n > 0 be
arbitrarily fixed. By condition (as) with u = v = T"x, we have ||[T*+"z|P <
ap|T"z||P + 6, (T"x, T™x)/2¢ for k > 0. Letting k — oo, limy_oo||T*2|| <

|T™z||, which implies that {||7™z| } is convergent. By virtue of [4, Proposition
1.5(I1)], {T™x} is strongly almost-convergent to its asymptotic center.

Next, let F(T) # 0 and ¢ = 0 in (aw), i.e., for every u,v € C and integer
k > 0 there exists a d;(u,v) > 0 such that

(1.4) IT u = T*l” < agllu — o[ + 6k (u, v),
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where a; and p are nonnegative constants independent of v and v such that
limg oo ar =1 and p > 1. Take an f € F(T). Let n > 0 be arbitrarily fixed.
By (1.4) with u = T"x and v = f, we have ||T**"z — f||P < ai||T"x — f|P +
Sp(Tx, f) for k > 0. Letting k — oo, we get limy_oo|| T2z — f|| < [Tz — f||
and hence {||T"z — f||} is convergent. Using [4, Proposition 1.5(1I)] again, we
obtain the conclusion. ]

Remarks. 1) We see that if T satisfies condition (az), then {||T""x —
Ty} is convergent for every z,y € C and ¢ > 0. 2) Suppose T satisfies
condition (awe) and the following

Condition («7). For every u,v € C and integer k > 0, there exists a
Ok (u,v) > 0 with limg o dx(u,v) = 0 such that

IT%u + T*|7 < agllu+ vl|* + dlag]ull? — | T*u]|?

(1) N
+ a0l = T + 0k (u, v),

where ag, d and ¢ are nonnegative constants independent of u and v such that
limg_,soar =1 and g > 1.
Then we see that for every z,y € C
(%) lim ||[7""x — T"y|| exists uniformly in i > 0.
n—oo

(This is an extension of [1, Theorem 2.3].) Clearly, (x) with y = z satisfies
(1.3). So, in this case, for every x € C, {T"z} is strongly almost-convergent
to its asymptotic center.

Theorem 1.3. Suppose condition (3) holds.

(I) If x € C and {||T"z||} is convergent, then {T™z} is strongly almost-con-
vergent to its asymptotic center.

(IT) If either F(T) # O or ¢ > 0 in (B3), then for every x € C, either
lim,, oo [|T"|| = 00 or {T™z} is strongly almost-convergent to its asymptotic
center.

Proof. (I) Set B = {T™xz;n > 0}. Let n > m > 0. By condition (f3) with
u="T""g v="T"2 and k =n — m, we have

| T e — Tmx||P < || T Ha — T ||P + [(2M)P + 2 MP]|ap—m — 1
(1.5) + [T P — (| T || + | T 2P — || T |P]
+ O (B, T™x)
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for i > 0, where M = supys [|Tx||. Since {||T"z||} is convergent, we see from
(1.5) that

lim lim sup {||Tm+ix — Tz — | T — T”:I:HQ} <0.

By virtue of [4, Proposition 1.5(II)], {IT™z} is strongly almost-convergent to
its asymptotic center.

(IT) Let # € C and suppose lim,,_,||T"z| < oo. We first consider the
case when ¢ > 0 in (33). Let n > 0 be arbitrarily fixed. By condition
(B3) with B = {T™z} (singleton) and u = v = T"z, we have [|[T"z|P <
ap|T**7z||P + §p({T"a}, T"z)/2¢ for k > 0. Letting k — 0o, we obtain
|T7|| < limg_ . ||T%z||, which implies that {||T"z||} is convergent. Therefore
by part (I), {T"x} is strongly almost-convergent to its asymptotic center.

Next, let F(T) # 0 and ¢ = 0 in (f3), i.e., for every bounded set B C C,
v € C and integer k > 0, there exists a di(B,v) > 0 with limg_ dx(B,v) =0
such that

(1.6) |u—v||P < ag||T*u — T*v||P 4 6 (B, v) for u € B,

where ar and p are nonnegative constants independent of B and v such that
p > 1 and limy .o ar = 1. Take an f € F(T) and let n > 0 be arbitrarily
fixed. Using (1.6) with B = {T"z},u = T"z and v = f, we have ||T"z— f||P <
ap|T** 72 — f||P + 0p({T"x}, f) for k > 0. This implies that {||T"z — f||} is
convergent.

Let n > m > 0. By (1.6) with B = {T*2;¢ > 0},u = T™ "z, v = T™z and
k =n —m, we have

[T g — Tz ||P < || T2 — T[] + |an—m — 1|/(2M)? + 6 (B, T )
for i > 0, where M = sup,> | T%z||, which implies

lim lim sup {HT’”“&? —T™z||? — | T — T”xHQ} <0.

It follows from [4, Proposition 1.5(II)] that {T™z} is strongly almost-conver-
gent to its asymptotic center. [
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We consider the following conditions in this section.

Condition (33). For every bounded set B C C,v € C and integer k > 0,
there exists a d0x(B,v) > 0 with limg_.. dx(B,v) = 0 such that

1T%u — T*[P < agllu — vl|P + clag]Jull? — | T*ul”

(B2)
+ ag|[v||P — | T*v||P] + 0x(B,v) for u € B,

where ag, c and p are the same constants as in condition (/).

Condition ((4). For every bounded set B C C,v € C and integer k > 0,
there exists a 0x(B,v) > 0 with limg_, Jx(B,v) = 0 such that

lu+vllP < ap | T + T*0||P + clag]| T ul|P — ||ul|”

(Bs)
+ akHTkap — ||v||P] + 6k (B,v) for u € B,

where ay, ¢ and p are the same constants as in condition ().

It is easy to see that T satisfies

(2.1) lim sup(||T7%u — T*v| — Ju —v|) <0
k—ooyeB

for every bounded set B C C' and v € C if and only if T satisfies condition
(B2) with ¢ =0 and p = 1. (2.1) is a condition of asymptotically nonexpansive
type and this kind of condition has been introduced in [3]. Clearly, conditions
(a2) and (a4) in [4] imply conditions (f2) and (84) above, respectively. There-
fore, the following Theorems 2.1 and 2.2 improve [4, Theorems 2.1 and 2.2],
respectively.

Theorem 2.1. Suppose condition (fB2) holds. If either F(T) # 0 or
¢ >0 1in (Ba), then for every x € C,{T™x} is weakly almost-convergent to its
asymptotic center.

Proof. Let x € C'. We first consider the case when ¢ > 0in (f2). Let n > 0
be arbitrarily fixed . By condition (32) with B = {T"z} and u = v = T"x,
we have | TFTmz||P < ag||T"z||P + 6p({T"x}, T"x)/2¢c for k > 0, which implies
that {||T"x|} is convergent. Using condition (B2) with B = {T*z;¢ > 0},u =
T g v =Tz and k = n — m, we see that if n > m > 0, then

| T e — Th||P < || T — T™x||P + [(2M)P + 2¢MP]|ay—m — 1]
+e(|Tm e ||P — [T 2|P + || T2 ||P — | T 2P)
+ O (B, T™x)
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for i > 0, where M = supysq [|[T¢z|. Since {||T"z|} is convergent, the above
inequality shows that

lim_ lim sup || 77 — T"|” - [T+ — T™a|?| <0
0

and then
lim lim sup [HT”“@; — T — | T — me”ﬂ <0
so that
(2.2) lim_lim lim (|77 — T"]? — |77 — 77| <.
m—0o0 N—00 1—00

By [4, Proposition 2.3] with z,, = T"z, {T"x} is weakly almost-convergent to
its asymptotic center.

Next, let F(T) # 0 and ¢ = 0 in ((32), i.e., for every bounded set B C C,
v € C and integer k > 0, there exists a 0x(B,v) > 0 wih limy_ . 0x(B,v) =0
such that

(2.3) | T*u — T*v||P < ag|ju — v||P + 0x(B,v) for u € B,

where ar and p are nonnegative constants independent of B and v such that
limg_,oo ax, = 1 and p > 1. Since (2.3) implies (1.4), we see from the proof of
Theorem 1.2 that {||7"x — f||} is convergent, where f € F(T). Using (2.3)
with B = {T'2z;¢ > 0},u = T™"2,v = Tz and k = n — m, we have that if
n >m > 0, then

T = TP < [T = TP 4+ (2M)Plan i — 1]+ 8o (B, T"2)

for i > 0, where M = sup,sq ||T%z||. This implies (2.2). Therefore, using
[4, Proposition 2.3] with z, = T"z — f, we see that {T"z — f} is weakly
almost-convergent to its asymptotic center z, so that {1z} is weakly almost-
convergent to its asymptotic center z + f. [

Theorem 2.2. Suppose condition ($4) holds. Then for every x € C, either
lim,, o0 [|T"x|| = 00 or {T™x} is weakly almost-convergent to its asymptotic
center.

Proof. Let x € C, and suppose lim,, . ||T"z|| < oo. By condition ()
with B = {T"z} and v = u = T"z, we have

1Tz ||P < agl|TF 2| + 6p({T"x}, T"z) /(2P + 2¢) for k,n > 0,
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which implies that {||7"z||} is convergent.

Let n > m > 0. By condition (3;) with B = {T%x;¢ > 0},u = T iz, v =
T™x and kK =n — m, we have
|T™ g + Tmax||P <||T" x4+ Tm||P + [(2M)P + 2¢MP]|ay—m — 1]
+ (| T a|P — [T | P + | TP — || T 2|P)
4 by (B, T™z)

for i > 0, where M = supys ||T*z||. Combining this with the convergence of
{||T™z||}, we obtain

lim T sup [Tz + T |P — [T+ + T|P] <0

and a fortiori

lim lim lim ([T + T2 — |77 e+ T2 ]?] < 0.

m—00 N—00 —00

So, it follows from [4, Proposition 2.3] that {1"z} is weakly almost-convergent
to its asymptotic center. [
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