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A WAVELET METHOD FOR THE FIRST KIND INTEGRAL
EQUATIONS WITH KERNEL k(x− y)

Xiao-Qing Jin∗ and Jin-Yun Yuan

Abstract. We study the first kind integral equation∫ +∞

0
k(x− y)σ(y)dy = g(x)

by the wavelet method. The integral equation is discretized with respect
to two different wavelet bases. We then have two different linear sys-
tems. One of them is a Toeplitz system and the other one is a system
with condition number κ = O(1) after a diagonal scaling. By using the
preconditioned conjugate gradient (PCG) method with the fast wavelet
transform (FWT) and the fast Fourier transform (FFT), we can solve
the systems in O(n log n) operations where n is the size of the systems.

1. Introduction

In this paper, we study the first kind integral equation∫ +∞

0
k(x− y)σ(y)dy = g(x)

by the wavelet method. The integral equation is discretized with respect to
two different orthonormal wavelet bases B1 and B2. The B1 comes from the
father wavelet ϕ(x) and the B2 comes from the mother wavelet ψ(x). After
discretizing of the integral equation with respect to B1 and B2 on a finite
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interval, we then have two different n-by-n linear systems. One of them is a
Toeplitz system

Tnx = b

(corresponding to B1), and the other one is a system Any = d (corresponding
to B2) with condition number

κ(D−1/2
n AnD

−1/2
n ) = O(1)(1)

after a diagonal scaling Dn. The relation between Tn and An is

An = WnTnW
−1
n ,

where Wn is the wavelet transform matrix between B1 and B2.
We then solve the Toeplitz system Tnx = b by solving its equivalent form

Anx̃ = b̃

with x̃ = Wnx and b̃ = Wnb. For solving the system Anx̃ = b̃, we use the
PCG method with the diagonal preconditioner Dn. More precisely, instead of
solving the system Anx̃ = b̃, we solve the preconditioned system

D−1
n Anx̃ = D−1

n b̃.

The condition number of the preconditioned system is, by (1),

κ(D−1
n An) = κ(D−1/2

n AnD
−1/2
n ) = O(1).

When the PCG method is applied to solve the preconditioned system, the
convergence rate will be linear, see [5]. By using the FWT (see [1] and [3])
and Strang’s algorithm (see [2] and [7]), we can solve the system Anx̃ = b̃ and
also Tnx = b in O(n log n) operations.

The outline of the paper is as follows. In Section 2, we introduce the father
wavelet basis B1 and the mother wavelet basis B2. The integral equation is
discretized with respect to the bases B1 and B2. Two different linear systems
are obtained. In Section 3, we use the PCG method to solve the linear systems
obtained in Section 2. We then discuss the condition number and the operation
cost of the PCG method.

2. Discretization of Integral Equation

Let Hs(R) with s ≥ 0 and Ht(R) be two Sobolev spaces. The integral
operator A from Hs(R) to Ht(R) is defined as
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(Aσ)(x) =
∫ +∞

0
k(x− y)σ(y)dy,(2)

where k(x − y) ∈ L2(R) is symmetric, i.e., k(x − y) = k(y − x). For a given
function g ∈ Ht(R), we try to find σ ∈ Hs(R) such that

Aσ = g,

i e., ∫ +∞

0
k(x− y)σ(y)dy = g(x).

The equivalent variational form is: find σ ∈ Hs(R) such that

B(σ, µ) = F (µ)(3)

for all µ ∈ Hs(R), where

B(σ, µ) = 〈Aσ, µ〉 =
∫ +∞

0

∫ +∞

0
k(x− y)σ(y)µ(x)dydx

and

F (µ) =
∫ +∞

0
g(x)µ(x)dx.

We assume that B(σ, µ) is a continuous elliptic bilinear form onHs(R)×Hs(R),
i.e., there exist two constants β ≥ α > 0, such that

α‖σ‖Hs ≤ B(σ, σ) and B(σ, µ) ≤ β‖σ‖Hs‖µ‖Hs .

For instance, when s = 0 and k(x− y) is bounded with k(x− y) ≥ c > 0, then
obviously, B(σ, µ) is a continuous elliptic bilinear form on L2(R)× L2(R).

2.1 Wavelet Bases

Now we are going to discretize the integral equation with respect to two
different orthonormal wavelet bases B1 and B2. First of all, we introduce a
function ϕ(x) ∈ L2(R) called the father wavelet (or scaling function), with a
compact support [0, a], a > 0; see [4]. The ϕ(x) has the property that

ϕ(x− k), k ∈ Z,(4)

form an orthonormal sequence in L2(R). Let V0 be the closed linear subspace
of L2(R) generated by (4). The multiresolution analysis (MRA), depending
on this ϕ(x), is given as follows:
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• (i) f(x) ∈ V0 if and only if f(2jx) ∈ Vj ;

• (ii) · · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · · ;

• (iii) ∪∞−∞Vj = L2(R) and ∩∞−∞Vj = 0 ;

• (iv) The sequence (4) forms a Riesz basis of V0 .

Let Wj denote the orthogonal complement of Vj in Vj+1, i.e., Vj+1 = Vj ⊕
Wj. From MRA (iii), we also have ⊕∞−∞Wj = L2(R). There exists at least one
function ψ(x) ∈W0 such that

ψ(x− k), k ∈ Z,

is an orthonormal basis of W0 (see [3] and [6]). The ψ(x) is called the mother
wavelet. We then construct the following two wavelet sequences:

ϕj,k(x) = 2j/2ϕ(2jx− k), j, k ∈ Z,

and
ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z.

The wavelet sequence {ψj,k(x)} forms a Riesz basis of Hs(R) for s ≥ 0 (see
[6]).

The operator A defined by (2) can be projected on the subspace VJ (J is
fixed) with respect to the following two bases in VJ :

B1 = (ϕJ,k(x))k, k ∈ Z,

and
B2 =

⋃
−∞<j≤J−1

(ψj,k(x))k, k ∈ Z.

Here B1 comes from the father wavelet ϕ(x) and B2 comes from the mother
wavelet ψ(x).

2.2 Projection of A with respect to B1 and B2

Let AJ denote the projection of A on VJ . The matrix representation of AJ
corresponding to the basis B1 has the elements given by

tp,q = 〈A(ϕJ,p), ϕJ,q〉 =
∫ +∞

0

∫ +∞

0
k(x− y)ϕJ,p(x)ϕJ,q(y)dydx, ∀p, q.(5)

For all σ, µ ∈ Hs(R), let σJ , µJ denote the projections of σ, µ on VJ respec-
tively. Then equation (3) becomes



Wavelet for Integral Equation 431

∫ +∞

0

∫ +∞

0
k(x− y)σJ(y)µJ(x)dydx =

∫ +∞

0
g(x)µJ(x)dx.(6)

Let

σJ =
∑
p

xpϕJ,p and µJ = ϕJ,q, ∀q.(7)

Substituting (7) into (6), we have the following linear system

T∞x = b,(8)

where (T∞)p,q = tp,q is given by (5), and

(x)p = xp, (b)q =
∫ +∞

0
g(x)ϕJ,q(x)dx.

Since k(x− y) is symmetric and ϕ(x) has the compact support [0, a], we have

tp,q =
∫ +∞

0

∫ +∞

0
k(x− y)ϕJ,p(x)ϕJ,q(y)dydx

= 2J
∫ +∞

0

∫ +∞

0
k(x− y)ϕ(2Jx− p)ϕ(2Jy − q)dydx

= 2J
∫ 2−J (a+p)

2−Jp

∫ 2−j(a+q)

2−Jq
k(x− y)ϕ(2Jx− p)ϕ(2Jy − q)dydx

= 2−J
∫ a

0

∫ a

0
k[2−J(x− y + p− q)]ϕ(x)ϕ(y)dydx

= tp−q = tq,p.

Hence T∞ is a symmetric Toeplitz matrix.

The matrix representation of AJ corresponding to the basis B2 has the
elements given by

ap,q;s,t = 〈A(ψp,q), ψs,t〉 =
∫ +∞

0

∫ +∞

0
k(x− y)ψp,q(x)ψs,t(y)dydx(9)

for −∞ < p, s < J and −∞ < q, t <∞. Let

σJ =
∑
p,q

yp,qψp,q and µ = ψp,q, −∞ < p < J, ∀q.(10)

Substituting (10) into (6), we have the following linear system

A∞y = d,(11)
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where (A∞)p,q;s,t = ap,q;s,t is given by (9), y = (yp,q)T and d = (dp,q)T are
vectors with dp,q =

∫ +∞
0 g(x)ψp,q(x)dx.

3. Condition Number and Operation Cost

We have two different linear systems obtained in the last section. One of
them is the Toeplitz system (8) (corresponding to B1) and the other one is the
system (11) (corresponding to B2). Now we consider the condition number
of the system (11). Following the idea in [8], we first introduce the following
Lemma (see [6] and [8]).

Lemma 1. Let f =
∑
j,k〈f, ψj,k〉ψj,k. Then f ∈ Hs(R) if and only if∑

j,k

|〈f, ψj,k〉|2(1 + 4js) < +∞, −r < s < r

where r is the regularity of the MRA. Moreover, since {ψj,k} is a Riesz basis
of Hs(R), we also have

C1

∑
j,k

|〈f, ψj,k〉|2(1 + 4js) ≤ ‖f‖2Hs ≤ C2

∑
j,k

|〈f, ψj,k〉|2(1 + 4js),(12)

where C2 ≥ C1 > 0 are constants.

Let φ ∈ VJ with φ =
∑
j,k wj,kψj,k. We have

〈A(φ), φ〉 =
∑
j,k

∑
s,t

wj,kws,t〈A(ψj,k), ψs,t〉 = wTA∞w,(13)

where w = (wj,k)T is a vector. By the assumption that B(σ, µ) = 〈Aσ, µ〉 is a
continuous elliptic bilinear form on the space Hs(R)×Hs(R), we have

C3‖φ‖2Hs ≤ 〈A(φ), φ〉 ≤ C4‖φ‖2Hs ,(14)

where C4 ≥ C3 > 0 are constants. Combining (13) and (14), we have

C3‖φ‖2Hs ≤ wTA∞w ≤ C4‖φ‖2Hs .

By using (12), one can easily obtain

C5

∑
j,k

|2jswj,k|2 ≤ wTA∞w ≤ C6

∑
j,k

|2jswj,k|2,

where C6 ≥ C5 > 0 are constants. After a diagonal scaling D, we have

C5‖w‖2 ≤ wTD−1/2A∞D
−1/2w ≤ C6‖w‖2,
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where ‖ · ‖ is the l2-norm. Thus, the condition number of A∞ after a diagonal
scaling is

κ(D−1/2A∞D
−1/2) = O(1).

The relation between T∞ given by (8) and A∞ given by (11) is

A∞ = WT∞W
−1,

where W is the wavelet transform matrix between two orthonormal wavelet
bases B1 and B2. We then solve the Toeplitz system (8) by solving its equiv-
alent form

(WT∞W
−1)Wx = Wb,

i.e.,
A∞x̃ = b̃,

where x̃ = Wx and b̃ = Wb. For solving the system A∞x̃ = b̃, we use
the PCG method with the diagonal preconditioner D. Instead of solving the
system A∞x̃ = b̃, we solve the preconditioned system

D−1A∞x̃ = D−1b̃.

Since the condition number of the preconditioned system is

κ(D−1A∞) = κ(D−1/2A∞D
−1/2) = O(1),

when the PCG method is applied to solve the preconditioned system, the
convergence rate will be linear (see [5]).

In practice, we usually use a finite interval instead of [0,+∞). We then
have an n-by-n system

Tnx = b,(15)

where Tn is the finite section of T∞. Let Wn be the finite section of the wavelet
transform matrix W . The system (15) can be solved by solving its equivalent
form

(WnTnW
−1
n )Wnx = Wnb,

i.e.,

Anx̃ = b̃,(16)

where An is the finite section of A∞, x̃ = Wnx and b̃ = Wnb. The PCG method
is applied to solve the system (16) with the diagonal preconditioner Dn which
is the finite section of D. In each iteration of the PCG method, we have to
compute the matrix-vector multiplication Anv for some vector v and solve the
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system Dny = z (see [5]). For Anv, since Anv = WnTnW
−1
n v, by using the

FWT, u = W−1
n v could be computed in O(n) operations. The Tnu could be

computed using the FFT in O(n log n) operations by first embedding Tn into
a 2n-by-2n circulant matrix (see [2] and [7]). By using FWT again, we note
that the operation cost for Anv will remain O(n log n). It requires only O(n)
operations to solve the system Dny = z. Thus, the total operation cost per
iteration is O(n log n). Since the number of iterations is independent of n,
we therefore can solve the system (16) and also the system (15) in O(n log n)
operations. For readers interested in the actual numerical implementation of
our algorithm, we refer to [1].
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