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NOTES ON MULTIVARIATE PRE-WAVELET
DECOMPOSITION

Kuei-Fang Chang

Abstract. We introduce the Wiener space and then consider wavelets
which are not necessarily compactly supported but have a decay condition
at infinity. Under the Wiener condition, a wavelet and its bi-orthogonal
wavelet have the same rate of decay at infinity and the same moment. Un-
der a certain sufficient condition, we prove the existence of a pre-wavelet
basis in the multi-dimensional case. Furthermore, pre-wavelets and their
bi-orthogonal pre-wavelets have the same rate of decay at infinity and
the same number of vanishing moments.

1. Introduction

We assume that φ belongs to the Wiener spaceM(Rn) (see later) and has
stable integer translates. If φ satisfies a 2-scale dilation equation with mask
a, then φ admits a multi-resolution of L2(Rn). In the 1-dimensional case, it
is well-known that we can construct many pre-wavelets from φ (see [9]). But
we want to construct a pre-wavelet in M(R) that allows us to extend our
method to multivariate wavelet decomposition. In the multidimensional case,
we have to find more than one function to construct a pre-wavelet basis. Jia
and Micchelli [9] showed that the existence of a pre-wavelet basis is equivalent
to the extensibility of a 2n-tuple (ãν)ν∈I over the commutative Banach algebra
A containing all discrete Fourier transforms of `1-sequences, where I is the set
of all extreme points of the unit cube [0, 1]n and

ãν(ξ) :=
∑
β∈Zn

a2β+νe
2πiβ·ξ, ν ∈ I; ξ ∈ Rn.
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For ξ ∈ Rn, let F (ξ) be the vector in C2n whose components are

F (ξ) := (ãν(ξ) : ν ∈ I),

and let F be Hölder continuous. Then it will be shown that F is extensible, and
hence a pre-wavelet basis can be constructed. In constructing a pre-wavelet
basis, there is a difference between univariate and multivariate spaces; that
is, if n > 1 and φ in M(Rn) admits a multi-resolution analysis in L2(Rn),
then there may not exist a pre-wavelet basis. But in the univariate case, this
is always true. Under the Wiener condition, a wavelet and its bi-orthogonal
wavelet have the same rate of decay at infinity and the same moment. Under
a certain sufficient condition, we prove the existence of a pre-wavelet basis in
the multi-dimensional case. Furthermore, pre-wavelets and their bi-orthogonal
pre-wavelets have the same rate of decay at infinity and the same number of
vanishing moments. An example of a non-tensor-product spline-wavelet (the
bivariate box spline) will be given.

2. Multivariate Pre-wavelet Decomposition

The Wiener class, denoted byM(Rn), is defined as the set of all continuous
functions on Rn satisfying the Wiener condition ‖f‖ := ‖f‖w + ‖f̂‖w < ∞,
where

‖f‖w :=
∑
k∈Zn

max
x∈[0,1]n

|f(x+ k)| <∞.

Poisson summation formula is a beautiful result incorporating ideas from both
Fourier series and Fourier transforms, and it has had many applications to
number theory, partial differential equations and probability theory as well
as wavelets. The following theorem proves that every member of the Wiener
class enjoys Poisson summation formula (see [7, p. 246]).

Theorem 2.1. Suppose that f belongs to the Wiener class M(Rn). Then
the equalities ∑

k∈Zn
f(x+ k) =

∑
k∈Zn

f̂(k)e2πikx

and ∑
k∈Zn

f(k)e2πikξ =
∑
k∈Zn

f̂(ξ + k)

hold pointwise, and all four series converge absolutely and uniformly on [0, 1]n.

For convenience in notation, we define the following:
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Definition 2.2. Let f be a complex-valued function on Rn. We define
the following operators Ta, Da, and conjugation as follows:

Translation: (Taf)(x) = f(x+ a) for a ∈ Rn;
Dilation: (Daf)(x) = f(ax) for a ∈ R;
Conjugation: f∗(x) = f(−x).

The following terminology “pre-wavelet” was first used by Battle [1].

Definition 2.3. A pre-wavelet is a square-integrable function ψ such that
ψ(2j ·+k) is orthogonal to ψ(2m ·+n) for all k, n ∈ Z and all integers j 6= m
and {ψ(2j ·+k) : j ∈ Z, k ∈ Zn} forms a Riesz basis.

Suppose that φ belongs toM(Rn) and satisfies a 2-scale dilation equation

φ(x) =
∑
k∈Zn

akφ(2x+ k), x ∈ Rn.(2.4)

This implies that the sequence a belongs to `1(Zn). We call the coefficient
sequence a of Equation (2.4) a mask. Let V0 := Vφ, Vj := {f(2j·) : f ∈ V0}
and let Wj be the orthogonal complement of Vj in Vj+1. When n > 1, we
have to find more than one function to construct a pre-wavelet basis. Thus it
is natural to consider the stability of the integer translates of functions. Let
ψ1, . . . , ψs be functions in M(Rn). These functions give a linear operator

Lψ1,...,ψs : (a1, . . . , as) 7→
s∑
j=1

ψj ∗′ aj, a1, . . . , as ∈ `2(Zn).

Thus Lψ1,...,ψs is a bounded linear operator from (`2(Zn))s into L2(Rn). The
family of integer translates of ψj; that is, the family

{Tkψj : k ∈ Zn; j = 1, . . . , s}

is a stable family if there is a positive constant A such that

∥∥Lψ1,...,ψs(a
1, . . . , as)

∥∥
2 ≥ A

s∑
j=1

‖aj‖2.

Jia and Micchelli [9] showed that the existence of a pre-wavelet basis for W0

is equivalent to the extensibility of the 2n-tuple (ãν)ν∈I over A, where I is the
set of all extreme points of the unit cube [0, 1]n and

ãν(ξ) :=
∑
β∈Zn

a2β+νe
2πiβ·ξ, ν ∈ I; ξ ∈ Rn.(2.5)
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We denote by A the commutative Banach algebra consisting of all continuous
periodic functions of period 1 having absolutely convergent Fourier series [13,
p. 266].

Definition 2.6. An s-tuple of elements of A, (p1, . . . , ps) is extensible over
A if there exist s2 elements pjk ∈ A (j, k = 1, 2, . . . , s) such that p1k = pk for
all k and the matrix (pjk(z)) is nonsingular for all z on the torus T n.

Jia and Micchelli [10] gave a necessary condition for the extensibility of
(b̃ν)ν∈I . Let Ω be a subset of Rn. We say that F : Ω→ Cs is Hölder continuous
provided there is some ρ ∈ (0, 1] and constant λ > 0 such that

‖F (x)− F (y)‖Cs ≤ λ‖x− y‖ρRn , x, y ∈ Ω.

Theorem 2.7 [10]. Let F (ξ) := (f1(ξ), . . . , fs(ξ)), ξ ∈ Rn be a vector
whose coordinates are trigonometric series

fj(ξ) =
∑
k∈Zn

ajke
2πik·ξ, ξ ∈ Rn,

such that F (ξ) ∈ Cs \ {0} for all ξ ∈ Rn. If n < 2s− 1 and for some ρ > 0,∑
k∈Zn
‖k‖ρ |ajk| <∞, j = 1, . . . , s,(2.8)

then there is an invertible s× s matrix M(ξ) for all ξ ∈ Rn such that the first
row of M(ξ) is F (ξ) and the remaining rows are trigonometric polynomials.

Notice that Condition (2.8) ensures that the map F is Hölder continuous.
The proof of Theorem 2.7 is based on the idea that if F is a Hölder mapping
from some subset Ω of Rn into Rs and n < s, then F (Ω) has Lebesgue measure
zero in Rs. Indeed, Theorem 2.7 is a general version of Sard’s Theorem (see
[6, p. 204-205]). But the above theorem is not true for all continuous maps.
It is an application of the Hahn-Mazuriewicz theorem (see [8, p. 129]) that
there exists a continuous map of the unit interval [0, 1] onto the n-cube [0, 1]n

for all n.
We are interested in finding a sufficient condition such that the condition

(2.8) holds. This is related to a Wiener-Tauberian Theorem with a “weight”.
Let σ be a positive sequence satisfying the condition

σ(k + l) ≤ σ(k)σ(l) for all k, l ∈ Zn.(2.9)

Following Gelfand, et al. [4] for one-dimension or Mitjagin [12] and Lei [11]
for multi-dimensions, we denote by W [σ] the set of all formal power series
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f =
∑
k∈Zn akX

k for which

‖f‖ :=
∑
k∈Zn
|ak|σ(k) <∞.

Here X is an indeterminate vector, X := (X1, . . . , Xn). It plays the role of a
dummy variable in defining the formal power series. From (2.9) it follows that
if W [σ] contains two series f =

∑
k akX

k and g =
∑
k bkX

k, it also contains
their formal product

∑
m

cmX
m =

∑
m

(∑
l

am−lbl

)
Xm,

and that

‖fg‖ =
∑
m

∣∣∣∣∣∑
l

am−lbl

∣∣∣∣∣σ(m)

≤
∑
m

∑
l

|am−l|σ(m− l)|bl|σ(l)

= ‖f‖ ‖g‖.
Thus W [σ] is a Banach algebra having a unit under the formal operations
on power series. Let M be a maximal ideal of W [σ]. Then the residue class
algebra W [σ]/M is isomorphic to the complex number field. If we denote by
f(M) the complex number corresponding to f ∈ W [σ] under this canonical
mapping, then |f(M)| ≤ ‖f‖. For each p ∈ {1, . . . , n}, the complex number
Xp(M) is non-zero since Xp is invertible. Let z be the element in Cn whose
p-th component is Xp(M). Then for each k ∈ Zn, zk = Xk(M) and

|zk| = |Xk(M)| ≤ ‖Xk‖ = σ(k).

This leads us to consider the set

Sσ :=
{
z ∈ Cn \ {0} : |zk| ≤ σ(k) for all k ∈ Zn

}
.

It is clear that for any formal power series
∑
k akX

k in W [σ], the power series∑
k akz

k converges uniformly in z on Sσ. This implies that every element f in
W [σ] defines a continuous function on Sσ, still denoted by f .

In our application, σ is chosen by

σ(x) = (1 + ‖x‖)ρ, x ∈ Rn,(2.10)

where ρ is a positive number. Thus, σ(x+y) ≤ σ(x)σ(y). Lei [11] proved that
Sσ is exactly T n where T n is the torus in Cn. The following theorem follows
immediately from [4, Sect. 6, Theorem 1].
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Theorem 2.11. Let σ be as in (2.10). If f is a member of W [σ] and if
G is analytic on a neighborhood of the range of the function on T n, then there
exists a member g in W [σ] such that G(f(z)) = g(z) for all z ∈ T n.

This theorem is useful in estimating the decay rate of φ̃ in terms of that of
φ, where φ is a stable function, and φ̃ is a bi-orthogonal stable function with
respect to φ. We can show that φ̃ has the same decay rate.

Theorem 2.12. Let ρ be a positive number. If φ belongs to C(Rn) with
‖σφ‖w <∞ and has stable shifts, then there exists a sequence b for which the
formal power series g :=

∑
k bkXk is in W [σ] and φ̃ := φ ∗′ b has stable shifts

with ‖σφ̃‖w <∞.

Proof. Let a be the sequence given by ak := φ ∗ φ∗(k) and let f be the
formal power series

∑
k akX

k. We want to show that f belongs to W [σ]. For
any k ∈ Zn and x ∈ Rn, we have∑

k

σ(k)|ak| ≤
∑
k

σ(k)
∫
Rn
|φ(x)φ(x+ k)|dx

≤
∑
k

∫
Rn
|(σφ)(x)| |(σφ)(x+ k)|dx

≤
∑
k

∑
l

∫
[0,1]n

|(σφ)(x+ l)| |(σφ)(x+ k + l)|dx

≤ ‖σφ‖2w <∞.

Thus, f ∈ W [σ]. Since φ has stable shifts, f(z) is positive on T n (see [9,
Theorem 3.3]). By Theorem 2.11, there exists a sequence b for which the
formal power series g :=

∑
k bkX

k is in W [σ] and

1
f(z)

= g(z).

This implies that φ̃ = φ ∗′ b is bi-orthogonal with respect to φ. Finally, in
order to show ‖σφ̃‖w <∞, we note that∑

k

max
x∈[0,1]n

|(σφ̃)(x+ k)| ≤
∑
k

∑
l

max
x∈[0,1]n

|(σφ)(x+ k + l)| |σ(l)bl|

≤ ‖σφ‖w ‖g‖ <∞.

That is ‖σφ̃‖w <∞. 2

Corollary 2.13. Assume the hypotheses of Theorem 2.12 and suppose φ
satisfies a 2-scale dilation equation with mask a; that is φ(x/2) =

∑
k akφ(x+

k). Then the condition (2.8) holds.
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Proof. Define a function h by

h :=
σ

D1/2σ
,

where D1/2 is the dilation operation by 1/2. Thus h is bounded and continuous
on Rn. By Theorem 2.12, it follows that φ̃ satisfies ‖σφ̃‖w <∞ and then∑

k

σ(k)|ak| ≤
∑
k

σ(k)
∫
Rn

∣∣∣∣φ(x2
)
φ̃(x+ k)

∣∣∣∣ dx
≤

∑
k

∫
Rn
|σ(x)φ(x+ k)| |(σφ̃)(x+ k)|dx

≤ ‖h‖∞‖σφ̃‖w
∫

[0,1]n

∑
k

∣∣∣∣(σφ̃)
(
x

2
+ l

)∣∣∣∣ dx
≤ ‖h‖∞‖σφ̃‖2w <∞.

Consequently, the condition (2.8) holds. 2

Now we employ Theorem 2.7 to construct pre-wavelet functions inM(Rn).
The following lemmas and theorems are taken from [2, Sect. 4.3].

Lemma 2.14. Suppose that F is defined by

F (ξ) := (ãν(ξ) : ν ∈ I), ξ ∈ Rn,

where ãν are in (2.5). Then F is a continuous map from [0, 1]n into Cs \ {0}
with s = 2n.

Lemma 2.15. Assume the hypotheses of Corollary 2.13 and Lemma 2.14.
Then there exist 2n functions φν , ν ∈ I, in M(Rn) such that

( i ) φν ∈ Vφ, φ0 = φ and V1 =
∑
ν∈I Vφν ,

(ii) the integer translates of φν , ν ∈ I, form a stable family.

The following lemma is proved by a Gram-Schmidt orthogonalization pro-
cess (see [9]). Define

V{φ1,...,φs} :=


s∑
j=1

dj ∗′ φj : dj ∈ `2(Zn), j = 1, . . . , s

 .
Lemma 2.16. Suppose that φ1, . . . , φs ∈M(Rn) have stable integer trans-

lates. Then there are ψ1, . . . , ψs ∈ M(Rn) ∩ V{φ1,...,ψs} and an s × s lower-
triangular matrix N = (dij), where dij ∈ `1(Zn) such that ψi =

∑s
j=1 dij ∗′ φj,

and dii > 0. Moreover
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( i ) ψ1 = φ1, (d̃11 = 1),

(ii) V{φ1,...,φs} = V{ψ1,...,ψs},

(iii) Vψj (j = 1, . . . , s) are mutually orthogonal subspaces of L2(Rn).

Define

Vψj :=

{∑
k∈Zn

bkD2jTkψ : b ∈ `2(Zn)

}
.

Combining Lemmas 2.14-16, we have the following theorem.

Theorem 2.17. Suppose that φ belongs toM(Rn) with ‖σφ‖w <∞ (as in
Theorem 2.9) and has stable shifts. Let φ satisfy the 2-scale dilation equation
(2.1). Then there are 2n functions ψν , ν ∈ I, in M(Rn) such that

( i ) ψν ∈ V1, ψ0 = φ,

(ii) Vψνj ⊥ V
ψν′
j , ν 6= ν ′ ∈ I; j ∈ Z,

(iii) Wj = ⊕ν∈I\{0}Vψνj , j ∈ Z,

(iv) L2(Rn) = ⊕j∈ZWj.

It follows from Theorem 2.7 that F is extensible since n < 2n+1−1 = 2s−1;
that is, there is an invertible s× s matrix M(ξ), ξ ∈ [0, 1]n,

M(ξ) = (m̃νν′)ν,ν′∈I ,

where m̃νν′ is defined as in (2.5). Indeed, m0ν = aν , ν ∈ I, and the remaining
entries are trigonometric polynomials. Using this matrix we define functions

φν :=
∑
ν′∈I

mνν′ ∗′ D2Tν′φ, ν ∈ I.(2.18)

Thus we obtain
φ0 =

∑
ν∈I

aν ∗′ D2Tνφ = a ∗′ D2φ = φ,

and φν belongs to M(Rn) for all ν ∈ I.
We have a similar result in Corollary 2.13; that is, for any f ∈ L2(Rn), f

can be recovered by the pre-wavelet basis

{ψνjk : j ∈ Z, k ∈ Zn, and ν ∈ I \ {0}}.

Corollary 2.19. Under the hypotheses of Theorem 2.17, there are pre-
wavelet functions ψν , ν ∈ I \ {0}, such that for any f ∈ L2(Rn),

f =
∑

ν∈I\{0}

∑
j∈Z

∑
k∈Zn

(f, ψ̃νjk)ψ
ν
jk =

∑
ν∈I\{0}

∑
j∈Z

∑
k∈Zn

(f, ψνjk)ψ̃νjk
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in the L2-sense, where ψ̃ν is the dual of ψ.

It is natural to ask what conditions can guarantee that this family

{ψνjk : j ∈ Z, k ∈ Zn, and ν ∈ I \ {0}}

is a Riesz basis for L2(Rn); that is, there are two positive constants A and B
such that the linear operator

(aν : ν ∈ I \ {0}) 7→
∑

ν∈I\{0}

∑
j∈Z

∑
k∈Zn

aνjkψ
ν
jk

is bounded by

A
∑

ν∈I\{0}

‖aν‖2 ≤

∥∥∥∥∥∥
∑

ν∈I\{0}

∑
j∈Z

∑
k∈Zn

aνjkψ
ν
jk

∥∥∥∥∥∥
2

≤ B
∑

ν∈I\{0}

‖aν‖2

for all aν ∈ `2(Z× Zn). The following is an application to Theorem 2.17.

Theorem 2.20. Adopt the hypotheses of Theorem 2.18 and suppose that
{ψν} is a pre-wavelet basis ψν(ν ∈ I \{0}) having stable shifts. Then {ψνjk}ν,j,k
is a Riesz basis (hence a frame) and {ψ̃νjk}ν,j,k is the dual frame with (ψνjk, ψ̃

ν′

j′k′)
= δνν′δjj′δkk′.

Next, we will prove that φ and ψν have the same regularity.

Theorem 2.21. If φ belongs toM(Rn) with ‖σφ‖w+‖σφ̂‖w <∞ and has
stable shifts, then ‖σψν‖w <∞ and ψν ∈ Cρ(Rn)∩M(Rn) for all ν ∈ I \ {0}.

Proof. Assume that mνν′ = (mk
νν′)k∈Zn . Then

‖σφν‖w =
∑
k∈Zn

max
x∈[0,1]n

|σ(x+ k)φν(x+ k)|

=
∑
k∈Zn

max
x∈[0,1]n

|σ(x+ k)
∑
ν′∈I

mνν′ ∗′ φ(2(x+ k) + ν ′)|

=
∑
k∈Zn

max
x∈[0,1]n

|σ(x+ k)
∑
ν′∈I

∑
l∈Zn

ml
νν′φ(2(x+ k) + ν ′ + l)|

≤
∑
l∈Zn

∑
ν′∈I
|ml

νν′ |
∑
k∈Zn

max
x∈[0,1]n

|σ(x+ k)φ(2x+ 2k + ν ′ + l)|

≤
(∑
ν′∈I

∑
l∈Zn
|ml

νν′ |
) ∑
k,l∈Zn

max
x∈[0,1]n

|σ(2x+ 2k)φ(2x+ 2k + l)| <∞
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since mν,ν′ ∈ A. Finally, we want to show that ‖σψ̂ν‖w < ∞. This is depen-
dent on

ψ̂ν(ξ) =
∫
Rn

∑
ν′∈I

mνν′ ∗′ φ(2x+ ν ′)e−2πixξdx

=
∫
Rn

∑
l∈Zn

∑
ν′∈I

ml
ν,ν′φ(2x+ ν ′ + l)e−2πixξdx

=
∑
l∈Zn

∑
ν′∈I

ml
ν,ν′

∫
Rn
φ(2x+ ν ′ + l)e−2πixξdx

=
∑
l∈Zn

∑
ν′∈I

ml
ν,ν′

∫
Rn
φ(y)e−2πi( y−ν

′−l
2 )ξ 1

2n
dy

=
∑
l∈Zn

∑
ν′∈I

ml
ν,ν′

1
2n

∫
Rn
φ(y)e−2πy( ξ2 )eπi(ν

′+l)ξdy

= H(ξ)φ̂
(
ξ

2

)
,

where H(ξ) := 1
2n
∑
l∈Zn

∑
ν′∈Im

l
νν′e

πi(ν′+l)ξ. The function H(ξ) is continuous
on [0, 1]n. Thus, C = max

ξ∈[0,1]n
|H(ξ)| <∞ and

‖σψ̂ν‖w =
∑
k∈Zn

max
ξ∈[0,1]n

|σ(ξ + k)ψ̂ν(ξ + k)|

=
∑
k∈Zn

max
ξ∈[0,1]n

∣∣∣∣σ(ξ + k)H(ξ + k)φ̂
(
ξ + k

2

)∣∣∣∣
≤ C

∑
k∈Zn

max
ξ∈[0,1]n

∣∣∣∣σ(ξ + k)φ̂
(
ξ + k

2

)∣∣∣∣
≤ C

∑
k∈Zn

max
ξ∈[0,1]n

∣∣∣σ(ξ + k)φ̂(ξ + k)
∣∣∣ <∞.

This implies that ψν ∈ Cρ(Rn) and hence ψν ∈ Cρ(Rn) ∩M(Rn). 2

It is well known that if φ has stable shifts, then so does its dual φ̃. We will
show that if {ψν}ν∈I has stable shifts, then so does {ψ̃ν}ν∈I . In what follows
it is more convenient to use vector notation. Therefore, let

ψ = (ψν : ν ∈ I \ {0})T

and let
Θ(ω) :=

∑
k∈Zn

ψ̂(ω + k)ψ̂∗(ω + k),

where ψ̂(ω) :=
∫
Rn e

−2πiωxψ(x)dx denotes the Fourier transform of ψ. Then
the matrix Θ(ω) is nonnegative-definite for all ω. Using Poisson summation
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formula ∑
k

(ψ ∗ ψ∗)(k)e2πiωk =
∑
k

ψ̂(ω + k)ψ̂∗(ω + k),

we have
Θ(ω) =

∑
k

(ψ ∗ ψ∗)(k)e2πiωk

=
∑
k

(∫
Rn
ψ(y − k)ψ∗(y)dy

)
e2πiωk.

We next extend the result of [5] about the necessary and sufficient condition
for the set of integer translate of ψν ’s to be a Riesz basis of V0 in the Wiener
class. Since the proof is similar, we omit it.

Theorem 2.22. The collection Bψ = {ψν(· + k) : ν ∈ I \ {0}; k ∈ Zn}
forms a Riesz basis for W0 if and only if Θ(ω) is positive-definite for all ω.

Assume that {Tnψν : ν ∈ I \ {0};n ∈ Zn} is a Riesz base of W0. If we
define r := 2n − 1 and

ψ̃ = (ψ̃1, . . . , ψ̃r)T

by

ˆ̃
ψ = Θ−1ψ̂,(2.23)

where Θ = (Θνν′) and Θ−1 = (Θ−1
νν′). Then by Parseval’s Identity, we have

〈ψν , Tnψ̃ν′〉 = δν,ν′δn,0 (see [5]). Thus, ψ̃ is a dual vector of ψ. Moreover, we
can show that ψν , is in M(Rn) for all j = 1, 2, . . . , r. Since Θ(w) is positive-
definite and periodically continuous for all w, all the entries of Θ−1(w) are in
M(Rn). By Poisson summation formula, we have

Θ−1(w) =
∑
n∈Zn

ene
−2πinw,(2.24)

where (en)n∈Zn is a sequence of r × r matrices with entries in l1(Zn). From
(2.23) and (2.24), we get

ψ̃(x) =
∑
l∈Zn

elψ(x− l).(2.25)

This implies that ψ̃ν is in M(Rn) for all ν ∈ I \ {0}.

Corollary 2.26. If {ψν , ν ∈ I \ {0}} is stable, then {ψ̃ν , ν ∈ I \ {0}} has
stable shifts.
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Proof. By Theorem 2.22, it suffices to show that

Θ̃(w) :=
∑
k∈Zn

ˆ̃
ψ(w + h)̂̃ψ∗(w + k)

is positive-definite for all w. We have

x∗Θ̃(w)x =
∑
k∈Zn

x∗
ˆ̃
ψ(w + k)̂̃ψ∗(w + k)x

=
∑
k∈Zn

x∗Θ−1(w)ψ̂(w + k)ψ̂∗(w + k)Θ−1(w)x = x∗Θ−1(w)x > 0

for all 0 6= x ∈ Cr. Thus Θ̃(w) is positive-definite for all w. 2

Corollary 2.27. Let φ belong to M(Rn) with ‖σφ̂‖w <∞ and let φ have
stable shifts. Then ψ̃ν ∈ Cρ(Cn) ∩M(Rn).

Proof. By Theorem 2.21, we have

‖σ ˆ̃
ψν‖w =

∥∥∥∥∥
r∑

ν′=1

σΘ−1
νν′ψ̂ν′

∥∥∥∥∥
w

≤Mν

r∑
ν′=1

‖σψ̂ν′‖w <∞,

where Mν = max
ξ∈[0,1]n

{Θ−1
νν′(ξ) : ν ′ ∈ I \ {0}} since Θ−1

νν′ ∈ A. Thus, ψ̃ν ∈

Cρ(Rn) ∩M(Rn). 2

By (2.18), we have the equation

ψ

(
x

2

)
=
∑
n∈Zn

Qnψ(x+ n),(2.28)

where (Qn)n∈Zn is a sequence of r×r matrices with entries in l2(Zn). It follows
from Theorem 2.7 that (Qn)n∈Zn belongs to l1(Zn).

Theorem 2.29. Let ψν belong to M(Rn) and satisfy Equations (2.18). If
Qn = (Qνν′(n)), then {Qνν′(n)}n∈Zn must be in l1(Zn) for all ν, ν ′ ∈ I \ {0}.

Next, we will prove that ψ̃ν has the same decay rate as ψν for all ν ∈ I\{0}.
Recall that ‖σf‖w =

∑
k∈Zn

max
x∈[0,1]n

|σ(x+ k)f(x+ k)|.

Theorem 2.30. Suppose that ψν belongs to M(Rn) with ‖σψν‖w <∞ for
all ν ∈ I \ {0}. Let aνν′(k) = ψν ∗ ψ∗ν′(k). Then

∑
k∈Zn

σ(k)|aνν′(k)| <∞ for all

ν, ν ′ ∈ I \ {0}.
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Proof.∑
k∈Zn

σ(k)|aνν′(k)| =
∑
k∈Zn

σ(k)
∣∣∣∣∫
Rn
ψν(x)ψν′(x+ k)

∣∣∣∣ dx
≤
∑
k∈Zn

∫
Rn
|(σψν)(x)| |(σψν′)(x+ k)|dx

≤
∑
k∈Zn

∑
l∈Zn

∫
[0,1]n

|(σψν)(x+ l)| |(σψ′ν)(x+ k + l)|dx

≤ ‖σψν‖w‖σψ′ν‖w <∞.

Using Theorem 2.30 we can prove that ψν and ψ̃ν have the same decay
rate.

Theorem 2.31. If ψν belongs to M(Rn) with ‖σψν‖w < ∞, then the
function ψ̃ν defined by Equation (2.23) satisfies ‖σψ̃ν‖w <∞ for all ν ∈ I\{0}.

Proof. By Poisson summation formula, we know that

Θ(w) =
∑
k∈Zn

ψ ∗ ψ∗(k)e2πiwk.

Let Θνν′(w) =
∑
k∈Zn

aνν′(k)e2πiwk, where aνν′(k) = ψν ∗ψ∗ν′(k). Using Theorem

2.30, we obtain a sequence {aνν′(k)}k∈Zn satisfying∑
k∈Zn

σ(k)|aνν′(k)| <∞

for all ν, ν ′ ∈ I\{0}. Since Θ(w) is positive-definite and periodically continuous
for all w, we have det(Θ(w)) ≥ m for all w, where m > 0. If we let Aνν′ be
the matrix obtained from Θ by deleting its ν-th row and ν ′-th column, then

Θ−1
νν′(w) =

(−1)|ν|+|ν
′| det(Aν′ν(w))

det(Θ(w))
≤ 1
m

(−1)|ν|+|ν
′| det(Aν′ν(w)),

where |ν| denotes the sum of its components. Thus Θ−1
νν′ is bounded. Moreover,

we have that Θ−1
νν′ is a finite linear combination of the entries of Θ(w). Let

Θ−1
νν′(w) =

∑
k∈Zn

cνν′(k)e−2πiwk. Then

∑
k∈Zn

σ(k)|cνν′(k)| <∞

for all ν, ν ′ ∈ I \ {0} since W (σ) is a Banach algebra. Using Equations (2.24)
and (2.25), we have

ψ̃(x) =
∑
l∈Zn

e(l)ψ(x− l),
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where e(l) = (cνν′(l))rνν′=1. Hence for all ν = 1, 2, . . . , r, we obtain

‖σψ̃ν‖w =
∑
m∈Zn

max
x∈[0,1]n

|σ(x+m)
∑
l∈Zn

r∑
ν′=1

cνν′(l)ψν′(x− l +m)|

≤
∑
m∈Zn

∑
l∈Zn

r∑
ν′=1

max
x∈[0,1]n

|(σψ′ν)(x+m− l)‖σ(l)cνν′(l)|

≤
r∑

ν′=1

[
‖σψ′ν‖w

(∑
l∈Zn

σ(l)|cνν′(l)|
)]

<∞. 2

Finally, we want to show that the function ψ̃ν has the same number of
vanishing moments as ψν for all ν ∈ I.

Definition 2.32. Let k,m ∈ N and σ(x) = (1 + ‖x‖)k, k > m + 1, and
let Dm be the space defined by Dm := {f(x) : σ(x)|f(x)| is bounded on Rn}.
A function f in Dm has N vanishing moments with N ≤ m if f satisfies∫

Rn
xpf(x)dx = 0, for all 0 ≤ p ≤ N and

∫
Rn
xN+1f(x)dx 6= 0,

where p is a positive integer.

Theorem 2.33. Let ψν ∈ DN for ν ∈ I \ {0}, and let ψν and ψ̃ν have N1

and N2 vanishing moments, respectively, where N1, N2 ≤ N . Then N1 = N2.

Proof. Since ψ̃ν has N2 vanishing moments, we have ψ̃ν(x) =
∑r
ν′=1

∑
l∈Zn

cνν′(l)ψν′(x− l) where {cνν′(l)}l∈Zn is absolutely convergent and∫
Rn
xpφ̃ν(x)dx=

∫
Rn
xp
(∑
ν′=1

∑
l∈Zn

cνν′(l)ψν′(x− l)
)
dx

=
∑
ν′=1

∑
l∈Zn

cνν′(l)
∫
Rn
xpψν′(x− l)dx = 0

for each 0 ≤ p ≤ N1. Thus, N1 ≤ N2. On the other hand, it is easy to
prove ψ̃ν ∈ DN from ψν ∈ DN . By Equation (2.23), there exists a sequence
{dνν′(k)} ∈ l1(Zn) such that ψν(x) =

∑r
ν′=1

∑
k∈Zn

dνν′(k)ψ̃ν′(x + k) and hence

we obtain N1 ≥ N2. Thus N1 = N2. 2

Example 2.34. Let

X =

[
1 1 0 0 1
0 0 1 1 1

]
.
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Then the box spline BX satisfies the 2-scale dilation equation (2.1) with mask
a given by

ã(ξ) = 2−3(1 + z1)2(1 + z2)2(1 + z1z2).

BX is C1 with compact support and has stable integer translates since the
matrix X is unimodular (see [3]). Moreover, BX belongs to M(R2) (see [2]).
By (2.5), we have (see [9])

ã00(z) =
1
8

(1 + z1 + z2 + 5z1z2),

ã10(z) =
1
8

(2 + 4z2 + 2z1z2),

ã01(z) =
1
8

(2 + 4z1 + 2z1z2),

ã10(z) =
1
8

(5 + z1 + z2 + z1z2).

Furthermore, by using Lemmas 2.11-12 we see that the function F (ξ) :=
(ãν(ξ) : ν ∈ I) is Hölder continuous from [0, 1]2 into C2 \ {0} and hence F
is extensible; that is, the matrix

ã00 ã10 ã01 ã11

1 0 0 0

1 4 0 1

1 0 4 1


has determinant −8. Using this matrix we can define functions

ψ00(x) := BX(x),

ψ10(x) := BX(2x),

ψ01(x) := BX(2x) + 4BX(2x+ (1, 0)) +BX(2x+ (1, 1)),

ψ11(x) := BX(2x) + 4BX(2x+ (0, 1)) +BX(2x+ (1, 1))

for all x ∈ R2 and ψν , ν ∈ I. These have stable integer translates in V1 and are
of class C1(R2) with compact support. By Theorems 2.12 and 2.20, the decay
rate of the bi-orthogonal Riesz bases is the same with that of ψν . But, in
practice, we have difficulty in computing the Gram-Schmidt orthogonalization
process, for instance, since the overlap function of BX is

〈BX , BX〉(ξ) =
∑
β∈Z2

(
sin(πξ1)
π(ξ1 + β1)

)4 ( sin(πξ2)
π(ξ2 + β2)

)4 ( sin(πξ1 + πξ2)
π(ξ1 + β1 + ξ2 + β2)

)2
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for all ξ := (ξ1, ξ2) ∈ R2. This is hard to put into explicit form as a trigonomet-
ric series. The overlap function of a box spline can be expressed by applying
Poisson summation formula. Indeed, given the symmetric box spline

MX∪X := BX ∗B∗X ,

where B∗X(x) := BX(−x), we have the generalized Euler-Frobenius Laurent
polynomial

〈BX , BX〉(ξ) =
∑
β∈Z2

MX∪X(β)e2πiβ·ξ.(2.36)

Note that (2.36) is finite since the support of MX∪X is the set
5∑
j=1

xjtj : −1 ≤ tj ≤ 1; j = 1, 2, 3, 4, 5

 .
This implies that the overlap function of BX is a trigonometric polynomial.
We may use numerical methods to treat this problem. There is a positive
number ρ = 1 such that ‖σBX‖w + ‖σB̂X‖w < ∞ where σ(x) = 1 + |x| and
hence for each ν ∈ I \ {0}, ψ̃ν ∈ C1(R2) by Corollary 2.27. 2
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