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BOUNDEDNESS FOR SEMILINEAR DUFFING EQUATIONS
AT RESONANCE

Xiumei Xing and Yiqian Wang*

Abstract. In this paper, we prove the boundedness of all solutions for the equation
x′′ + n2x + φ(x) + g′′(x)q(t) = 0, where n ∈ N, q(t) = q(t + 2π), φ(x) and
g(x) are bounded.

1. INTRODUCTION AND MAIN RESULT

In this paper, we study the boundedness of solutions for the following semilinear
Duffing-type equations:

(1.1) x′′ + n2x+ ψ(x, t) = 0, ψ(x, t+ 2π) = ψ(x, t),

where n ∈ N and ψ(x, t) is bounded.
It is well known that the linear equation

x′′ + n2x = sinnt, n ∈ N

has no bounded solutions. Due to the phenomenon of linear resonance, the boundedness
of solutions for semilinear equation at resonance (1.1) is very delicate and interesting.

In 1999 Ortega [15] proved a variant of Moser’s small twist theorem, by which he
obtained the Lagrangian stability for the equation

x′′ + n2x + hL(x) = p(t), p(t) ∈ C5(R/2πZ),

where hL(x) is of the form

hL(x) =

⎧⎨
⎩

L, if x ≥ 1,
Lx, if − 1 ≤ x ≤ 1,
−L, if x ≤ −1,
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and p(t) satisfies
1
2π

∣∣∣∣
∫ 2π

0
p(t)e−intdt

∣∣∣∣ < 2L
π
.

Then Liu [8] studied the equation

(1.2) x′′ + n2x+ φ(x) = p(t), p(t) ∈ C7(R/2πZ),

where φ(x) ∈ C6(R) and the limits

(1.3) φ(±∞) = lim
x→±∞ φ(x) exist and are finite

and

(1.4) lim
|x|→+∞

x6φ(6)(x) = 0.

He showed that each solution of (1.2) is bounded if

(1.5)
∣∣∣∣
∫ 2π

0
p(t)e−intdt

∣∣∣∣ < 2(φ(+∞)− φ(−∞)).

If in addition φ(x) is monotone, then Lazer-Leach’s result [5] implies that the con-
dition (1.5) is also necessary for the Lagrangian stability of (1.2). Without monotone
assumption on φ(x), Alonso and Ortega [1] showed that if∣∣∣∣

∫ 2π

0

p(t)e−intdt

∣∣∣∣ > 2(φ(+∞)− φ(−∞)),

then all solutions of equation (1.2) with initial points sufficiently far from the origin
are unbounded.

For more results on (1.1), one can see [9, 10, 11, 12] and references therein.
It is noted to point out that all the results stated above require the condition ψ(x, t)

satisfies the following growth condition:

(1.6) lim
|x|→+∞

xmDm
x ψ(x, t) = 0

for some finite m.
The reason that people impose the above growth condition on ψ(x, t) is related to the

fact that the application of KAM theorem requires the estimates of several derivatives
of the solutions with respect to initial conditions, which is tedious and difficult.

In this paper, we try to study the boundedness of solutions of (1.1) without the
condition (1.6). More precisely, we will consider the following equation:

(1.7) x′′ + n2x+ φ(x) + g′′(x)q(t) = 0,
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where n ∈ N, q(t) ∈ C13(R/2πZ) and φ(x) ∈ C12(R) satisfies (1.3) and

(1.8) lim
|x|→+∞

x12φ(12)(x) = 0,

while g(x) satisfies

(1.9) |g(k)(x)| ≤ C, 0 ≤ k ≤ 14

for some C > 0.
Obviously, in our situation ψ(x, t) = φ(x)+g′′(x)q(t), which does not necessarily,

which satisfy (1.6). For example, if φ(x) = arctanx and g(x) = cosx, then ψ(x, t) =
arctanx− cos x · q(t).

The main result of this paper is as follows:

Theorem 1. Let n ∈ N, q(t) ∈ C13(R/2πZ). Suppose φ(x) satisfies (1.3), (1.8)
and φ(+∞) �= φ(−∞), g(x) satisfies (1.9). Then all solutions of (1.7) are bounded.
That is, each solution x = x(t) of (1.7) exists on (−∞,+∞) and supt∈R(|x(t)| +
|x′(t)|) < +∞.

Remark 1.1. Recently, Jiao, Piao and Wang [4] studied the equation

(1.10) x′′ + ω2x+ φ(x) = Gx(x, t) + p(t),

where ω ∈ R+\Q satisfies the Diophantine condition and φ, p are similar to in (1.2).
They proved that if |Di

xD
j
tG(x, t)| ≤ C, then all solutions of (1.10) are bounded.

This result together with Theorem 1 implies that the growth condition is not necessary
for the Lagrangian stability of Duffing equations. In our future work, we will extend
Theorem 1 to a more general situation which includes (1.2) as a special case.

The study of the boundedness problem for Duffing equations was in early 1960’s
by Littlewood [7]. In 1976, by Moser’s small twist theorem [14], Morris [13] first
obtained the boundedness result for the equation

x′′ + x3 = p(t)

with p(t+ 2π) = p(t) piecewise continuous.
Since then Moser’s small twist theorem has become the most important tool in the

study of Littlewood’s problem. The main idea is as follows.
By means of transformation theory the original system outside of a large disc

D = {(x, x′) ∈ R2 : x2 + x′2 ≤ r2} in (x, x′)-plane is transformed into a perturbation
of an integrable Hamiltonian system. The Poincaré map of the transformed system is
closed to a so-called twist map in R2\D. Then Moser’s twist theorem guarantees the
existence of arbitrarily large invariant curves diffeomorphic to circles and surrounding
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the origin in the (x, x′)-plane. Every such curve is the base of a time-periodic and flow-
invariant cylinder in the extended phase space (x, x′, t) ∈ R2 ×R, which confines the
solutions in the interior and leads to a bound of these solutions.

The rest of this paper is organized as follows. In Section 2, we deal with some
technical lemmas. In Section 3, we will make some more canonical transformations
such that the Poincaré map of the new system is close to the twist map. The proof of
Theorem 1 will be given in the last section.

Throughout this paper, we denote by c < 1 and C > 1, respectively, two universal
positive constants not concerning their quantities.

2. SOME CANONICAL TRANSFORMATIONS

In this section, we will state some technical lemmas which will be used later.
Throughout this paper, without loss of generality we assume that φ(+∞) > φ(−∞).

Let y = −n−1x′. Then (1.7) is equivalent to the following equations:

x′ = −ny, y′ = nx + n−1φ(x) + n−1g′′(x)q(t),

which is a planar non-autonomous Hamiltonian system

(2.1) x′ = −∂H
∂y

(x, y, t), y′ =
∂H

∂x
(x, y, t)

with Hamiltonian

(2.2) H(x, y, t) =
1
2
n(x2 + y2) +

1
n

Φ(x) +
1
n
g′(x)q(t),

where Φ(x) =
∫ x
0 φ(x)dx.

Under the transformation

x = r
1
2 cosnθ, y = r

1
2 sinnθ

with (r, θ) ∈ R+ ×R/2πZ

n , the system (2.1) is transformed into another system

(2.3) r′ = −∂h
∂θ
, θ′ =

∂h

∂r
,

where

(2.4) h(r, θ, t) = r + f1(r, θ) + f2(r, θ, t),

and f1 = 2
n2 Φ(r

1
2 cosnθ), f2 = 2

n2 g
′(r

1
2 cosnθ) · q(t).

As n is a positive integer, the function h(r, θ, t) is 2π-periodic in θ.
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For any function f(·, θ), we denote by [f ](·) the average value of f(·, θ) over S1,
that is,

[f ](·) :=
1
2π

∫ 2π

0
f(·, θ)dθ.

From (1.3), (1.8) and the rule of L’Hospital, it follows that

(2.5) |xkφ(k)(x)| ≤ C, for 0 ≤ k ≤ 12

and

(2.6) lim
|x|→+∞

xkφ(k)(x) = 0, for 0 ≤ k ≤ 12.

Then similar to [8], the following two lemmas hold:

Lemma 2.1. It holds that:

(2.7)
|f1(r, θ)| ≤ C · r 1

2 , |[f1](r)| ≤ C · r 1
2 ,∣∣∣∣∂f1∂θ

(r, θ)
∣∣∣∣ ≤ C · r 1

2 ,

∣∣∣∣∂2f1
∂θ2

(r, θ)
∣∣∣∣ ≤ C · r.

Moreover, for 1 ≤ k ≤ 12,

(2.8)

∣∣∣∣∂kf1
∂rk

(r, θ)
∣∣∣∣ ≤ C · r−k+ 1

2 ,

∣∣∣∣dk[f1]
drk

(r)
∣∣∣∣ ≤ C · r−k+ 1

2 ,∣∣∣∣∂k+1f1
∂rk∂θ

(r, θ)
∣∣∣∣ ≤ C · r−k+ 1

2 .

Lemma 2.2. The following conclusion holds true:

(2.9) |f2(r, θ, t)| ≤ C,

∣∣∣∣∂f2∂θ
(r, θ, t)

∣∣∣∣ ≤ C · r 1
2 ,

∣∣∣∣∂2f2
∂θ2

(r, θ, t)
∣∣∣∣ ≤ C · r.

Moreover, for 1 ≤ k + l ≤ 12, we have

(2.10)
∣∣∣∣∂k+lf2
∂rk∂tl

(r, θ, t)
∣∣∣∣ ≤ C · r−k

2 ,

∣∣∣∣∂k+l+1f2
∂rk∂tl∂θ

(r, θ, t)
∣∣∣∣ ≤ C · r−k

2
+ 1

2 .

Again from [8], we have that

Lemma 2.3. The following conclusions hold:

(2.11) lim
r→+∞

√
r[f1]′(r) =

1
πn2

{φ(+∞) − φ(−∞)},

(2.12) lim
r→+∞

[f1](r)√
r

=
2
πn2

{φ(+∞)− φ(−∞)},

(2.13) lim
r→+∞ r

3
2 [f1]′′(r) = − 1

2πn2
{φ(+∞)− φ(−∞)}.
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From Lemma 2.3, it follows that for r � 1

(2.14) c ·r 1
2 < [f1](r) < C ·r 1

2 , c ·r− 1
2 < [f1]′(r) < C ·r− 1

2 , c ·r− 3
2 < |[f1]′′(r)|.

2.1. Exchange of the role of time and angle variables

Observe that
rdθ − hdt = −(hdt− rdθ).

Thus if one can solve (2.4) for r such that r = r(h, t, θ), then

(2.15)
dh

dθ
= −∂r

∂t
(h, t, θ),

dt

dθ
=
∂r

∂h
(h, t, θ),

i.e., (2.15) is a Hamiltonian system with Hamiltonian r = r(h, t, θ) and now the action,
angle and time variables are h, t, and θ, respectively. This trick has been used in [6]
and [8].

From Eq.(2.4) and Lemma 2.1, 2.2, one can easily see that

lim
r→+∞

h

r
= 1 > 0

and for r� 1
∂h

∂r
= 1 +

∂

∂r
f1(r, θ) +

∂

∂r
f2(r, θ, t)> 0.

Thus by the implicit function theorem, we have that there exists a function R =
R(h, t, θ) such that

(2.16) r(h, t, θ) = h −R(h, t, θ).

Moreover, for h� 1,
|R(h, t, θ)| ≤ h/2

and R(h, t, θ) is C13 in h, t and θ.
From (2.4), it holds that

(2.17) R = f1(h− R, θ) + f2(h−R, θ, t).
The following three lemmas are similar to the ones in [8] and we give the proof of
them in the appendix for the convenience of readers.

Lemma 2.4. Assume R(h, t, θ) is defined by (2.17). Then for h� 1 it holds that

(2.18) |R| ≤ C · h 1
2 , |∂R

∂θ
| ≤ C · h 1

2 , |∂
2R

∂θ2
| ≤ C · h, | ∂

k+lR

∂hk∂tl
| ≤ C · h−k

2 ,

for 1 ≤ k + l ≤ 13.
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In (2.17), let

(2.19) R = f1(h, θ) + R1(h, t, θ).

Then

(2.20)
R1(h, t, θ)

= − ∂

∂r
f1(h, θ) · R+

∫ 1

0

∫ 1

0

∂2

∂r2
f1(h−sμR, θ)μR2dsdμ+f2(h−R, θ, t).

The following lemma gives an estimate of R1(h, t, θ).

Lemma 2.5. It holds that

(2.21) |∂
k+lR1

∂hk∂tl
| ≤ C · h−k

2 , 0 ≤ k + l ≤ 11.

From Lemma 2.4 and 2.5, we have the following estimate on R:

Lemma 2.6. It holds that

(2.22) | ∂
k+l+1R

∂hk∂tl∂θ
| ≤ C · h−k

2
+ 1

2 , 1 ≤ k + l ≤ 11.

The following technical lemma will be used to refine the estimates on [R1](h, t).

Lemma 2.7. Let h� 1. Assume that:
(i) g(x) ∈ C1(R) and R,R ∈ C2(R× R/2πZ× R/2πZ);
(ii) |g(x)| ≤ C, |g′(x) ≤ C;

(iii) |R(h, t, θ)| ≤ C · h 1
2 , |∂R

∂θ | ≤ C · h 1
2 , |∂2R

∂θ2 | ≤ C · h;
(iv) |R|, |∂R∂θ | ≤ C · h−a with a ≥ 0.

Then for any constant δ ∈ (0, 1
3 ), it holds that

(2.23)
∣∣∣∣
∫ 2π

0
R(h, t, θ)g′((h−R(h, t, θ))

1
2 cosnθ)dθ

∣∣∣∣ ≤ C · h−( δ
2
+a).

Proof. Let [0, 2π] = I1
⋃
I2 · · ·

⋃
In, Ii =

[
(i−1)2π

n , i2π
n

]
= I1

i

⋃
I2
i ,

where

I1
i =

[ (i− 1)2π
n

,
(i− 1)2π + h−

δ
2

n

]
⋃[ (i− 1)2π + π − h− δ

2

n
,
(i− 1)2π + π + h−

δ
2

n

]
⋃[ (i− 1)2π + 2π − h−

δ
2

n
,
(i− 1)2π + 2π

n

]
,
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I2
i =

[(i− 1)2π + h−
δ
2

n
,
(i− 1)2π + π − h−

δ
2

n

]
⋃[(i− 1)2π + π + h−

δ
2

n
,
(i− 1)2π + 2π − h− δ

2

n

]
.

Then∫ 2π

0
R(h, t, θ)g′((h−R)

1
2 cosnθ)dθ

=
n∑

i=1

(∫
I1
i

R(h, t, θ)g′((h−R)
1
2 cosnθ)dθ+

∫
I2
i

R(h, t, θ)g′((h− R)
1
2 cosnθ)dθ

)
.

Obviously, |I1
i | ≤ C · h− δ

2 , where | · | denotes the Lebesgue measure. Then from
condition (ii) and (iv), it is easy to see that∣∣∣∣∣

n∑
i=1

∫
I1
i

R(h, t, θ)g′((h−R)
1
2 cosnθ)dθ

∣∣∣∣∣ ≤ C · h− δ
2
−a.

To estimate the integral on I2
i , we first estimate the integral on the interval

I21
i =

[(i− 1)2π + h−
δ
2

n
,

(i− 1)2π + π − h−
δ
2

n

]
.

By direct computation, we have

Dθ((h−R)
1
2 cosnθ) = −1

2
(h− R)−

1
2 · ∂R

∂θ
· cosnθ − n(h− R)

1
2 sinnθ.

From condition (iii), it holds that |n(h−R)
1
2 sinnθ|≥c·h 1−δ

2 and | 12(h−R)−
1
2

∂R
∂θ cosnθ|

≤ C for θ ∈ I21
i , which implies

(2.24) |Dθ((h−R)
1
2 cosnθ)| ≥ c · h 1−δ

2 .

Similarly, we have

D2
θ((h−R)

1
2 cosnθ)

= −1
4
(h− R)−

3
2 (
∂R

∂θ
)2 cosnθ − (h− R)−

1
2

[
1
2
∂2R

∂θ2
cosnθ − n

∂R

∂θ
sinnθ

]
−n2(h−R)

1
2 cosnθ,

which together with condition (iii) implies

(2.25) |D2
θ((h−R)

1
2 cosnθ)| ≤ C · h 1

2 .
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Let θ1 = (i−1)2π+h− δ
2

n , θ2 = (i−1)2π+π−h− δ
2

n . By integration by parts, we have that

∫
I21
i

R(h, t, θ)g′((h−R)
1
2 cosnθ)dθ =

∫
I21
i

R(h, t, θ)dg((h−R)
1
2 cosnθ)

Dθ((h− R)
1
2 cosnθ)

=
R(h, t, θ)g((h−R)

1
2 cosnθ)

Dθ((h− R)
1
2 cosnθ)

∣∣∣θ=θ2

θ=θ1

−
∫

I21
i

g((h− R)
1
2 cosnθ)∂R

∂θ

Dθ((h−R)
1
2 cosnθ)

dθ

+
∫

I21
i

R(h, t, θ)g((h−R)
1
2 cosnθ)D2

θ((h−R)
1
2 cosnθ)

(Dθ((h−R)
1
2 cosnθ))2

dθ.

Then conditions (i), (iv) and (2.24) imply

|R(h, t, θi)g((h−R)
1
2 cosnθi) · (Dθ((h−R)

1
2 cosnθi))−1| ≤ C ·h−a− 1

2
+ δ

2 , i = 1, 2

|g((h−R)
1
2 cosnθ)

∂R
∂θ

· (Dθ((h− R)
1
2 cosnθ))−1| ≤ C · h−a− 1

2
+ δ

2 , θ ∈ I21
i .

Thus conditions (i), (iv) and (2.25) imply that for θ ∈ I21
i , it holds that

|R(h, t, θ)((h−R)
1
2 cosnθ)D2

θ((h−R)
1
2 cosnθ) · (Dθ((h−R)

1
2 cosnθ))−2|

≤ C · h−a− 1
2
+δ .

Similarly, we have the same estimate for the other parts of I22
i . Hence from the fact

0 < δ < 1
3 , we obtain (2.23). This completes the proof of this lemma.

For F (h, t, θ) = g′((h−R)
1
2 cosnθ)v(t, θ), we have

[F ](h, t) =
1
2π

∫ 2π

0
g′((h−R)

1
2 cosnθ)v(t, θ)dθ.

The following estimates hold true for [F ]:

Corollary 1. Assume that

(i) g(x) satisfies (1.9);

(ii) |∂lv(t,θ)
∂tl

|, |∂l+1v(t,θ)
∂tl∂θ

| ≤ C, l/ ≤ 10;

(iii) |R|, |∂R
∂θ | ≤ C · h 1

2 , |∂2R
∂θ2 | ≤ C · h;

(iv) | ∂k+lR
∂hk∂tl

| ≤ C · h−k
2 , | ∂k+l+1R

∂hk∂tl∂θ
| ≤ C · h−k

2
+ 1

2 , 1 ≤ k + l ≤ 10.

Then for any constant δ ∈ (0, 1
3), it holds that

(2.26)
∣∣∣∣ ∂k+l

∂hk∂tl
[F ](h, t)

∣∣∣∣ ≤ C · h− δ
2
−k

2 , 0 ≤ k + l ≤ 10.
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Proof.
(a) When k + l = 0, (2.26) is deduced from (2.23), where we set R = v(t, θ).

(b) When k+ l > 0, one can easily prove that ∂k+l[F ]
∂hk∂tl

(h, t) is the sum of some finite
terms with the following form:

1
2π

∫ 2π

0

2
n2

∂k+l1

∂hk∂tl1
(g′((h−R)

1
2 cosnθ)) · ∂

l2v(t, θ)
∂tl2

dθ,

where l1 ≥ 0, l2 ≥ 0, l1 + l2 = l.

(b1) when k = 0, l/1 = 0, l/2 = l > 0. Then (2.26) is deduced from (2.23),
where we set R = ∂lv(t,θ)

∂tl
.

(b2) when k+ l1 ≥ 1, it can be seen that ∂k+l1

∂hk∂tl1
g′((h−R)

1
2 cosnθ) is the sum

of the term like

g(m+1)(u · cosnθ)
∂k1+l11u

∂hk1∂tl
1
1

· ∂
k2+l12u

∂hk2∂tl
1
2

· · · ∂
km+l1mu

∂hkm∂tl
1
m
· (cosnθ)m,

where u = (h−R)
1
2 , k1+· · ·+km = k, l11 +· · ·+l1m = l1, ki+l1i ≥

1. Notice that for i + j ≥ 1, conditions (iii), (iv) imply the following
conclusions ∣∣∣∣ ∂i+ju

∂hi∂tj

∣∣∣∣ ≤ C · h− i
2 ,

∣∣∣∣ ∂i+j+1u

∂hi∂tj∂θ

∣∣∣∣ ≤ C · h− i
2 .

Consequently we have that

(2.27)

∣∣∣∣∣ ∂
k1+l11u

∂hk1∂tl
1
1

· ∂
k2+l12u

∂hk2∂tl
1
2

· · · ∂
km+l1mu

∂hkm∂tl1m

∣∣∣∣∣ ≤ C · h−k
2 ,

(2.28)

∣∣∣∣∣ ∂∂θ
{ ∂k1+l11u

∂hk1∂tl
1
1

· ∂
k2+l12u

∂hk2∂tl
1
2

· · · ∂
km+l1mu

∂hkm∂tl1m

}∣∣∣∣∣ ≤ C · h−k
2 .

So (2.26) follows from condition (ii), (2.23), (2.27), (2.28) and Lemma 2.7 with R =
∂k1+l11u

∂hk1∂tl
1
1
· ∂k2+l12u

∂hk2∂tl
1
2
· · · ∂km+l1mu

∂hkm∂tl
1
m
· (cosnθ)m · ∂l2v(t,θ)

∂tl2
. Thus the proof of the corollary

ends.

From (2.19), we obtain that the Hamiltonian r(h, t, θ) in (2.16) is of the form:

(2.29) r = h − f1(h, θ)−R1(h, t, θ),

where f1(h, θ) R1(h, t, θ) satisfy (2.8) and (2.21), respectively.
Now the system (2.15) can be written in the form

(2.30)
dh

dθ
=
∂R1

∂t
,

dt

dθ
= 1− ∂f1

∂h
(h, θ)− ∂R1

∂h
.
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3. MORE CANONICAL TRANSFORMATIONS

In this section, we will make some more canonical transformations such that the
Poincaré map of the new system is close to a twist map.

Lemma 3.1. There exists a canonical transformation Ψ1 of the form:

Ψ1 : h = 	, t = ϕ+ T (	, θ)

with T (	, θ) = T (	, θ+ 2π) such that the transformed system of (2.30) is of the form

(3.1)
d	

dθ
= −∂r1

∂ϕ
(	, ϕ, θ),

dϕ

dθ
=
∂r1
∂	

(	, ϕ, θ),

where
r1(	, ϕ, θ) = 	− [f1](	)−R2(	, ϕ, θ).

Moreover, the new perturbation R2 satisfies

(3.2)
∣∣∣∂k+lR2

∂	k∂ϕl
(	, ϕ, θ)

∣∣∣≤ C · 	−k
2 ,

for k + l ≤ 10.

proof. We construct the canonical transformation by means of a generating function:

Ψ1 : 	 = h +
∂S1

∂ϕ
(h, ϕ, θ), t = ϕ+

∂S1

∂h
(h, ϕ, θ).

We choose

S1 =
∫ θ

0
(f1(h, s)− [f1](h))ds.

Let T (h, θ) = ∂S1
∂h , then the transformation Ψ1 is of the form

h = 	, t = ϕ+ T (	, θ).

Define

(3.3) R2(	, ϕ, θ) = R1(	, ϕ, θ)+
∫ 1

0

∂R1

∂t
(	, ϕ+ μT (	, θ), θ)T (	, θ)dμ.

Then the transformed Hamiltonian function is of the form

r1(	, ϕ, θ) = 	− [f1](	)−R2(	, ϕ, θ).

By the definition of T and (2.8), we can obtain
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(3.4)
∣∣∣∂kT

∂	k
(	, θ)

∣∣∣ ≤ C · 	−k− 1
2 .

Combining (3.4) with (2.21), we have

(3.5)
∣∣∣ ∂k+l

∂	k∂ϕl

∫ 1

0

∂R1

∂t
(	, ϕ+ μT (	, θ), θ)T (	, θ)dμ

∣∣∣≤ C · 	−k
2
− 1

2 ,

which together with (2.21) yields (3.2). So the proof of the lemma ends.

With the idea in [16], we construct a canonical transformation as follows:

Lemma 3.2. Under the following transformation Ψ2:

Ψ2 : ϑ = θ, ρ = 	, τ = ϕ− θ,

(3.1) is transformed into the following system

(3.6)
dρ

dϑ
= −∂r2

∂τ
(ρ, τ, ϑ),

dτ

dϑ
=
∂r2
∂ρ

(ρ, τ, ϑ),

where
r2(ρ, τ, ϑ) = −[f1](ρ)−R3(ρ, τ, ϑ).

Moreover the new perturbation R3 satisfies

(3.7)
∣∣∣∂k+lR3

∂ρk∂τ l
(ρ, τ, ϑ)

∣∣∣≤ C · ρ−k
2 ,

∣∣∣∂k+l[R3]
∂ρk∂τ l

(ρ, τ)
∣∣∣ ≤ C · (ρ−k + ρ−

k
2
− δ

2 )

for k + l ≤ 10.

Proof. Under the transformation Ψ2, the transformed system is of the form

dρ

dϑ
= −∂r2

∂τ
(ρ, τ, ϑ),

dτ

dϑ
=
∂r2
∂ρ

(ρ, τ, ϑ),

where r2(ρ, τ, ϑ) = −[f1](ρ)−R3(ρ, τ, ϑ) and R3 is of the following form

(3.8) R3(ρ, τ, ϑ) = R2(ρ, τ + ϑ, ϑ),

which implies ∂k+l

∂ρk∂τ lR3(ρ, τ, ϑ) = ∂k+l

∂ρk∂τ lR2(ρ, τ, ϑ).
From (3.3) and (3.8), it follows that

R3(ρ, τ, ϑ) = R1(ρ, τ + ϑ, ϑ) +
∫ 1

0

∂R1

∂t
(ρ, τ + ϑ+ μT (ρ, ϑ), ϑ)T (ρ, ϑ)dμ.

(2.20) gives
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R1(ρ, τ + ϑ, ϑ) = −∂f1
∂r

(ρ, ϑ)R(ρ, τ + ϑ, ϑ) + f2(ρ−R(ρ, τ + ϑ, ϑ), ϑ, τ + ϑ)

+
∫ 1

0

∫ 1

0

∂2f1
∂r2

(ρ− sμR(ρ, τ + ϑ, ϑ), ϑ)μR2(ρ, τ + ϑ, ϑ)dsdμ.

With Lemma 2.1, 2.5 and (3.5), we have∣∣∣∣ ∂k+l

∂ρk∂τ l

(
∂f1
∂r

(ρ, ϑ)R(ρ, τ + ϑ, ϑ)
)∣∣∣∣ ≤ C · (ρ−k + ρ−

k
2
− 1

2 ),

∣∣∣∣ ∂k+l

∂ρk∂τ l

∫ 1

0

∫ 1

0

∂2f1
∂r2

(ρ−sμR(ρ, τ+ϑ, ϑ), ϑ)μR2(ρ, τ+ϑ, ϑ)dsdμ
∣∣∣∣≤C · ρ−k

2
− 1

2 ,

∣∣∣∣ ∂k+l

∂ρk∂τ l

∫ 1

0

∂R1

∂t
(ρ, τ + ϑ+ μT (ρ, ϑ), ϑ)T (ρ, ϑ)dμ

∣∣∣∣≤ C · ρ−k
2
− 1

2 .

Let R̃(ρ, τ, ϑ) = R(ρ, τ + ϑ, ϑ). From Lemma 2.4, 2.6, it is not difficulty to see that

(3.9)
|R̃| ≤ C · ρ 1

2 , | ∂
∂ϑ
R̃| ≤ C · ρ 1

2 , | ∂
2

∂ϑ2
R̃| ≤ C · ρ,

| ∂
k+l

∂ρk∂τ l
R̃| ≤ C · ρ−k

2 , | ∂k+l+1

∂ρk∂τ l∂ϑ
R̃| ≤ C · ρ−k

2
+ 1

2 .

To finish the proof of (3.7), it suffices to see that

[f̃2](ρ, τ) =
1
2π

∫ 2π

0

2
n2
g′((ρ− R̃)

1
2 cosnϑ)q(τ + ϑ)dϑ

satisfies

(3.10)
∣∣∣∂k+l[f̃2]
∂ρk∂τ l

(ρ, τ)
∣∣∣ ≤ C · ρ− δ

2
−k

2 , k + l ≤ 10,

which can be obtained from Corollary 1 and (3.9). Thus we complete the proof.

Lemma 3.3. Consider the system with Hamiltonian

(3.11) r(ρ, τ, θ) = −[f1](ρ) + g(ρ, τ) +R(ρ, τ, θ),

where [f1](ρ) satisfies (2.7), (2.8) and (2.14), while g(ρ, τ), R(ρ, τ, θ) satisfy respec-
tively

(3.12)
∣∣∣ ∂k+lg

∂ρk∂τ l
(ρ, τ)

∣∣∣ ≤ C · (ρ−k + ρ−
k
2
− δ

2 ),
∣∣∣ ∂k+l

∂ρk∂τ l
R(ρ, τ, θ)

∣∣∣≤ C · ρ−k
2
−ε,

for k + l ≤ n with δ, ε ≥ 0. Then there exists a canonical transformation Ψ of the
form:
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Ψ : ρ = I + u(I, ψ, θ), τ = ψ + v(I, ψ, θ)

such that the Hamiltonian of the transformed system of (3.11) is

r̂(I, ψ, θ) = −[f1](I) + ĝ(I, ψ)+ R̂(I, ψ, θ),

where ĝ, R̂ satisfy

(3.13)
∣∣∣ ∂k+l ĝ

∂Ik∂ψl
(I, ψ)

∣∣∣ ≤ C · (I−k + I−
k
2
− δ

2 ),
∣∣∣ ∂k+lR̂

∂Ik∂ψl
(I, ψ, θ)

∣∣∣≤ C · I−k
2
− 1

2
−ε,

for k + l ≤ n− 1.

Proof. We construct the canonical transformation by means of a generating
function:

Ψ : ρ = I +
∂S

∂τ
(I, τ, θ), ψ = τ +

∂S

∂I
(I, τ, θ).

Then the transformed Hamiltonian function r̂ is of the form

r̂ = −[f1](I +
∂S

∂τ
) + g(I +

∂S

∂τ
, τ) +R(I +

∂S

∂τ
, τ, θ) +

∂S

∂θ

= −[f1](I) + g(I, τ) +R(I, τ, θ)+
∂S

∂θ
−

∫ 1

0
[f1]′(I + μ

∂S

∂τ
)
∂S

∂τ
dμ

+
∫ 1

0

∂g

∂ρ
(I + μ

∂S

∂τ
, τ)

∂S

∂τ
dμ+

∫ 1

0

∂R

∂ρ
(I + μ

∂S

∂τ
, τ, θ)

∂S

∂τ
dμ.

Define

(3.14) [R](I, τ) =
1
2π

∫ 2π

0
R(I, τ, θ)dθ.

Now we choose S(I, τ, θ)

S(I, τ, θ) = −
∫ θ

0
(R(I, τ, s)− [R](I, τ))ds.

It is obvious that S(I, τ, θ) is 2π-periodic in τ, θ and

(3.15)
∣∣∣ ∂k+lS

∂Ik∂τ l
(I, τ, θ)

∣∣∣≤ C · I−k
2
−ε.

Since τ = ψ − ∂S
∂I , by Taylor’s formula, we can write

g(I, τ) = g(I, ψ)−
∫ 1

0

∂g

∂τ
(I, ψ− μ∂S

∂I
)
∂S

∂I
dμ,
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[R](I, τ) = [R](I, ψ)−
∫ 1

0

∂[R]
∂τ

(I, ψ− μ
∂S

∂I
)
∂S

∂I
dμ.

Let ĝ(I, ψ) = g(I, ψ)+ [R](I, ψ) and

R̂(I, ψ, θ) = −
∫ 1

0

∂g

∂τ
(I, ψ− μ∂S

∂I
)
∂S

∂I
dμ−

∫ 1

0

∂[R]
∂τ

(I, ψ− μ
∂S

∂I
)
∂S

∂I
dμ

−
∫ 1

0
[f1]′(I + μ

∂S

∂τ
)
∂S

∂τ
dμ+

∫ 1

0

∂g

∂ρ
(I + μ

∂S

∂τ
, τ)

∂S

∂τ
dμ

+
∫ 1

0

∂R

∂ρ
(I + μ

∂S

∂τ
, τ, θ)

∂S

∂τ
dμ.

Then the transformed Hamiltonian is of the form

r̂(I, ψ, θ) = −[f1](I) + ĝ(I, ψ)+ R̂(I, ψ, θ).

We can solve the two equations in Ψ for ρ and τ due to (3.15) and write ρ = ρ(I, ψ, θ)
and τ = τ(I, ψ, θ). Moreover we have that

(3.16)

∣∣∣ ∂k+l

∂Ik∂ψl
τ
∣∣∣ ≤ C · I−k

2 , 1 ≤ k + l ≤ n,

∣∣∣ ∂k+l

∂Ik∂ψl
ρ
∣∣∣ ≤ C, k + l = 1;

∣∣∣ ∂k+l

∂Ik∂ψl
ρ
∣∣∣ ≤ C · I−k

2 , 2 ≤ k + l ≤ n.

For the convenience of readers, we give the proof of (3.16) in Appendix.
Thus (3.13) follows from (2.8) and (3.16), (3.12). This ends the proof of this

lemma.

By repeated use of Lemma 3.3, we obtain from Lemma 3.2 that

Corollary 2. There exists a canonical transformation Ψ3 of the form:

Ψ3 : ρ = I + u3(I, ψ, ϑ), τ = ψ + v3(I, ψ, ϑ)

such that the system (3.6) is transformed into the one with Hamiltonian

(3.17) r3(I, ψ, ϑ) = −[f1](I)− g(I, ψ)−R4(I, ψ, ϑ)

where [f1](I) satisfies Lemma 2.3 and (2.14), while g(I, ψ) and R4 satisfy

(3.18)
∣∣∣ ∂k+lg

∂Ik∂ψl
(I, ψ)

∣∣∣≤ C · (I−k + I−
k
2
− δ

2 ),

(3.19)
∣∣∣∂k+lR4

∂Ik∂ψl
(I, ψ, ϑ)

∣∣∣≤ C · I−k
2
− 5

2

for k + l ≤ 5, respectively.
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Introducing a new time variable by γ = −ϑ, let R4(I, ψ, γ) = R4(I, ψ,−γ), then
the system with Hamiltonian (3.17) can be rewritten as

(3.20)
dI

dγ
= −∂H3

∂ψ
(I, ψ, γ),

dψ

dγ
=
∂H3

∂I
(I, ψ, γ),

where
H3(I, ψ, γ) = −r3(I, ψ,−γ) = [f1](I) + g(I, ψ)+R4(I, ψ, γ)

and g(I, ψ), R4 satisfy respectively

(3.21)
∣∣∣ ∂k+lg

∂Ik∂ψl
(I, ψ)

∣∣∣ ≤ C · (I−k + I−
k
2
− δ

2 ), k + l ≤ 5,

(3.22)
∣∣∣∂k+lR4

∂Ik∂ψl
(I, ψ, γ)

∣∣∣≤ C · I−k
2
− 5

2 , k + l ≤ 5.

Next we will define a canonical transformation such that the leading term in Hamil-
tonian is independent of angle variable.

Lemma 3.4. For any I0 > 1, there exist c · I0 ≤ A1, A2, B1, B2 ≤ C · I0 satisfying

c · I
δ
4
0 ≤ A2−A1, B2−B1 ≤ C · I

δ
4
0 and a canonical transformation Ψ4 : [B1, B2]×

S1 	→ [A1, A2] × S1, (ζ, η) 	→ (I, ψ) = Ψ4(ζ, η) such that the system (3.20) is
transformed into the one with Hamiltonian

(3.23) H4(ζ, η, γ) = G(ζ) +R5(ζ, η, γ).

Moreover, G(ζ) satisfies

(3.24)
c · I < ζ < C · I, c · ζ− 1

2 < G′(ζ) < C · ζ− 1
2 ,

c · ζ− 3
2 < |G′′(ζ)|, |G(k)(ζ)| < C · ζ−k

2 k = 1, 2, 3, 4, 5,

and R5(ζ, η, γ) satisfies

(3.25)
∣∣∣ ∂k+l

∂ζk∂ηl
R5(ζ, η, γ)

∣∣∣≤ C · ζ−k
2
− 5

2 , for k + l ≤ 5.

Proof. In the following, we will follow the method of [2] (also see [6]) to
eliminate angle variable ψ from the leading term [f1](I) + g(I, ψ) in H3. We define
a canonical transformation Ψ4 by means of a generating function S4(ψ, ζ):

(3.26) Ψ4 :
∂S4

∂ψ
(ψ, ζ) = I,

∂S4

∂ζ
(ψ, ζ) = η
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such that the Hamiltonian of the transformed system would be η-independent in its
leading part, that is,

(3.27) [f1](I) + g(I, ψ)≡ G(ζ).

As an additional condition, we suppose the map preserves the periodicity: if Ψ4 :
(I, ψ) −→ (ζ, η), then Ψ4 : (I, ψ + 2π) −→ (ζ, η + 2π). These two conditions can
define G(ζ) (up to a constant).
In fact, owing to (2.14), (3.21), we can solve (3.27) for I such that I = I(G, ψ) by
Implicit function theorem.

Define
Ī(G) =

1
2π

∫ 2π

0
I(G, ψ)dψ.

From (3.26), S4(ψ, ζ) can be taken as

(3.28) S4(ψ, ζ) =
∫ ψ

0
I(G, s)ds.

The periodicity condition translates into

∂S4

∂ζ
(2π, ζ)− ∂S4

∂ζ
(0, ζ) =

∫ 2π

0

∂I

∂G
(G, s)ds ·G′(ζ) = 2π,

which holds if we choose G = Ī−1(ζ).
We will look for an interval [A1, A2] such that ∂2G

∂I2 (I, ψ)(ψ is a parameter) is
nonzero on it. Consider the interval [I0, 2I0] with I0 > 1. From (2.14) and (3.21), it
follows that the set {∂G

∂I (I, ψ)
∣∣I ∈ [ 54I0,

7
4I0]} covers some interval with length longer

than c · I−
1
2

0 . In fact, we have

∣∣∣∣∂G∂I
∣∣∣ 7
4
I0

5
4
I0

∣∣∣∣ > |
∫ 7

4
I0

5
4
I0

[f1]′′(I)dI | −
∣∣∣∣ ∂∂I g(I, ψ)

∣∣∣7
4
I0

5
4
I0

∣∣∣∣
> |

∫ 7
4
I0

5
4
I0

[f1]′′(I)dI | − C · I−
1
2
− δ

2
0

=
∫ 7

4
I0

5
4
I0

|[f1]′′(I)|dI − C · I−
1
2
− δ

2
0 > c · I−

1
2

0 .

Thus by Mean Value theorem, there exists some point A1 ∈ [ 54I0,
7
4I0] such that

| ∂2

∂I2G(A1, ψ)| ≥ c · I−
3
2

0 . On the other hand, (2.14) and (3.21) imply | ∂3

∂I3G(I, ψ)| ≤
C · I− 3

2
− δ

2 . Let A2 = A1 + I
δ
4
0 . Consequently, for each I ∈ [A1, A2], we have
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(3.29)

∣∣∣∣ ∂2

∂I2
G(I, ψ)

∣∣∣∣ = |∂
2G

∂I2
(A1, ψ) +

∂2

∂I2
G(I, ψ)− ∂2G

∂I2
(A1, ψ)|

≥ |∂
2G

∂I2
(A1, ψ)| − |∂

2G

∂I2
(I, ψ)− ∂2G

∂I2
(A1, ψ)|

≥ c · I−
3
2

0 − |∂
3G

∂I3
(A1 + μ(I −A1), ψ)(I −A1)|

≥ c · I−
3
2

0 −C · I−
3
2
− δ

2
0 · I

δ
4
0 ≥

1
2
c · I−

3
2

0 ≥ 1
2
c · I− 3

2 .

On [A1, A2], (2.14), (3.21) and (3.29) yield that G(I, ψ) = [f1](I) + g(I, ψ)
satisfies

(3.30)
c · I−k+ 1

2 <
∂kG

∂Ik
< C · I−k+ 1

2 , k = 0, 1; c · I− 3
2 < |∂2G

∂I2 |;

| ∂
k+l

∂Ik∂ψl
G(I, ψ)| ≤ C · I−k

2 , 0 < k + l ≤ 5.

Moreover, we can easily prove the following estimates:

(3.31)
c · I 1

2 < | ∂I
∂G

(G, ψ)|; c < | ∂
2I

∂G2
(G, ψ)|;

| ∂k+l

∂Gk∂ψl
I(G, ψ)| ≤ C · I 1

2 , 0 < k + l ≤ 5.

(3.31) yields that

(3.32)
c · I < Ī < C · I ; c · I 1

2 < Ī ′(G) < C · I 1
2 ; c < |Ī ′′(G)|;

|Ī(k)(G)| < C · I 1
2 k = 1, 2, 3, 4, 5.

Let

(3.33) B1 = Ī(G(A1, ψ)), B2 = Ī(G(A2, ψ)).

(3.30) and (3.32) together with the definition of A2 yield that [B1, B2] ⊂ [c · I0, C · I0]
is of length between c · I

δ
4
0 and C · I

δ
4
0 .

Next, we prove that G(ζ) satisfies (3.24) on [B1, B2]. By the definition of G =
Ī−1(ζ) and (3.32), we have

c · I < c ·G2 < ζ = Ī(G) < C ·G2 < C · I.
Differentiating on both sides of ζ = Ī(G) with respect to ζ, one has

(3.34)

G′(ζ) · Ī ′(G) = 1

G′′(ζ)Ī ′(G) + Ī ′′(G) · (G′(ζ))2 = 0

G(K0+1)(ζ)Ī ′(G) +
∑
Ī(m)(G) ·G(k1)(ζ) · · ·G(km)(ζ) = 0,
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where 1 < m ≤ k, ki > 0, k1 + · · ·+ km = K0 + 1. Then (3.24) follows from
(3.32) and (3.34) by induction.
The remain part is devoted to the proof of (3.25). Due to

∂2S4

∂ψ∂ζ
=

∂I

∂G
(G, ψ) ·G′(ζ) > cI

1
2 · cζ− 1

2 > 0,

we can solve ∂S4
∂ζ (ψ, ζ) = η for ψ = ψ(ζ, η) and thus I has the following expression

I =
∂S4

∂ψ
(ψ, ζ) =

∂S4

∂ψ
(ψ(ζ, η), ζ) = I(ζ, η).

Moreover, these two functions satisfy, for 1 ≤ k + l ≤ 5,

(3.35) | ∂
k+lI

∂ζk∂ηl
(ζ, η)| ≤ C · ζ−k

2
+ 1

2 , | ∂
k+lψ

∂ζk∂ηl
(ζ, η)| ≤ C · ζ−k

2 .

In the following, we first express (ζ, η) in terms of (I, ψ) and estimate their deriva-
tives.
From G = Ī−1(ζ) and (3.27), we have the expression for ζ:

(3.36) ζ = Ī(G) = Ī([f1](I) + g(I, ψ)) � M(I, ψ).

Combining (3.26) with (3.28), we have the expression for η:

(3.37)
η =

∂S4

∂ζ
(ψ, ζ)

=
∫ ψ

0

∂

∂G
I(G, s)

∣∣∣
G=[f1](I)+g(I,ψ)

ds ·G′(ζ)
∣∣∣
ζ=M (I,ψ)

� N (I, ψ).

Note that M(I, ψ), N(I, ψ) obey the estimate

(3.38)
∣∣∣∣ ∂k+l

∂Ik∂ψl
M(I, ψ)

∣∣∣∣≤ C · I−k
2
+ 1

2 ,

∣∣∣∣ ∂k+l

∂Ik∂ψl
N (I, ψ)

∣∣∣∣≤ C · I−k
2 .

In fact, by the expression of M(I, ψ), it follows that

∂k+l

∂Ik∂ψl
M(I, ψ) =

∑
Ī(m)(G)

∂k1+l1

∂Ik1∂ψl1
G(I, ψ) · · · ∂km+lm

∂Ikm∂ψlm
G(I, ψ),

where 0 < m ≤ k + l, ki + li > 0, k1 + · · ·+ km = k, l1 + · · ·+ lm = l.

By (3.30) and (3.32), we have∣∣∣∣ ∂k+l

∂Ik∂ψl
M(I, ψ)

∣∣∣∣≤ C · I 1
2 · I− 1

2
(k1+···+km) ≤ C · I−k

2
+ 1

2 .
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To estimate ∂k+l

∂Ik∂ψlN (I, ψ), let

J1(I, ψ) =
∫ ψ

0

∂

∂G
I(G, s)

∣∣∣
G=[f1](I)+g(I,ψ)

ds, J2(I, ψ) = G′(ζ)
∣∣∣
ζ=M (I,ψ)

.

we have

(3.39)
∣∣∣∣ ∂k+l

∂Ik∂ψl
J1(I, ψ)

∣∣∣∣≤ C · I−k
2
+ 1

2 ,

∣∣∣∣ ∂k+l

∂Ik∂ψl
J2(I, ψ)

∣∣∣∣≤ C · I−k
2
− 1

2 .

In fact, by direct computation, we have

∂k+l

∂Ik∂ψl
J1(I, ψ)=

∫ ψ

0

∂k+l

∂Ik∂ψl

∂

∂G
I(G, s)

∣∣∣
G=[f1](I)+g(I,ψ)

ds+
∂k+l−1

∂Ik∂ψl−1

∂

∂G
I(G, ψ).

Thus one can easily prove the first inequality of (3.39) from (3.30) and (3.31). The
second inequality of (3.39) is a consequence of (3.24) and (3.38).
Since J1(I, ψ) · J2(I, ψ) = N (I, ψ), it follows that

| ∂
k+l

∂Ik∂ψl
N (I, ψ)| ≤

∑
k1+k2=k, l1+l2=l

∣∣∣∣ ∂k1+l1

∂Ik
1 ∂ψ

l1
J1(I, ψ) · ∂k2+l2

∂Ik
2 ∂ψ

l2
J2(I, ψ)

∣∣∣∣
≤ C · I−k1

2
+ 1

2 · I−k2
2
− 1

2 ≤ C · I−k
2 .

From the fact that (M(I, ψ), N (I, ψ)) is the inverse of (I(ζ, η), ψ(ζ, η)), (3.35) can
be easily obtained from (3.38).
Obviously

R5(ζ, η, γ) = R4(I(ζ, η), ψ(ζ, η), γ).

So (3.25) follows from (3.22) and (3.35). Thus we end the proof of this lemma.

4. PROOF OF THEOREM 1

In this section, we first give the expression of the Poincaré map of the Hamiltonian
system with the Hamiltonian (3.23). Then we will prove Theorem 1 via Moser’s twist
theorem.

Expression of the Poincaré map
From Lemma 3.4, the Hamiltonian system with the Hamiltonian (3.23) is of the

form

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

dη

dγ
= G′(ζ) +

∂R5

∂ζ
(ζ, η, γ),

dζ

dγ
= −∂R5

∂η
(ζ, η, γ).
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Moreover for ζ ∈ [B1, B2], G and R5 satisfy (3.24) and (3.25), respectively.
Thus the Poincaré map of the equation (4.1) is of the form:

(4.2) P :

{
η1 = η + α(ζ) + F1(ζ, η),

ζ1 = ζ + F2(ζ, η),

where, for ζ ∈ [B1, B2],

(4.3)
c · ζ− 1

2 < α(ζ) < C · ζ− 1
2 , c · ζ− 3

2 < |α′(ζ)|,
|α(k)(ζ)| < C · ζ−k

2
− 1

2 , k = 1, 2, 3, 4

and

(4.4)
∣∣∣∂k+lF1

∂ζk∂ηl
(ζ, η)

∣∣∣≤C · ζ−3−k
2 ,

∣∣∣∂k+lF2

∂ζk∂ηl
(ζ, η)

∣∣∣≤C · ζ− 5
2
−k

2 , 0≤k+l≤4.

Next we make a scale transformation as follows:

(4.5) α(ζ)− α(B1) = B
− 3

2
1 ν, ν ∈ [1, 2].

We solve (4.5) for ζ to obtain ζ = ζ(ν). From the fact B2 − B1 ≥ c · B
δ
4
1 , we have

that ζ([1, 2])⊂ [B1, B2].
Then the Poincaré map P is changed into the following one:

(4.6) P̃ :

⎧⎨
⎩ η1 = η + α(B1) +B

− 3
2

1 ν + F̃1(ν, η)

ν1 = ν + F̃2(ν, η),

where

(4.7) F̃1(ν, η) = F1(ζ(ν), η), F̃2(ν, η) = B
3
2
1 (α(ζ(ν) + F2(ζ(ν), η))− α(ζ(ν))).

From (4.3) and (4.5), we have that

(4.8) |ζ(i)(ν)| ≤ C, 0 < i ≤ 4,

which together with (4.3), (4.4) and (4.7) implies

(4.9) |∂
k+lF̃1

∂νk∂ηl
| ≤ C · B−3

1 , |∂
k+lF̃2

∂νk∂ηl
| ≤ C ·B−2

1 , 0 ≤ k + l ≤ 4.

Since the map P̃ is time 1 map of the Hamiltonian system (3.23), it is area-preserving.
Thus it possesses the intersection property in the annulus [1, 2]× S1, that is, if Γ is an
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embedded circle in [1, 2]× S1 homotopic to a circle ν = constant then P̃ (Γ) ∩ Γ �= ∅.
The proof can be found in [3].

Proof of Theorem 1 via Moser’s twist theorem

Until now, we have verified that the mapping P̃ satisfies all the conditions of
Moser’s small twist theorem [14]. Hence there is an invariant curve Γ of P̃ surrounding
ν ≡ 1 if B1 � 1. This means that there exist invariant curves of the Poincaré mapping
of the system (3.23), which surround the origin (x, y) = (0, 0) and are arbitrarily far
from the origin. Theorem 1 thus is proved.

5. APPENDIX

5.1. Proof of Lemma 2.4, 2.5 and 2.6

Proof of Lemma 2.4

(i) k+ l = 0. The proof for this case can be easily obtained from Lemma 2.1 and
2.2.

(ii) k + l = 1. It is clear that for h � 1, |∂f1
∂r (h − R, θ) + ∂f2

∂r (h − R, θ, t)| ≤ 1
2 ,

Define

Δ(h, t, θ) = 1 +
∂f1
∂r

(h−R, θ) +
∂f2
∂r

(h−R, θ, t), g1 = Δ(h, t, θ)− 1,

g2 =
∂f2
∂t

(h− R, θ, t), g3 =
∂

∂θ
f1(h− R, θ) +

∂

∂θ
f2(h−R, θ, t).

Then it follows that

(5.1) Δ · ∂R
∂h

= g1, Δ · ∂R
∂t

= g2, Δ · ∂R
∂θ

= g3.

From Lemma 2.1 and 2.2, we have |g1| ≤ C · h− 1
2 , |g2| ≤ C, |g3| ≤ C · h 1

2

which imply

(5.2) |∂R
∂h
| ≤ C · h− 1

2 , |∂R
∂t
| ≤ C, |∂R

∂θ
| ≤ C · h 1

2 .

Thus the proof for this case is completed.

(iii) k + l = 2. Lemma 2.1, 2.2 and (5.2) imply that

|∂Δ
∂t
| ≤ C · h− 1

2 , |∂Δ
∂h
| ≤ C · h−1, |∂g1

∂h
| ≤ C · h−1, |∂g1

∂t
| ≤ C · h− 1

2 ,

|∂Δ
∂θ
| ≤ C, |∂g2

∂h
| ≤ C · h− 1

2 , |∂g2
∂t
| ≤ C, |∂g3

∂h
| ≤ C

|∂g3
∂t
| ≤ C · h 1

2 , |∂g3
∂θ
| ≤ C · h.
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From the second equation of (5.1), we obtain

Δ
∂2R

∂t2
+
∂Δ
∂t
· ∂R
∂t

=
∂g2
∂t

, Δ
∂2R

∂t∂h
+
∂Δ
∂h

· ∂R
∂t

=
∂g2
∂h

.

The above inequalities and equations imply that

|∂
2R

∂t2
| ≤ C, | ∂

2R

∂h∂t
| ≤ C · h− 1

2 .

From the first equation of (5.1), it follows that

Δ
∂2R

∂h2
+
∂Δ
∂h

· ∂R
∂h

=
∂g1
∂h

,

which implies |∂2R
∂h2 | ≤ C · h−1.

From the third equation of (5.1), we obtain

Δ
∂2R

∂θ2
+
∂Δ
∂θ

· ∂R
∂θ

=
∂g3
∂θ

,

which implies |∂2R
∂θ2 | ≤ C · h. Thus we complete the proof for this case.

By induction, suppose

| ∂
k+lR

∂hk∂tl
| ≤ C · h−k

2 , 1 ≤ k + l ≤ m,

then it holds that

| ∂
k+lΔ

∂hk∂tl
| ≤ C · h− 1

2
−k

2 , |∂
k+lg1
∂hk∂tl

| ≤ C · h− 1
2
−k

2

|∂
k+lg2
∂hk∂tl

| ≤ C · h−k
2 , |∂

k+lg3
∂hk∂tl

| ≤ C · h−k
2
+ 1

2

for 1 ≤ k + l ≤ m. Consequently, we obtain

| ∂
k+lR

∂hk∂tl
| ≤ C · h−k

2 .

for 1 ≤ k + l ≤ m+ 1. So the proof is completed.

Proof of Lemma 2.5

The lemma is easily followed from the following claim:
Claim

(5.3)
| ∂

k+l

∂hk∂tl
∂f1
∂r

(h− μR, θ)| ≤ C · h− 1
2
−k

2 ,

| ∂
k+l

∂hk∂tl
f2(h−R, θ, t)| ≤ C · h−k

2

for 0 ≤ k + l ≤ 11.

Proof. We only prove the first inequality of (5.3) and the proof for second one is
similar.
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(i) k+ l = 0. The proof for this case can be obtained directly from Lemma 2.1 and
2.4.

(ii) k > 0, l = 0. We have the following equality:

∂k

∂hk

∂f1
∂r

(h− μR, θ) =
∑ ∂m+1

∂rm+1
f1(u, θ) · ∂

k1u

∂hk1
· · · ∂

kmu

∂hkm

with 0 < m ≤ k, k1, · · · , km > 0, k1 + · · ·+km = k and u = h−μR. Assume
there are l(≤ m) numbers in {k1, · · · , km} which is equal to 1. Then we obtain

∣∣∣ ∂k

∂hk

∂f1
∂r

(u, θ)
∣∣∣ ≤ C · h−m− 1

2 · h−k1+···+km−l
2 ≤ C · h−k+1

2 .

(iii) k = 0, l > 0. By direct computation, we have

∂l

∂tl
∂f1
∂r

(h− μR, θ) =
∑ ∂n+1

∂rn+1
f1(u, θ) · ∂

l1u

∂tl1
· · · ∂

lnu

∂tln

with 0 < n ≤ l, l1, · · · , ln > 0, l1 + · · · ln = l. It follows that

| ∂
l

∂tl
∂f1
∂r

(u, θ)| ≤ C · h−n− 1
2 ≤ C · h− 1

2 .

(iv) k > 0, l > 0. By direct computation, we have

∂k+l

∂hk∂tl
∂f1
∂r

(u, θ)

=
∑ ∂m+n+1

∂rm+n+1
f1(u, θ) · ∂

k1u

∂hk1
· · · ∂

kmu

∂hkm
· ∂

km+i+l1u

∂hkm+1∂tl1
· · · ∂

km+n + ln
∂hkm+n∂tln

,

where u = h− μR and

0 ≤ m ≤ k, 0 ≤ n ≤ l, k1, · · · , km, l1, · · · , ln > 0, km+1, · · · , km+n ≥ 0,

k1 + · · ·km + km+1 + · · ·+ km+n = k, l1 + · · ·+ ln = l.

Assume that there are b(≤ m) numbers in {k1, · · · , km} which is equal to 1,
Then

| ∂
k+l

∂hk∂tl
∂f1
∂r
| ≤ C · h−m−n− 1

2 · h−
k1+···+km+km+1+···+km+n−b

2 ≤ C · h−k+1
2 .

This ends the proof of the claim.

Proof of Lemma 2.6
We prove it by induction.
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(i) When k + l = 1. From the third equation of (5.1), we obtain

Δ · ∂
2R

∂h∂θ
+
∂Δ
∂h

· ∂R
∂θ

=
∂g3
∂h

, Δ · ∂
2R

∂t∂θ
+
∂Δ
∂t
· ∂R
∂θ

=
∂g3
∂t

which implies | ∂2R
∂h∂θ | ≤ C, | ∂2R

∂t∂θ | ≤ C · h 1
2 .

(ii) By induction, we assume that

| ∂
k+l+1R

∂hk∂tl∂θ
| ≤ C · h−k

2
+ 1

2

for all k + l ≤ m.
(iii) Then applying ∂k+l

∂hk∂tl
to both sides of the third equation of (5.1), we have

Δ · ∂k+l+1

∂hk∂tl∂θ
R+

∂k1+l1Δ
∂hk1∂tl1

· ∂k2+l2

∂hk2∂tl2
∂R

∂θ
=

∂k+l

∂hk∂tl
g3

where k1 +k2 = k, l1 + l2 = l, k1 + l1 > 0. So by the hypothesis of induction,

∣∣∣ ∂k+l+1

∂hk∂tl∂θ
R

∣∣∣ ≤ 2|Δ| · | ∂
k+l+1

∂hk∂tl∂θ
R|

≤ 2
∑∣∣∣ ∂k1+l1Δ

∂hk1∂tl1

∣∣∣ · ∣∣∣ ∂k2+l2

∂hk2∂tl2
∂R

∂θ

∣∣∣ + 2
∣∣∣ ∂k+l

∂hk∂tl
g3

∣∣∣
≤ h−

k1
2
− 1

2 · h−k2
2

+ 1
2 +C · h−k

2
+ 1

2

≤ C · h−k
2
+ 1

2 ,

where we have used the inequalities

∣∣∣ ∂k1+l1Δ
∂hk1∂tl1

∣∣∣ ≤ h−
k1
2
− 1

2 ,
∣∣∣ ∂k+l

∂hk∂tl
g3

∣∣∣ ≤ C · h−k
2
+ 1

2 .

That is, if the conclusion is true for k + l ≤ m, then it is also valid for k + l ≤
m+ 1. Thus the proof is finished.

5.2. Proof of (3.16)

In fact when k + l = 1, let

Π = 1 +
∂2S

∂I∂τ
(I, τ, θ), Ξ = −∂

2S

∂I2
(I, τ, θ).

By direct computation we have

(5.4) Π · ∂τ
∂ψ

= 1, Π · ∂τ
∂I

= Ξ.
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Then (3.15) gives Π ≥ 1
2 , for I � 1 and

| ∂τ
∂ψ
| ≤ C, |∂τ

∂I
| ≤ C · I−1.

When k + l = 2, from the result above we have

|∂Π
∂I
| ≤ C · I−1, |∂Π

∂ψ
| ≤ C · I− 1

2 , |∂Ξ
∂I
| ≤ C · I− 3

2 , |∂Ξ
∂ψ
| ≤ C · I−1.

Thus from (5.4), it follows that

| ∂
2τ

∂I∂ψ
| ≤ CI−1, | ∂

2τ

∂ψ2
| ≤ CI−

1
2 , |∂

2τ

∂I2
| ≤ CI−

3
2 .

In general, if ∣∣∣ ∂k+l

∂Ik∂ψl
τ
∣∣∣ ≤ C · I−k

2 , 1 ≤ k + l ≤ q,

then ∣∣∣ ∂k+l

∂Ik∂ψl
Π

∣∣∣ ≤ C · I−k+1
2 ,

∣∣∣ ∂k+l

∂Ik∂ψl
Ξ
∣∣∣ ≤ C · I−k+2

2 , 1 ≤ k + l ≤ q.

From (5.4) and the above estimates, we obtain

∣∣∣ ∂k+l

∂Ik∂ψl
τ
∣∣∣ ≤ C · I−k

2 , 1 ≤ k + l ≤ q + 1.

Thus (3.16) is proved by induction.
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