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BOUNDEDNESS FOR SEMILINEAR DUFFING EQUATIONS
AT RESONANCE

Xiumei Xing and Yigian Wang*

Abstract. In this paper, we prove the boundedness of all solutions for the equation
2 4+ n?z + ¢(x) + ¢’ (x)q(t) = 0, where n € N, q(t) = q(t + 27), ¢(z) and
g(x) are bounded.

1. INTRODUCTION AND MAIN RESULT

In this paper, we study the boundedness of solutions for the following semilinear
Duffing-type equations:

(1.1) 2" e 4 p(x,t) =0, oz, t+2m) = (),

where n € N and v (x, t) is bounded.
It is well known that the linear equation

2" + n’z = sinnt, neN

has no bounded solutions. Due to the phenomenon of linear resonance, the boundedness
of solutions for semilinear equation at resonance (1.1) is very delicate and interesting.

In 1999 Ortega [15] proved a variant of Moser’s small twist theorem, by which he
obtained the Lagrangian stability for the equation

2" +n2x 4+ hp(x) =p(t), p(t) € C(R/2nZ),

where hp(z) is of the form

L, if x>1,
hr(x) =< Lz, if —1<z<1,
—L if o< -1,
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and p(t) satisfies
1

27

Then Liu [8] studied the equation

27
, 2L
/ p(t)e_mtdt’ < —.
0

™

(1.2) " +nPx+ p(x) =pt), pt) € C(R/2nZ),

where ¢(x) € C%(R) and the limits

(1.3) ¢(£o0) = ligcn ¢(x) exist and are finite
and
(1.4) | |lim 2% (z) = 0.

T|—+00

He showed that each solution of (1.2) is bounded if

(1.5) /0 7rp(t)e_i"tdt’ < 2(¢p(+00) — p(—)).

If in addition ¢(x) is monotone, then Lazer-Leach’s result [5] implies that the con-
dition (1.5) is also necessary for the Lagrangian stability of (1.2). Without monotone
assumption on ¢(x), Alonso and Ortega [1] showed that if

/ ”p<t>e-mtdt] > 2(¢(+oc) — 6(—o0)),

then all solutions of equation (1.2) with initial points sufficiently far from the origin
are unbounded.

For more results on (1.1), one can see [9, 10, 11, 12] and references therein.

It is noted to point out that all the results stated above require the condition ) (z, t)
satisfies the following growth condition:

(1.6) lim 2™DI"(z,t) =0
|z|—+o00
for some finite m.

The reason that people impose the above growth condition on ¢ (z, ¢) is related to the
fact that the application of KAM theorem requires the estimates of several derivatives
of the solutions with respect to initial conditions, which is tedious and difficult.

In this paper, we try to study the boundedness of solutions of (1.1) without the
condition (1.6). More precisely, we will consider the following equation:

(L7) o e+ ¢(x) + ¢"()q(t) = 0,
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where n € N, ¢(t) € C13(R/27Z) and ¢(x) € C'?(R) satisfies (1.3) and

(1.8) lim  z'2¢12)(z) = 0,

| 2| =00
while g(z) satisfies
(1.9) gB@) <C, 0<k<14

for some C' > 0.

Obviously, in our situation ¢ (x, t) = ¢(z) + ¢" (x)q(t), which does not necessarily,
which satisfy (1.6). For example, if ¢(z) = arctanz and g(x) = cosx, then ¢(z, t) =
arctanz — cos x - q(t).

The main result of this paper is as follows:

Theorem 1. Let n € N, ¢(t) € C'3(R/27Z). Suppose ¢(z) satisfies (1.3), (1.8)
and ¢(+00) # ¢(—o0), g(x) satisfies (1.9). Then all solutions of (1.7) are bounded.
That is, each solution = = x(t) of (1.7) exists on (—oo, +00) and supcg(|z(t)| +
|z (t)]) < +o0.

Remark 1.1. Recently, Jiao, Piao and Wang [4] studied the equation
(1.10) " + W’ + (z) = Gu(z, t) + p(t),

where w € R*\Q satisfies the Diophantine condition and ¢, p are similar to in (1.2).
They proved that if |D{D/G(x,t)| < C, then all solutions of (1.10) are bounded.
This result together with Theorem 1 implies that the growth condition is not necessary
for the Lagrangian stability of Duffing equations. In our future work, we will extend
Theorem 1 to a more general situation which includes (1.2) as a special case.

The study of the boundedness problem for Duffing equations was in early 1960’s
by Littlewood [7]. In 1976, by Moser’s small twist theorem [14], Morris [13] first
obtained the boundedness result for the equation

z" + xS — p(t)

with p(t + 27) = p(t) piecewise continuous.

Since then Moser’s small twist theorem has become the most important tool in the
study of Littlewood’s problem. The main idea is as follows.

By means of transformation theory the original system outside of a large disc
D = {(x,2") € R? : 2® + 2> < r?} in (x, 2’)-plane is transformed into a perturbation
of an integrable Hamiltonian system. The Poincaré map of the transformed system is
closed to a so-called twist map in R?\D. Then Moser’s twist theorem guarantees the
existence of arbitrarily large invariant curves diffeomorphic to circles and surrounding
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the origin in the (x, z’)-plane. Every such curve is the base of a time-periodic and flow-
invariant cylinder in the extended phase space (z, 2’,t) € R? x R, which confines the
solutions in the interior and leads to a bound of these solutions.

The rest of this paper is organized as follows. In Section 2, we deal with some
technical lemmas. In Section 3, we will make some more canonical transformations
such that the Poincaré map of the new system is close to the twist map. The proof of
Theorem 1 will be given in the last section.

Throughout this paper, we denote by ¢ < 1 and C > 1, respectively, two universal
positive constants not concerning their quantities.

2. SoME CANONICAL TRANSFORMATIONS

In this section, we will state some technical lemmas which will be used later.
Throughout this paper, without loss of generality we assume that ¢(+o00) > ¢(—o0).

Let y = —n~'a2’. Then (1.7) is equivalent to the following equations:

/ -1 _n

o' =—ny, y =nz+n"¢(x)+n"lg"(2)q(t),

which is a planar non-autonomous Hamiltonian system

oH oH
/) _ T ;I 277
with Hamiltonian
1 2 2 1 1 /

where ®(z) = [ ¢(x)dx.
Under the transformation

1 1.
r=r2cosnb, y=rzsinnd

with (r,0) € Rt x R/22Z, the system (2.1) is transformed into another system

oh oh
/s _ " / -
(2.3) r = 20" 0 5
where
(2.4) h(r,0,t) =1+ fi(r,0) + fa(r, 0,1),

and f1 = n—%@(r% cosnb), fo = %g’(r% cosnb) - q(t).
As n is a positive integer, the function h(r, 0, t) is 2w-periodic in 6.
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For any function f(-, ), we denote by [f](-) the average value of f(-, ) over S,

that is,
1 2
A0y i=5- [ 560
From (1.3), (1.8) and the rule of L’Hospital, it follows that
(2.5) leFo® (2)| < C,  for 0<k <12
and
(2.6) lim zF¢®(2) =0, for 0<k<12.

|z|—+o0

Then similar to [8], the following two lemmas hold:

Lemma 2.1. It holds that:

Ao <Cord A< 0,
@.7) 2
N ol <ot |20 gl<or
a0 5
Moreover, for 1 < k < 12,
i k
T PR T S
ork s

(2.8) o,

arkon

(r, 9)’ <C- r+,

Lemma 2.2. The following conclusion holds true:

(2.9) \falr, 0,8)] < C —8f2(r9t) <C.ri —2f2( 0,0)|<C-r
. 2\, U, = ) 89 s Uy = ) 892 s Uy
Moreover, for 1 < k41 < 12, we have
8k+lf2 & 8k+l+1f2 o1
: — <C-r72, |emet < —2t2
(2.10) 8rk8tl(r,9,t)’_0 r2, 8rk8t589(r’9’t>’_0 r-272

Again from [8], we have that

Lemma 2.3. The following conclusions hold:

@.11) im VLAY () = —5{8(+00) — o(—o0)},
.12 Jim P — 2 (o400 - o=,
(2.13) tim r3[A]7() =~ {9(+00) — 6(o0)}.

r—-+00 2mn
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From Lemma 2.3, it follows that for » > 1

L e < |LA)(r)].

=

(2.14) crt < [f1](r) < C’~r%, crE < (il (r) < C-r~

2.1. Exchange of the role of time and angle variables

Observe that
rdf — hdt = —(hdt — rdf).

Thus if one can solve (2.4) for r such that » = r(h,t, 0), then

dh or dt  Or
@:_§<h7t79>7 @_%<h7t79>7
i.e., (2.15) is a Hamiltonian system with Hamiltonian » = r(h, ¢, #) and now the action,
angle and time variables are h,t, and 6, respectively. This trick has been used in [6]
and [8].

From Eq.(2.4) and Lemma 2.1, 2.2, one can easily see that

(2.15)

lim E:1>0

r—-oo T

and for r > 1 oh 5 5
E =1 + Efl('f’, 9) + Efé(r, 9, t) > 0.
Thus by the implicit function theorem, we have that there exists a function R =

R(h,t,0) such that
(2.16) r(h,t,0) = h — R(h,t,0).

Moreover, for h > 1,
|R(h,t,0)| < h/2
and R(h,t,0) is C*3 in h, t and 0.
From (2.4), it holds that
(2.17) R=fi(h—R,0)+ fo(h— R, 0,1).

The following three lemmas are similar to the ones in [8] and we give the proof of
them in the appendix for the convenience of readers.

Lemma 2.4. Assume R(h,t,0) is defined by (2.17). Then for A > 1 it holds that

k+l1
0 R oyt

. OR v O°R
_ <C-h2, |=—|<C-h2, |=—]|<C- TR
(218) |R|<C-h%, |op|<C-h%, |oa|<C-h, |gmenl <

for 1<k+1<13.
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In (2.17), let
(2.19) R = fi(h,0) + Ri(h,t,0).
Then
Ri(h,t,0)
(2.20)

8 1 182
=i 0) R [ [ s, )R sk fa(h—R.0.)
T 0 0 87’

The following lemma gives an estimate of R;(h,t,0).

Lemma 2.5. It holds that

ak—l—ZR
\Wm}\gc-h—%, 0<k+1<11.

From Lemma 2.4 and 2.5, we have the following estimate on R:

(2.21)

Lemma 2.6. It holds that
oFt+1 R

onrora0

The following technical lemma will be used to refine the estimates on [R1](h, t).

(2.22) |<C-h2tE, 1<k+1<I1L

)

Lemma 2.7. Let A > 1. Assume that:
(i) g(z) € CY(R) and R, R € C*(R x R/27Z x R/2nZ);
(i) lg(z)| < C, |g'(z) < C;
(iii) |[R(h,t,0)| < C-h7, |2B|<C-n3, |2H|<C-n
(iv) |R], \%—70?\ < C-h ®witha > 0.
Then for any constant ¢ € (0, %), it holds that

2

(2.23) R(h,t,0)g'((h — R(h,t,0))? cos n@)d@’ < - pGta),

0

Proof. Let[0,27x]=0L UL - --Ul., I; = [(i_i)%, ’27”} =1}U12
where

I =

(2

[(i —n1)27r’ (i — 1)2:;+ h_%}

)

(i—1)2n+7—h3 (i—1)2r+m+h2

)

U [(i— 1)%;%- h=% (i— 1)i7r+27r}’
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I? =

(2

)

[(i —1)2r+h"% (i—1)27+7— h_%}
n n

)

(i—1)2r+7+h"% (i—1)27+27—h"3

Then

27
R(h,t,0)g'((h — R)? cosnb)db
0
- Z( R(h,t,0)g'((h—R)? cosnf)do+ | R(h,t,0)¢'((h— R)? cosne>d9).
i=1 1}

i

2
Ii

Obviously, |I}| < C - h=%, where | - | denotes the Lebesgue measure. Then from
condition (ii) and (iv), it is easy to see that

| R 1,0) g'((h — R)% cosnf)df| < C - h=3°.

To estimate the integral on IZ, we first estimate the integral on the interval

)

121_[(i—1)27r+h_% (i—1)27r+7r—h_%}
v n n '

By direct computation, we have

N
=

i -cosnf —n(h — R)2 sinnd.

De((h—R)%cosnG) :—%(h—R)_ "

From condition (iii), it holds that \n(h—R)% sin nf)| >ch'7 and |2 (h— R)" 9 cosnb)
< C for 0 € I?!, which implies
(2.24) 1Dg((h — R)Z cosnb)| > c-h'T.
Similarly, we have
Dg((h R)% cosnb)
S e

00
1
n?(h — R)2 cosn,

1 2
)QCosnG—(h—R)_% 5(?97}22(3057% n%—?smn&

which together with condition (iii) implies

(2.25) |D2((h — R)Z cosnf)| < C' - h=.
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A s A s
Let g, = U=L2mth 2 0 g, — l2mimoh 2 gy jntegration by parts, we have that
1
R(h,t,0)g(h— R)¥ cosngydg = [ Ut:0dg((h = R) cosnf)
2 e Dy((h — R)2 cosnb)
_ R(h,t,0)g((h— R)% cosnb) ’9:92 B / g((h— R)2 cos nf) 9% 50
Do((h — R)% cosnb) 0=01  J121 Dy((h — R) 2 cos nb)
R(h,t,0)g((h— R)Z cos nf) D2((h — R)? cosnf) "
12! (Dg((h — R)2 cosnf))?
Then conditions (i), (iv) and (2.24) imply
IR (h,t,0,)g((h— R)? cosnf;) - (Dg((h— R)% cosn;)) | < C-h=2"2F5, §=1,2
lg((h — R)% cosnf) ——

20 - (Dy((h — R)2 cosnh)) | < C - poo-i

012
Thus conditions (i), (iv) and (2.25) imply that for 6 € 121, it holds that
IR(h,t,0)((h— R)2 cosnf) D2((h — R)Z cosnf) - (Dg((h — R)? cosnf)) 2|
S C . h—a—%-f—(s.

Similarly, we have the same estimate for the other parts of 7?2. Hence from the fact
0<d< % we obtain (2.23). This completes the proof of this lemma

u
For F'(h,t,0) =

g'((h— R)% cosnf)v(t, d), we have

(F](h,t) = 217/ " J(h = R)} cosnd)u(t, 6)db.

The following estimates hold true for [F7:

Corollary 1. Assume that

(i) g(z) satisfies (1.9);

(i) [2ue)) 00t < o < 10;
(iii) |R|, 2B < C-h3, |ZR|<C-n
(iv) \g,’;;gg\<c.h—s, S <O nmETE, 1 <k+I<10.
Then for any constant 6 € (0 ,5), it holds that
8k+l ik
(2.26) ’W[F](h,t)’§(3’~h_5_5, 0<k+1<10.
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Proof.
(@ When k41 =0, (2.26) is deduced from (2.23), where we set R = v(t, 0).
(b) When k+1 > 0, one can easily prove that ah’“g;] (h,t) is the sum of some finite

terms with the following form:

1 [?™ 2 okth | 1 o"2v(t, 0)

where [; > 0, I9>0, l1+1=1.

(bl) when k =0, 11 =0, Is =1 > 0. Then (2.26) is deduced from (2.23),

where we set R = £ “(tt 0) 1
(b2) when k+1; > 1, it can be seen that a%};cgltlh g’ ((h— R)2 cosnf) is the sum
of the term like

kit katly, GFm+ing,
ORE1 Ot Ohk0tE  Ohkm ot

where u = (h—R)2, ki+--+km =k, D440 =1, k+1l>
1. Notice that for ¢« + j > 1, conditions (iii), (iv) imply the following

(m+1)<

u - cosnb) - (cosn®)™

9

conclusions
O tiy i oititly ;
— | <C-h"2 —— | <C-h™2.
’(%l@tﬂ = . ’ahzawae = ’
Consequently we have that
k141 ko+13 km 1L,
(2.27) O tu ORTRu 0T gk
Okt Ohk2tlz Ohkm Otlm
1+l ko+13 AL,
(2.28) opo i Om O <o,
00 Lopkiothi - ghk29tla OhFm Otim

So (2.26) follows from condition (ii), (2.23), (2.27), (2.28) and Lemma 2.7 with R =

akl +l% u 8k2+l%u aknl"'l}nu m 812v(t 9) h h

. . S T r
OhkLOt  ohk2or's  ORFm Ot (cosnf) otl2 us the proof of the corollary
ends. "

From (2.19), we obtain that the Hamiltonian r(h, ¢, 6) in (2.16) is of the form:
(2.29) r=nh— fi(h,0) — Ri(h,t,0),
where fi(h,0) Ri(h,t,0) satisfy (2.8) and (2.21), respectively.
Now the system (2.15) can be written in the form
dh  ORy dt ofr OR;

(2.30) - @ amO -
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3. More CANONICAL TRANSFORMATIONS

In this section, we will make some more canonical transformations such that the
Poincaré map of the new system is close to a twist map.

Lemma 3.1. There exists a canonical transformation ¥, of the form:
Uy: h=p, t=¢+T(o0)
with T'(o,0) = T'(0, 6 + 27) such that the transformed system of (2.30) is of the form

@__87’1 d_cp_8r1

(3.1) 0= %(07%9% 0= 8—0(07%9)7

where
r1(0,¢,0) = 0 — [fi](0) — Ra(o, ¢, 0).
Moreover, the new perturbation Ry satisfies

(3.2)

for k +1 < 10.
proof. We construct the canonical transformation by means of a generating function:

L 0s) s

We choose

0
Si = /O (f1(hy 5) — [A1](h))ds.

Let T(h, 0) = 951, then the transformation ¥y is of the form
h=p90, t=v+T(p0).

Define
LOR,
(3.3) Ra(0,¢,0) = Ri(0,¢,0) + ; W@’ o+ uT'(0,0),0)T (0, 0)dp.

Then the transformed Hamiltonian function is of the form

r1(0, ,0) = 0 — [f1l(e) — Ra(0, ¢, 0).

By the definition of 7" and (2.8), we can obtain
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o*T o
. — <C.-p " 2.
(34) G 00| <ot

Combining (3.4) with (2.21), we have

8k‘+l 1 8R1 .
T(0,0),0)T(0,0)du| < C-p0"272
8Qk8g0l 0 ot <Q’SO+M (Qu )7 ) (Qu ) 1S 0 2 2,

(3.5)

which together with (2.21) yields (3.2). So the proof of the lemma ends.

With the idea in [16], we construct a canonical transformation as follows:

Lemma 3.2. Under the following transformation W:
Uy: 9=60, p=o, T=p—0,
(3.1) is transformed into the following system

dp 87’2 dr 87’2

@ T (puT 19) 19 (puT 19)

(3.6) =

where
7’2<p, T, 19) - _[fle) - R3<p7 T, 19)
Moreover the new perturbation R3 satisfies

8k+ZR & okt [RS]

. <C-p 2 _

1M

(p,r)|<C-(pF+p 23

for k +1 < 10.
Proof.  Under the transformation U5, the transformed system is of the form

dp  Oro dr  Org

o PR 9
dﬁ 87_ <p7T719>7 dﬁ 8p <p7 7 )7

where ro(p, 7,9) = —[f1](p) — R3(p, T,9) and R is of the following form

(38) R3<p7 T, 19) = R2<p77_+19719>7
which implies ;2= Ry (p, 7, 0) = 90 Lo Ra(p, 7,9).

From (3.3) and ()3 8), it follows that

LoR,

R3<p,7‘,19)=R1<p,7'+19,19>+ ot
0

— (0 T+ 0+ uT(p,0),9)T (p,0)dp.

(2.20) gives
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0
Rl(puT+ 19719> = _i(pu 19>R(p77_+ 19719> + f2(p_ R(puT—i_ﬁuﬁ)uﬁuT—i_ 19)

or
L[ R 9,9),9) R 9,9)dsd
) ez snlile. T+ 0,0), B (p, 7+ 0, V)dsdp

With Lemma 2.1, 2.5 and (3.5), we have

8k+l 8f B e
dpFort (a_;(p’ﬁm(ﬂ’”ﬁ’ﬁ))’ <C-(pF4pET2),

k_
2

1
2
)

8k+l 1 182f1 ) 90 o
- dsdul<C - p~
8pkarl/0 o2 (p—suR(p, 7+0,9), 9)uR(p, T+, 9)ds u’_ p

8k+l 1 8R1
opFarl ), ot

k
2

=

(p, 7+ 0+ pT'(p,9),9)T(p, ﬁ)du’ <C-p~

Let R(p,7,9) = R(p, 7+ 9,9). From Lemma 2.4, 2.6, it is not difficulty to see that

~ 2 ~
\R\§C~p%, iR\§C~p%, \8—R\§C~p,
. L, 002
(3.9) L L A gkt k1
S — < -p 2 e e < -p 272,
gl =Cr2s gyt = C e

To finish the proof of (3.7), it suffices to see that

~ 1 2 2 -1
[f2l(p, ) = 2—/ —9'((p— R)é cosn?)q(T + 9)dv
T 0 n
satisfies
O fy] o_k
. < .p 2 2 <
(3.10) o707 (/M)’_C p 272, k+1<10,

which can be obtained from Corollary 1 and (3.9). Thus we complete the proof. m
Lemma 3.3. Consider the system with Hamiltonian

(311) T(p, 7_79>: _[f1]<p>+g(p7 T>+R<p7 T, 9)7

where [f1](p) satisfies (2.7), (2.8) and (2.14), while g(p, ), R(p, 7, 0) satisfy respec-
tively

k+1

K 8k+l k
2 2

)
_9 < o€
2)7 8pk87_lR(p7 7_7 9) — C p I

g _ _
W(Pﬁ) <C-(pF+p

for k +1 < n with §, ¢ > 0. Then there exists a canonical transformation ¥ of the
form:

(3.12)
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U: p=I+4+u(l,y,0), 7=1v+v(l,1,0)

such that the Hamiltonian of the transformed system of (3.11) is

fj(Iawa9> = _[flKI)+Q<Iaw>+}?([awa9>a

where g, R satisfy

oty ko ok OFHR _E_1_
(3.13) W(I;d}) <SC-(ITP+17272), W(I;d}ﬁ) <C-I7z72F
fork+1<n-1.
Proof. We construct the canonical transformation by means of a generating
function: e e
U p:I—i—E(I,T,G), IZJ:T—FE(I,T,e).
Then the transformed Hamiltonian function 7 is of the form
. 08 08 08 08
P o= —[fl](I—i-E)—i-g(I—i- E,T)JFR(IJFE,T,QH%
08 L 05,08
= —[AlU I I = "I+ p=—)==
A0+ 9(1,7)+ RU70)+ G5 = | AN+ G0 G
L dg oS [0S LOR 08 08
(I + p=—, 7)== —— (I + p—=— —dp.
+ 8p( tpg T)godit ; 8p( +pg T 0) 5 —du
Define
1 2
(3.14) (RI(I,7) = - / R(I,7,0)d0.
2 0

Now we choose S(I,7,0)

0
S(I,T,G):—/O (R(I,7,5)— [R](I,7))ds.

It is obvious that S(I,7,6) is 2x-periodic in 7,6 and

8k+lS &
: —_— <C-I27¢
(3.15) WW(I,T,e)]_C I
Since 7 =) — %, by Taylor’s formula, we can write

Lo 05,08
o(L7) =g(t0)~ [ G200~ g 3 dn,

0
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Ry =) - [ S0 ) e

0
Let Q<Ia¢> = g<17¢>+ [R](IJ/J) and

- L dg dS .08 LO[R] S 98
R(I,v,0) = — ; E(Iﬂ/}—ME)Edﬂ—/O &5, LY —pgr)grde
! dS . 88 L 9g S 88
— "I+ p—)— I 22
/[fl]( +Hpg )5 odp+ ; 8p< g T) 5 dp
LOR a8 a8
+

—(I — —du.
; 8p( +u87m9)87du
Then the transformed Hamiltonian is of the form

We can solve the two equations in W for p and 7 due to (3.15) and write p = p(I, ¢, )
and 7 = (1,4, 0). Moreover we have that

8k+l

_k
A lT’SCI 2, 1§k+l§n,
(3.16) 8213';/} okl X
’78[’“81/1”’30’ k+1=1; Wplgc.[—z 2<k+1<n.

For the convenience of readers, we give the proof of (3.16) in Appendix.
Thus (3.13) follows from (2.8) and (3.16), (3.12). This ends the proof of this
lemma. ]

By repeated use of Lemma 3.3, we obtain from Lemma 3.2 that
Corollary 2. There exists a canonical transformation ¥3 of the form:
\IIS: p:I—i_uS(Iawaﬁ)u T:¢+U3<Ia¢a19>

such that the system (3.6) is transformed into the one with Hamiltonian

(317) r3<17¢719>:_[flKI)_g<17¢>_R4<17¢719>
where [f1](I) satisfies Lemma 2.3 and (2.14), while g(I, ) and R, satisfy
8k+lg i ks
(3.18) g < € i),
8k+ZR4 _k_5
(319) )| R

for k + 1 < 5, respectively.
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Introducing a new time variable by v = —4, let R4(1,4,~v) = Ra(I, %, —), then
the system with Hamiltonian (3.17) can be rewritten as
dl  OHj3

d OH
<17¢77>7 d_ljza—;<17¢77>u

where
H3<171/}77> = —T’3<I,1/J, _7> = [f1]<I> +g<17¢> +R4<17¢77>
and g(I,v), Ry satisfy respectively

8k+lg k k5
(3.21) W(I,w)’gc-(r v I757%),  k+l<5,
k+1
(3.22) %(1,¢,7)’gc-1—§—%, k+1<5.

Next we will define a canonical transformation such that the leading term in Hamil-
tonian is independent of angle variable.

Lemma 3.4. For any Iy > 1, there exist ¢c- Iy < Ay, As, By, By < C- I satisfying
)

s s
c-Iy <Ay— Ay, Bo—B; <C-1I; and a canonical transformation ¥, : [B, Bs] x
S [Ay, As] x St (¢, n) = (I,v) = Wyu(¢,m) such that the system (3.20) is
transformed into the one with Hamiltonian

(3.23) Hy(¢,n,7) = G(Q) + Rs(¢,m, 7).
Moreover, G(() satisfies

c-I<C<C-1, - (TT<GO)<C (8,

(3.24) . k
¢ (E<IGMQL IGWQI<CH T k=1,2,3,45,

and R5((,n,y) satisfies

K+ ks
(3.25) Wf%@anﬂ) <C-¢ 272, for k+1<5.
Proof. In the following, we will follow the method of [2] (also see [6]) to

eliminate angle variable ) from the leading term [f1](I) + g(I, %) in Hs. We define
a canonical transformation ¥, by means of a generating function Sy (¢, ¢):

854 854
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such that the Hamiltonian of the transformed system would be n-independent in its
leading part, that is,

(3.27) [AIT) +9(I,9) = G(Q).

As an additional condition, we suppose the map preserves the periodicity: if Uy :
(I,v) — (¢,n), then Wy : (1,4 + 2m) — (¢,n + 27). These two conditions can
define G(¢) (up to a constant).

In fact, owing to (2.14), (3.21), we can solve (3.27) for I such that I = I(G, ) by
Implicit function theorem.

Define L o
16) =3 [ 1G.wav.
From (3.26), S4(%, ¢) can be taken as
P
(3.28) Si0.0) = [ 1G9
0
The periodicity condition translates into
9S4 9S4 T oI /
—_— 2 _——_— pu—
50 0O = 50,0 = | 55 (G s)ds G'(Q) = 2m,

which holds if we choose G = I-1(().
We will look for an interval [A, A,] such that %g( ) (¢ is a parameter) is
nonzero on it. Consider the interval [IO,QIO] with Iy > 1. From (2.14) and (3.21), it

follows that the set {25 (1,4)|I € [31y, 21o]} covers some interval with length longer

than c - I 2 In fact, we have

8G’

I

IR

1 I

%Iy

>J>IU|

I

["(I)dI
\/IO | — ’819

> | / (W) (Dar| - C - 1y ®

_3
2

e b-f
:/ilo I[A]"(D)|dI - C -1, >c 1.
4

Thus by Mean Value theorem, there exists some point A, € [y, T1;] such that
_3

8p(;'(Al, Y)| >c-1,2. On ;[he other hand, (2.14) and (3.21) imply \g—;G(I, P)| <

C- 153, Let Ay = A; + IOZ. Consequently, for each I € [A;, As], we have
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92 092G 02 0%G
092G 9*G 9*G
> |5 Au )l = 15 (1Y) = 5 (A v)
(3.29)
e
>c IO —‘W( 1+M(I_A1>7w><I_A1>‘
_3_9 [ 1 _3 1 3
> ly?=CIy? 2o df > eIyt > e 178

On [Ay, As], (2.14), (3.21) and (3.29) yield that G(I,v) = [f1](I) + g(I,%)
satisfies

k
“ Ik+§<%[(k; <C IR k=01 e 17 < |ZE);
(3.30) " B
g GVl <C-I75, 0<k+1<5.

Moreover, we can easily prove the following estimates:

1 ol 82
c- 17 <|55(G9)l; <| 2(G b);

(3.31) T 1 oG
sarap (G vl<C- 17, 0<k+1<5.

(3.31) yields that

c-I<I<C-I; ¢ I2<I'(G)<C-I7; c<|I"(G);

(3.32) B )
1@ <C- T2 k=1,2,3,4,5.
Let

(3.30) and (3.32) together with the deflnltlon of Ay yield that [By, Bs] C [c¢- Iy, C - Iy

is of length between ¢ - I4 and C - I4
Next, we prove that G(() satlsfles (3.24) on [By, Bs]. By the definition of G =
I71(¢) and (3.32), we have

c-I<c GP<(=IG)<C-G<C-1.
Differentiating on both sides of ¢ = I(G) with respect to ¢, one has
G'(¢) - T(G) -
(3.34) G"(QOI'(G) +1"(G) - (G'(¢)) =
GED(OI'(G) + TI(G) - GE(0) -G (¢) =0,
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where 1 <m <k, k; >0, ki +---+ky, = Ko+ 1. Then (3.24) follows from
(3.32) and (3.34) by induction.
The remain part is devoted to the proof of (3.25). Due to

028, o0l

oc aa!

G.¥) G'(¢) > eIz - e("% >0,

we can solve 2 2 (1, ¢) = n for ¢ = ¢(¢, ) and thus I has the following expression

854 08,
=171 .
50 0= GG, 0= 1)
Moreover, these two functions satisfy, for 1 < k& +1 < 5,
k+ 1 k1 okl k
B3)  lggpGml<c ¢l metenlc ot

In the following, we first express (¢, n) in terms of (I, ) and estimate their deriva-
tives.
From G = I~1(¢) and (3.27), we have the expression for (:

(3.36) ¢ =I(G) = I([A() + g(I,¥)) & M(I,).
Combining (3.26) with (3.28), we have the expression for :
oS,
n= 844(1/1 ¢)
(3.37) v 5

= —I(G, ds- G’ 2 N(1,9).
0 GG( 8>’G:[f11<1>+g<f,¢) i (O’<:M €.9)

Note that M (I,), N(I,) obey the estimate

+

[STES]
=

k+1
(3.38) ’ 0

ket
WM(IJ/J)’SC“I_ , ’ 0

8I’€8WN L
In fact, by the expression of M (1, ), it follows that
8k‘+l 8k'1 +11 8k'm+lm

Ik(‘?z/zl => I"(@ =T WlG(I zp).-.mG(I,w),

where0 <m <k+1, ki+1; >0, k1+--+kn=%k L+ - +ln=1
By (3.30) and (3.32), we have

[SIE

+

=

’ 8k+l

8[k8¢lM(I,¢>’ <Cp it < 0L
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To estimate alleN(I, ), let
- [ Zics) ds,  B(I0)= Q)]
o 0G T Vle=iprgrwy T (=M(14)
we have
okl k1 okt k1
(339) ’ Ikal/Jl 1([ 1/})’30[ 2+2’ ’ Ikaz/}l 2([ 1/})’§C I 272,
In fact, by direct computation, we have
okl okl okti-1 g
— ] .
a1 / BT 8G ’S>’G:[f1]g)+gg,¢>d$+ arrau1ag (& Y)

Thus one can easily prove the first inequality of (3.39) from (3.30) and (3.31). The
second inequality of (3.39) is a consequence of (3.24) and (3.38).
Since Jy(I,%) - Jo(I,¢) = N(I,1), it follows that

8k+l

\WN(LW\ < >

k1+ko=k, l1+l2=l

8k1 +11 8k2+l2

WJI(LW.WJQU’W

k
<c. 1%t % s<c. 18

From the fact that (M (I,v), N(I,v)) is the inverse of (I1({,n), (¢, n)), (3.35) can
be easily obtained from (3.38).
Obviously

R5(C,m,v) = Ra(L(C, ), (¢, m),7)-
So (3.25) follows from (3.22) and (3.35). Thus we end the proof of this lemma. =

4, PrRoOF oF THEOREM 1

In this section, we first give the expression of the Poincaré map of the Hamiltonian
system with the Hamiltonian (3.23). Then we will prove Theorem 1 via Moser’s twist
theorem.

Expression of the Poincaré map
From Lemma 3.4, the Hamiltonian system with the Hamiltonian (3.23) is of the
form

= Q)+ 52

o¢
“ o 835« 7).

— (¢ n,7),
4.1)
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Moreover for ¢ € [Bi, Bs], G and Rj satisfy (3.24) and (3.25), respectively.
Thus the Poincaré map of the equation (4.1) is of the form:

. {m =n+a(() + Fi(¢,n),

4.2)
G =C¢+ (¢ n),

where, for ¢ € [By, Bo),

c-(TE<al()<C-CE, e (7 < |a(Q)],

(4.3)
a® () <C ¢ 57, k=1,2,34
and
8k+lF1 3_k 8k+lF2 5_k
4.4 —_— <C.-(772 — <C- (272, 0< <4.

Next we make a scale transformation as follows:

_3
2

(4.5) a(C) —a(By) = B, *v, vell, 2.

5
We solve (4.5) for ¢ to obtain ¢ = ((v). From the fact B, — By > ¢ - B{*, we have
that ¢([1,2]) C [B, Ba].
Then the Poincaré map P is changed into the following one:

_3 ~
(4.6) b m =n+a(Bi)+ B, v+ Fi(v,n)
141 :V+F2<V7n>7

where

@7) Fivn) = W), Falvn) = B alC) + B(((#).n) — al((#)).
From (4.3) and (4.5), we have that
(4.8) D)<, 0<i<d,

which together with (4.3), (4.4) and (4.7) implies

o+l F2

8k+lF1
| ovkon!

4.9) ‘78%8175

| <C- B3, |<C-By?, 0<k+1<4

Since the map P is time 1 map of the Hamiltonian system (3.23), it is area-preserving.
Thus it possesses the intersection property in the annulus [1,2] x S*, that is, if T" is an
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embedded circle in [1,2] x S* homotopic to a circle » = constant then P(I') N T # @,
The proof can be found in [3].

Proof of Theorem 1 via Moser’s twist theorem

Until now, we have verified that the mapping P satisfies all the conditions of
Moser’s small twist theorem [14]. Hence there is an invariant curve T of P surrounding
v = 1if By > 1. This means that there exist invariant curves of the Poincaré mapping
of the system (3.23), which surround the origin (z,y) = (0,0) and are arbitrarily far
from the origin. Theorem 1 thus is proved.

5. APPENDIX

5.1. Proof of Lemma 2.4, 2.5 and 2.6
Proof of Lemma 2.4

(i) k+1=0. The proof for this case can be easily obtained from Lemma 2.1 and

2.2.
(il) k+1=1. Itisclear that for h > 1, \afl(h R,0) + 8f"’(h R,0,t)] < 1,
Define
Alht, 9)—1+%f1(h R.0) + %fQ(h R.0.8), g1 =Alht,0) 1,
0fs 0
= =—fith—R,0)+ —fa(h—R,0,1).
g2 = ot (h R 9 t) g3 89f1< ) >+ 89f2< s Uy )
Then it follows that
OR OR OR
(5.1) A %:91, '5292, ~%:gg.
From Lemma 2.1 and 2.2, we have |¢g;| < C - hz, lg2| < C, |g3] < C - h2
which imply
(52) H<ont, 1Zh<o 1% <o

Thus the proof for this case is completed.
(ili) k+1=2. Lemma 2.1, 2.2 and (5.2) imply that

\%\_C hoT, \%\gc.h—l \891\<c h, \891\<c hos,
\—\gc, \‘992\<c b, \‘992 <c \‘993\<c
\893\ <C-h3, \893\<c h.



Boundedness at Resonance 1945

From the second equation of (5.1), we obtain
A82R OA OR  0go A82R OA OR _ 0gp

o7 "ot o o0 Cowon ! on ot on
The above inequalities and equations imply that
0’R 0’R 1
—|<C-h 2.
B <O Igng! =C-h

From the first equation of (5.1), it follows that
0?’R  O0A OR 0g
on2 " oh oh  on
which implies 25| < ¢ h".
From the third equation of (5.1), we obtain
0’R  OA OR  Ogs
202 90 0 o6
which implies |2 ae2 2| < O h. Thus we complete the proof for this case.
By induction, suppose

8k+lR
T2 1< [ <
‘8hk8tl‘_c h <k+1<m,
then it holds that
OFHA & ak-l—lgl .
C-h7 272 — | <C-h"272
onran! = > | onrga! = P
P Lax’ & ak-l—lgg P
— LI <C-h 2 — < C.-h2t2
T I gpra! = P
for 1 <k +1 < m. Consequently, we obtain
8k+lR
C-h75.
‘ahkatl‘ -
for 1 <k+1<m+ 1. So the proof is completed. [

Proof of Lemma 2.5

The lemma is easily followed from the following claim:

Claim
ak—i—l afl 1k
(5.3) ok .
‘8hk8tlf2<h - R7 97 t)‘ < C-h™2

foro<k+1<11.

Proof. We only prove the first inequality of (5.3) and the proof for second one is
similar.
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(i) k+1= 0. The proof for this case can be obtained directly from Lemma 2.1 and
2.4,

(if) k> 0,1 = 0. We have the following equality:

ok 8f1 ok1y fmay
ank o (M R O) =2 ar m+1f ! onk T hkm
witho <m <k, ki, , k>0, ki+---+kp, =kand u = h—puR. Assume
there are I(< m) numbers in {kq,-- -, k,,} which is equal to 1. Then we obtain
8k 8f1 kit tkm—l

AUl 9)’<c BT R T < CeRTE

(iif) k =0,1> 0. By direct computation, we have

o 9f B ontl o O
It or = (h—pR,0) = or n+1f1< 0) - ot Htin
witho<n<lI, ly,---,1,>0, I+ ---1, = . It follows that
' o

ST 0 < C R <O,

(iv) k> 0,1 > 0. By direct computation, we have
okt ofr
anrai or (:9)
8m+n+1 8k1u 8k'mu 8km+i+l1u 8k'm+n + ln
8 m—+n—+1 fl( ) 8hk‘1 o 8hk‘m ’ 8hk‘m+1 8tl1 o 8hk‘m+n 8tln ’

where © = h — pR and

Ogmgka Ognglu klu"'ukmu llu"'uln>07 km-}—l?"'ukm-f—nzou

ki+-kmtbmp b =k b4+l =1

Assume that there are b(< m) numbers in {ki,---, k,,} which is equal to 1,
Then
8k+l 8f1 1 kl+'“+km+km+1+'“+km+n_b k+1
——— | < C-h "2 - h” <C-h” 2.
e ar | ’ ’ = ’
This ends the proof of the claim. |

Proof of Lemma 2.6
We prove it by induction.
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(i) When k + 1 = 1. From the third equation of (5.1), we obtain

R OA OR dgs R OA OR  dgs
Lo 98 div 993 A o= g9 993
A ona6 T on 98 " on a0 " ot a0~ ot

which implies ‘ahae‘ <C, ‘atae‘ <C-h3.
(if) By induction, we assume that

8k+l+1R
| Ohkot o0

=

|<C-h5t

forall k +1 < m.
(iii) Then applying % to both sides of the third equation of (5.1), we have

8k+l+1 8k1 +Z1A 8k2+l2 OR 8k+l
A . oR _ 0"
onFaiae T nkam  ankor: 06— ankon Y

where k1 +ko =k, I1+1s =1, k1+1; > 0. So by the hypothesis of induction,

gh+i+1 k++1
7}2’ <2|IA|l |=——=R
OhkOto0 | — A ‘8hk8t589 |
8k1+l1A 8k2+l2 OR 8k+l
< k1 9yl kl_+2’kl93’
8h 1oth | 1OhR20t2 00 OhFot
<h Rt Lt
< CohTEE
where we have used the inequalities
8k‘1+l1A k1 8k‘+l +_
orkigt| =" T ’8hk8t593’ ¢
That is, if the conclusion is true for k + [ < m, then it is also valid for k + 1 <
m + 1. Thus the proof is finished. ]
5.2. Proof of (3.16)
In fact when k +1 =1, let
028 0?8
_ == I .
IT = 1+818 (I1,7,0), 812< , T, 0)
By direct computation we have
or or

(5.4) mgp=1 I3

[
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Then (3.15) gives IT > 1, for 7 > 1 and

<C <C-I7%.
When k + [ = 2, from the result above we have
Grl=c-rt giscrt (Scort | Fscrt
ol
Thus from (5.4), it follows that
82
< I" < I"
‘8[81/1‘— ‘81/12‘ ¢ ‘812‘ ¢
In general, if ok p
WT’SCI 2, 1§k+l§q,
then
okl htl okl k2
<C-I™ I 1< <q.
’aﬂvawl ’—C = ’aﬂvawl ’ C-I"z, lsk+lsg

From (5.4) and the above estimates, we obtain

8k+l &
— 7| <C-T"2, 1<k+I1<q+]1.
IEOY!

Thus (3.16) is proved by induction.
ACKNOWLEDGMENTS

It is a pleasure for the first author to thank Professor J. You for his encouragement
and helpful suggestions.

REFERENCES
1. J. Alonso and R. Ortega, Unbounded solutions of semilinear equations at resonance,
Nonlinearity, 9 (1996), 1099-1111.

2. V. Arnold, On the behavior of an adiabatic invariant under a slow periodic change of
the Hamiltonian, DAN 142(4) (1962), 758-761; Transl. Soy. Math. Dokl., 3, 136-139.

3. R. Dieckerhoff and E. Zehnder, Boundedness of solutions via the Twist Theorem, Ann.
Scuola Norm. Sup. Pisa Cl. Sci., 14(1) (1987), 79-95.

4. L. Jiao, D. Piao and Y. Wang, Boundedness for general semilinear Duffing Equations
via the twist theorem, J. Differential Equations, 252 (2012), 91-113.



10.

Boundedness at Resonance 1949

. A. Lazer and D. Leach, Bounded perturbations of forced harmonic oscillators at reso-
nance, Ann. Mat. Pura Appl., 82 (1969), 49-68.

M. Levi, Quasiperiodic motions in superquadratic time-periodic potenials, Comm. Math.
Phys., 143 (1991), 43-83.

. J. Littlewood, Unbounded solutions of 5" + g(y) = p(t), J. London Math. Soc., 41
(1966), 491-496.

B. Liu, Boundedness in nonlinear oscillations at resonance, J. Differential Equations,
153 (1999), 142-174.

B. Liu, Quasi-periodic solutions of a semilinear Liénard equation at resonance, Sci.
China Ser. A: Mathematics, 48(9) (2005), 1234-1244.

B. Liu, Quasi-periodic solutions of forced isochronous oscillators at resonance, J. Dif-
ferential Equations, 246 (2009), 3471-3495.

11. S. Ma and J. Wu, A small twist theorem and boundedness of solutions for semilinear
Duffing equations at resonance, Nonlinear Anal., 67(1) (2007), 200-237.

12. J. Mawhin, Resonance and nonlinearity: A survey, Ukrainian Math. J., 59(2) (2007),
197-214.

13. G. Morris, A case of boundedness in Littlewood’s problem on oscillatory differential
equations, Bull. Austral. Math. Soc., 14 (1976), 71-93.

14. J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad.
wiss, Gottingen Math. Phys., KI.(I1) (1962), 1-20.

15. R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist
theorem, Proc. London Math. Soc., 79 (1999), 381-413.

16. J. Xu and J. You, Persistence of lower-dimensional tori under the first Melnikov’s non-
resonance condition, J. Math. Pures Appl., 80(10) (2001), 1045-1067.

Xiumei Xing

Department of Mathematics

Nanj
Nanj
and

ing University
ing 210093

Department of Mathematics
Yili Normal University

Yili 835000, P. R. China
E-mail: xingxm09@163.com

Yigian Wang
Corresponding author.
Department of Mathematics

Nanj
Nanj

ing University
ing 210093, P. R. China

E-mail: ygwangnju@yahoo.com



