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Dedicated to Professor Stere Ianus on the occasion of his seventieth birthday

Abstract. The first part of the paper deals with finding the heat kernel by

probabilistic methods for the 1-dimensional elliptic differential operator 1
2 (1+

x2) d2

dx2 +
(√

1 + x2+x
2

)
d
dx . In the second part we apply the same method to the

2-dimensional operator 1
2

(
∂2

∂x2
1
+2

√
1 + x2

2
∂2

∂x1∂x2
+(1+x2

2)
∂2

∂x2
2

)
+ 1

2
x2∂x2

and provide explicit formulas for its heat kernel.

1. INTRODUCTION

The use of probabilistic methods to find heat kernels for second order differential

operators was initiated by Kolmogorov [6] in early 1930s, who investigated the heat

kernel for the following degenerated operator on R2

∂2
x − x∂y .

In late 1970s Hulanicki [5] and Gaveau [4] used probabilistic methods and Brownian

motion to determine the heat kernel for the Heisenberg-Laplacian, i.e. the subelliptic

operator on R3 given by

1
2
(∂x − 2y∂z)2 +

1
2
(∂y − 2z∂z)2.

The first part of the present paper deals with the heat kernel K(x0, x; t) of the
1-dimensional elliptic operator

(1.1) L =
1
2
(1 + x2)

d2

dx2
+

(√
1 + x2 +

x

2
) d

dx
,
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i.e., finding the solution of

∂tK = LK, t > 0, x ∈ R,

lim
t↘0

K(x, x0; t) = δx0(x),

where δx0 stands for the Dirac distribution centered at x0.

There are quite a few methods for computing heat kernels that can be found

in the literature, sometimes several of them being applicable to the same operator.

However, for the operator (1.1) most of the methods do not yield immediate results.

The radical coefficients make the method of path integrals difficult to apply. Other

methods like Van Vleck’s formula of Feynman-Kac’s formula are also not applicable

for this operator. The Fourier transform method cannot be successfully applied

because of the nonconstant coefficients. The “geometric method” discussed for

instance in [3], chap.10, is not feasible here since the associated bicharacteristics

system is nonlinear and hard to solve here and the associated action is difficult to

produce. The interesting feature of the operator (1.1) is that it represents an example

where the probabilistic method is the most appropriate.

The probabilistic method associates a stochastic differential equation (SDE) with

the aforementioned operator. The next step is to show that the SDE has a unique

solution, given an initial condition, and to solve the SDE explicitly. Then one needs

to find the probability density function of the solution stochastic process. This will

provide us with the deserved heat kernel. It is worth to note that in this case all the

above steps can be done with no much difficulty. The main results of this paper are

given below.

Theorem 1.1. The heat kernel of the operator (1.1) is given by

(1.2) K(x0, x; t) =
1√
2πt

x +
√

1 + x2

x0 +
√

1 + x2
0

e
− 1

2t
ln2 x+

√
1+x2

x0+
√

1+x2
0

− t
2

, t > 0.

Theorem 1.2. The heat kernel of the operator

A =
1
2

( ∂2

∂x2
1

+ 2
√

1 + x2
2

∂2

∂x1∂x2
+ (1 + x2

2)
∂2

∂x2
2

)
+

1
2
x2∂x2

is equal to

K(x0, x; t)

=
1

2πt

1√
1+x2

2

[
x2 +

√
1+x2

2

x0
2+

√
1 + (x0

2)2

]x1−x0
1

t

e−
1
2t

(x1−x0
1)

2− 1
t

(
sinh−1(x2)−sinh−1(x0

2)
)2

,

with t > 0, where x = (x1, x2), x0 = (x0
1, x

0
2).
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2. THE PROOF OF THEOREM 1.1

Consider the following time-homogeneous Ito diffusion equation

(2.1) dXt =
(√

1 + X2
t +

1
2
Xt

)
dt +

√
1 + X2

t dWt, X0 = x0,

where Wt denotes the Brownian motion starting at W0 = 0. In order to show the
existence and uniqueness of a stochastic process (Xt)t≥0 satisfying the equation

with X0 = x0, we shall use the following result (see Theorem 5.2.1 and Definition

7.1.1. of [8]):

Theorem 2.1. If the time-homogeneous Ito diffusion

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x0

satisfies the Lipschitz condition

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|, ∀x, y ∈ R,

then there is a unique solution (Xt)t≥0 with X0 = x0.

In our case the drift and diffusion coefficients are given by b(x) =
√

1 + x2+ 1
2x,

and σ(x) =
√

1 + x2. Since

|x + y|
√

1 + x2 +
√

1 + y2
≤ |x|

√
1 + x2 +

√
1 + y2

+
|y|

√
1 + x2 +

√
1 + y2

<
|x|√

1 + x2
+

|y|√
1 + x2

< 2,

then the next estimation holds

|σ(x)− σ(y)| = |
√

1 + x2 −
√

1 + y2| =
|x2 − y2|

√
1 + x2 +

√
1 + y2

=
|x + y|√

1 + x2 +
√

1 + y2
· |x− y| < 2|x− y|,

and then

|b(x)− b(y)| ≤ |
√

1 + x2 −
√

1 + y2| + 1
2
|x − y|

< 2|x − y| + 1
2
|x − y| =

5
2
|x − y|.

Using the previous estimations we obtain the Lipschitz condition with D = 9/2

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ 9
2
|x− y|, ∀x, y ∈ R.
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By Theorem 2.1, there is a unique solution Xt for the SDE (2.1). In order to find

the solution Xt, invoking the uniqueness, it suffices to guess a solution. We shall

construct in the following the solution explicitly.

Consider the process Ut = c + t + Wt, with Wt Brownian motion and constant

c = sinh−1(x0) and construct the process Xt = sinh(Ut). It is easy to verify that
X0 = x0. Applying Ito’s formula we obtain

dXt = cosh(Ut) dUt +
1
2

sinhUt (dUt)2

= cosh(Ut) (dt + dWt) +
1
2

sinh(Ut) dt

=
(
cosh(Ut) +

1
2

sinh(Ut)
)
dt + cosh(Ut) dWt

=
(√

1 + sinh2(Ut) +
1
2

sinh(Ut)
)

dt +
√

1 + sinh2(Ut)dWt

=
(√

1 + X2
t +

1
2
Xt

)
dt +

√
1 + X2

t dWt.

Hence

(2.2) Xt = sinh(c + t + Wt), c = sinh−1(x0)

is the solution of the equation (2.1).

The generator of the aforementioned processXt is the second partial differential

operator A defined by

Af(x) = lim
t↘0

Ex[f(Xt)]− f(x)
t

, f ∈ C2
0(R),

where Ex is the conditional expectation operator, given X0 = x, see [8], p.121.

Using standard properties of generators, we obtain that

A =
1
2
σ2(x)

d2

dx2
+ b(x)

d

dx
= L,

with L given by (1.1). In order to find the transition density of Xt, which is the

heat kernel of L, one needs to compute first the the conditional distribution function
of Xt

FX |X0
(x | x0) = P (Xt ≤ x |X0 = x0) = P (sinh(Ut) ≤ x |U0 = sinh−1 x0)

= P (c + t + Wt ≤ sinh−1 x | c = sinh−1 x0)
= P (Wt ≤ sinh−1 x − c − t | c = sinh−1 x0)
= P (Wt ≤ sinh−1 x − sinh−1 x0 − t)

=
∫ sinh−1 x−sinh−1 x0−t

−∞

1√
2πt

e−
u2

2t du,

so the transition density of Xt is
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(2.3) pt(x0, x) =
d

dx
FX |X0

(x|x0) =
1√
2πt

e−
(sinh−1 x−sinh−1 x0−t)2

2t , t > 0.

Fig. 1. The transition density as a function of x, with x0 = 0 in the cases: t = 1,
t = 0.5 and t = 0.25. For t small the graph tends to the Dirac distribution
centered at x0 = 0.

Elementary algebraic computations show that

sinh−1 x − sinh−1 x0 = ln
x +

√
1 + x2

x0 +
√

1 + x2
0

,

(sinh−1 x − sinh−1 x0 − t)2 = ln2 x +
√

1 + x2

x0 +
√

1 + x2
0

− 2t ln
x +

√
1 + x2

x0 +
√

1 + x2
0

+ t2.

Substituting in (2.3) yields the transition density

(2.4) pt(x0, x) =
1√
2πt

x +
√

1 + x2

x0 +
√

1 + x2
0

e
− 1

2t
ln2 x+

√
1+x2

x0+
√

1+x2
0

− t
2

, t > 0.

Standard properties of stochastic processes state that (2.4) is the heat kernel of the

operator (1.1). The proof of Theorem 2.4 is thus finished. The density function is

represented in Fig. 1 for x0 = 0 at the instances t = 1, t = 0.5 and t = 0.25. The
distribution is skewed and has fatter tails to the right. This means that more heat

propagates from x0 to the right rather than to the left.

3. THE PROOF OF THEOREM 1.2

Let W1(t) and W2(t) be two independent Brownian motions starting at 0, and
consider the following system of SDE in the matrix form
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(3.1)

(
dX1(t)
dX2(t)

)
=

(
0

1
2X2(t)

)
dt +

(
1 1
0

√
1 + X2(t)2

) (
dW1(t)
dW2(t)

)
,

with the coefficients

b(x) =
(

0
1
2x2

)
, σ =

(
1 1
0

√
1 + x2

2

)
, σσT =

(
1

√
1 + x2

2√
1 + x2

2 1 + x2
2

)
.

Since we have the estimations

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ 1
2
|x2 − y2| +

∣∣∣
√

1 + x2
2 −

√
1 + y2

2

∣∣∣

≤ 5
2
|x2 − y2| ≤

5
2
|x − y|,

where |σ|2 =
∑

|σij|2, the Lipschitz condition holds, and hence there is a unique
process Xt which satisfies the SDE system (3.1) starting at X0 = x0 = (x0

1, x
0
2),

for any given point x0 ∈ R2.

In order to find the solution, invoking the uniqueness, it suffices to construct

a solution. Consider the 2-dimensional stochastic process Xt = (X1(t), X2(t))
defined by

X1(t) = W1(t) + W2(t) + x0
1

X2(t) = sinh
(
W2(t) + c

)
, c = sinh−1(x0

2).

It is easy to check that the process starts at X0 = (x0
1, x

0
2) = x0 and satisfies the

following stochastic differential system of equations

dX1(t) = dW1(t) + dW2(t)

dX2(t) = cosh
(
W2(t) + c

)
dW2(t) +

1
2
X2(t) dt

=
√

1 + X2(t)2 dW2(t) +
1
2
X2(t) dt.

Standard results of stochastic processes yield the following generator for Xt

A =
1
2

∑

i,j

(σσT)ij
∂2

∂xi∂xj
+

∑

j

bj(x)
∂

∂xj

=
1
2

(
1

√
1 + x2

2√
1 + x2

2 1 + x2
2

)
∂2

∂xi∂xj
+

(
0

1
2x2

)
· (∂x1 , ∂x2)

=
1
2

( ∂2

∂x2
1

+ 2
√

1 + x2
2

∂2

∂x1∂x2
+ (1 + x2

2)
∂2

∂x2
2

)
+

1
2
x2∂x2 .

The heat kernel for the aforementioned operator A is given by the transition

density of the process Xt = (X1(t), X2(t)), which will be obtained in terms of the
transition density of the 2-dimensional Brownian motion

(
W1(t), W2(t)

)
.
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The transformation

x1 = u1 + u2 + x0
1

x2 = sinh(u2 + c), c = sinh−1(x0
2)

has the inverse

u1 = (x1 − x0
1) −

(
sinh−1(x2) − sinh−1(x0

2)
)

(3.2)

u2 = sinh−1(x2) − sinh−1(x0
2),(3.3)

with the nonsingular Jacobian

det
∂(u1, u2)
∂(x1, x2)

=
1√

1 + x2
2

6= 0.

Standard results of transformations of distributions (see for instance [7], p.111) yield

the density function of Xt

(3.4)

pt(x0, x) = f
X|X0

(x|x0) = fW1,W2

(
u1(x0, x), u2(x0, x)

)
det

∂(u1, u2)
∂(x1, x2)

= fW1

(
u1(x0, x)

)
fW2

(
u2(x0, x)

)
det

∂(u1, u2)
∂(x1, x2)

=
1√
2πt

e−
u2
1

2t
1√
2πt

e−
u2
2

2t
1√

1 + x2
2

=
1

2πt

1√
1 + x2

2

e−
|u|2
2t ,

with u given by (3.2)− (3.3). A computation provides

|u|2 = u2
1 + u2

2

= (x1 − x0
1)

2 − 2(x1 − x0
1)

(
sinh−1(x2) − sinh−1(x0

2)
)

+2
(
sinh−1(x2)− sinh−1(x0

2)
)2

= (x1−x0
1)

2−2(x1−x0
1) ln

x2+
√

1+x2
2

x0
2+

√
1+(x0

2)2
+2

(
sinh−1(x2)−sinh−1(x0

2)
)2

and hence

e−
|u|2
2t =

[
x2 +

√
1 + x2

2

x0
2 +

√
1 + (x0

2)2

]x1−x0
1

t

e−
1
2t

(x1−x0
1)

2− 1
t

(
sinh−1(x2)−sinh−1(x0

2)
)2

.

Substituting in (3.4) leads to the desired result.
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