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ERGODICITY, MINIMALITY AND REDUCIBILITY OF COCYCLES ON
SOME COMPACT GROUPS

Xuanji Hou

Abstract. In this paper, we use the results in [4, 5, 11] to prove several
interesting local or global density results of minimal, ergodic or reducible
quasi-periodic linear systems on SU(2) or SO(3,R). In particular, we give a
positive answer to a open problem of H. Eliasson in [3, 4].

1. INTRODUCTION

Let Td = Rd/Zd be the d-dimensional torus. We use the notation G and
g to represent some Lie subgroup of GL(N,C) and its Lie algebra. Let r =
0, 1, · · · ,∞, ω. A Cr quasi-periodic linear system on Td ×G is a Cr map of the
form

Γ : Θ × Td ×G → Td ×G, (t, x, y) �→ (x+ tα,Φ(t, x)y),(1.1)

where Θ is Z (discrete time) or R (continuous time) and Φ ∈ Cr(Θ × Td, G),
satisfying the cocycle condition

Φ(s+ t, ·) = Φ(s, ·+ tα)Φ(t, ·), ∀s, t ∈ Θ.

We say that the Cr quasi-periodic linear system (1.1) is Cs (0 ≤ s ≤ r) conjugated
to another Cr quasi-periodic linear system

Γ̃ : Θ × Td ×G→ Td ×G, (t, x, y) �→ (x+ tα, Φ̃(t, x)y)(1.2)

if there exists B ∈ Cs(Td, G), such that

Φ̃(t, ·) = B(· + tα)Φ(t, ·)B(·)−1, t ∈ Θ.

When Φ̃ depend only on time, we say that Γ̃ is a constant system and Γ is
Cs−reducible (or reducible simply).
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Remark 1.1. For the continuous-time case, it is obvious that Φ(0, ·) ≡ I , where
I represent the identity element.

A Cr quasi-periodic linear system can be decided by a generator. Denote by
SW r(Td, G) the set of all (α, A) ∈ Rd × Cr(Td, G), which represent a Cr quasi-
periodic cocycle on Td ×G, i.e., a diffeomorphism of Td ×G of the form

(α, A) : Td ×G → Td ×G, (x, y) �→ (x+ α, A(x)y).(1.3)

The iterations of (α, A) defines a discrete-time Cr quasi-periodic linear system.
Denote by swr(Td, g) the set of all {α, a} ∈ Rd × Cr(Td, g), which represent a
ODE on Td ×G of the form

ẋ = α, ẏ = a(x)y,(1.4)

the flow of which defines a continuous-time Cr quasi-periodic linear system. In
SW r(Td, G) (swr(Td, g)), (α, A) ({α, A}) is said to be Cs (0 ≤ s ≤ r) conjugated
to another cocycle (α,Ã) ({α, Ã}), if the corresponding quasi-periodic linear system
of (α, A) ({α, A}) can be conjugated to the one of (α,Ã) ({α, Ã}). For cocycles,
it is equivalent to say that for some B ∈ Cs(Td, G), there is

B(· + α)A(·)B(·)−1 = Ã(·).

And for ODE, as s ≥ 1, it is equivalent to say that there isB ∈ Cs(Td, G) satisfying

Ã = (∂αB)B−1 − BAB−1.

Naturally, when Ã is a constant, we say that (α, Ã) ({α, Ã}) is constant and (α, A)
({α, A}) is Cs−reducible (or reducible simply).

It is a problem when a system in SW r(Td, G) (swr(Td, g)) is Cs (0 ≤ s ≤
r) reducible or non-reducible (i.e., not C0 reducible). However, in the study of
dynamical system, it is usually difficult and not necessary to say something for a
given system. In fact, it is more probable and important to ask: how many systems
in SW r(Td, G) (swr(Td, g)) are Cs reducible or non-reducible? Usually, the word
‘many’ can be explicated in two meaning: measurement meaning and topology
meaning. For measurable meaning, one usually consider that for a one-parameter
family of systems if some particular property is of full-measure (which is usually
called full-measure problem, one can refer to [1, 2, 6, 9, 10, 13] for more results).
For topology meaning, we usually ask in a topological space of systems or some
open set of it whether or not the subset of systems satisfying some particular property
is dense, generic or open dense (we call it density problem roughly). However, as
we will show, there is some relations between the full-measure problem and density
problem.
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Some obstructions will arise in the study of the reducibility. Firstly, the C0

reducibility of any (α, A) ∈ SW0(Td, G) implies that the continuous map A :
Td → G is homotopic to a constant map (recall that the set of all such A and its
complementary set are both open in C0(Td, G)). Notice that this never occurs in
the continuous-time case. Secondly, when G is a non-abelian compact Lie group,
the C0 reducibility of (α, A) ∈ SW 0(Td, G) ({α, a} ∈ sw0(Td, g)) always implies
that the dynamics of it has foliation structure and thus has infinite close invariant set
and infinite ergodic measure, and then finite close invariant set and finite ergodic
measure will implies the non−C0−reducibility.

We equip Cr(Td, G) (Cr(Td, g)) with the usual C r topology. In particular, the
set Cω(Td, G) (Cω(Td, g)) is equipped with the following topology. Denote by
Cω

h (Td, G) (Cω
h (Td, g)), where h > 0, the set of functions Td → G (Td → g)

which admit bounded holomorphic extensions in |Imθ| < h, equipped with the
topology induced by the norm | · |h defined as

|F |h = sup
|Imθ|<h

|F (θ)|,

where | · | denotes the usual matrix norm. And Cω(Td, G) = ∪h>0C
ω
h (Td, G)

(Cω(Td, g) = ∪h>0C
ω
h (Td, g)) is equipped with the inductive limit topology. In

other words, in Cω(Td, G) (Cω(Td, g)), A(n) converges to A if and only if there
is some h > 0, such that A(n) and A are all in Cω

h (Td, G) (Cω(Td, g)), with A(n)

converging to A in Cω
h (Td, G) (Cω(Td, g)), i.e., limn→∞ |A(n) − A|h = 0.

We introduce some notations for convenience. Let α ∈ Rd, we define some
subsets of Cr(Td, G), which represent the corresponding subsets of cocycles:

REr
d(α,G) := {A∈Cr(Td, G) : (α, A) is Cr reducible},

NRr
d(α,G) := {A∈Cr(Td, G) : (α, A) is not C0 reducible},

UEr
d(α,G) := {A∈Cr(Td, G) : (α, A) is unique ergodic},

Mr
d(α,G) := {A∈Cr(Td, G) : (α, A) is minimal},

Er
d(α,G) := {A∈Cr(Td, G) : (α, A) has 2 ergodic probability measures at most},

MEr
d(α,G) := Mr

d(α,G) ∩ Er
d(α,G).

In the same way, we define the subsets

rer
d(α, g), nrrd(α, g), uer

d(α, g),m
r
d(α, g), e

r
d(α,G),merd(α, g)

of Cr(Td, g) correspondingly.

In this paper, we will mainly consider the density problem of quasi-periodic
linear systems on G = SU(2), SO(3,R) (g = su(2), so(3,R) correspondingly).
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Notice that we obviously have

UEr
d(α,G),Mr

d(α,G),Er
d(α,G),MEr

d(α,G) ⊆ NRr
d(α,G)

and
uer

d(α, g),m
r
d(α,G), er

d(α,G),mer
d(α,G) ⊆ nrr

d(α,G).

There is some results about reducibility of linear quasi-periodic skew-product sys-
tems on SU(2) or SO(3,R). We need to give some arithmetic condition before
introducing these results. Let |x|Z = inf{|x− j| : j ∈ Z}, and

DCd
R
(γ, τ) = {α ∈ Rd : | < k, α > | ≥ γ

|k|τ , 0 �= k ∈ Zd};

DCd
Z(γ, τ) = {α ∈ Rd : | < k, α > |Z ≥ γ

|k|τ , 0 �= k ∈ Zd}.

It is well known that DCd
R

:= ∪γ,τ>0DC
d
R
(γ, τ) and DCd

Z
:= ∪γ,τ>0DC

d
Z
(γ, τ)

are all of full measure.

1.1. Local Density Problem

We firstly introduce some local results (results of systems closing constants) on
reducibility. It is proved by R.Krikorian in [9, 10] the following proposition:

Proposition 1.1. (R.Krikorian [9, 10]). Let r = ∞, ω, α ∈ DCd
Z

(α ∈ DCd
R

),
G = SU(2), SO(3,R) and g = su(2), so(3,R) correspondingly. For any C ∈ G

(C ∈ g), there exists a neighborhood U (V) around C, such that the set RE r
d(α,G)

(rer
d(α, g)) is dense in U (V).

Remark 1.2. For Cω case, though such density result can not be found in [9, 10],
it is in fact a corollary of a result in [9]. It is proved in [9] that for any h > 0 and
the interval (1/2, 3/2), there exists δ = δ(C, h, γ, τ) > 0, if F ∈ Cω(Td, g) and
|F |h < δ, (α, CeλF ) ({α, C + λF}) is Cω reducible for a.e. λ ∈ (1/2, 3/2). We
can define U (V) as

U = {CeF : ∃h > 0 s.t. F ∈ Cω
h (Td, g) and |F |h < δ}

(V = {C + F : ∃h > 0 s.t. F ∈ Cω
h (Td, g) and |F |h < δ})

Then for any CeF ∈ U (C + F ∈ V), one can find a sequence of λn → 1, such
that (α, CeλnF ) ∈ U ({α, C + λnF} ∈ V) are Cω reducible.

For local density problem of non-reducible systems, we have a result as follows.

Theorem 1.1. Let G = SU(2) and g = su(2). For r = ∞, ω, α ∈ DCd
Z
(γ, τ)

(α ∈ DCd
R
(γ, τ)) andC ∈ G (C ∈ g), there exists a neighborhoodU = U(d, γ, τ, C)

(V = V(d, γ, τ, C)) aroundC in Cr(Td, G) (Cr(Td, g)), such that the set MEr
d(α,G)

(mer
d(α, g)) is dense in U (V).
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H. Eliasson has proved the following conclusion in [4] for the case of G =
SO(3,R).

Proposition 1.2. (H. Eliasson [4]). Let C ∈ so(3,R), α ∈ DCd
R
(γ, τ) and

h > 0. There exist δ = δ(C, h, γ, τ) > 0, such that the set uer
d(α, so(3,R)) is

generic in the neighborhood {C + F : |F |h < δ}.

In this paper, the following more general result can been obtained.

Theorem 1.2. Let G = SO(3,R) and g = so(3,R). For r = ∞, ω, α ∈
DCd

Z
(γ, τ) (α ∈ DCd

R
(γ, τ)) and C ∈ G (C ∈ g), there exists a neighborhood

U = U(d, γ, τ, C) (V = V(d, γ, τ, C)) around C in Cr(Td, G) (Cr(Td, g)), such
that the set UEr

d(α,G) (uer
d(α, g)) is generic in U (V).

Now for G = SO(3,R), r = ∞, ω, and α ∈ DCd
Z

(α ∈ DCd
R

), we have such
a local picture of dynamics: for any constant in Cr(Td, G) ( Cr(Td, g)), there is
some neighborhood around it, such that REr

d(α,G) (rer
d(α,G)) and UEr

d(α,G) (or
uer

d(α,G)) are both dense in it.

1.2. Global Density Problem

When a problem is on systems which are not necessarily close to any constant
system, we call it a global problem. Global problems are more interesting while
there are few results.

Let us firstly consider G = SU(2). In [8], a C0−density result is given as
follows.

Proposition 1.3. (R. Krikorian [8]). For any irrationalα ∈ T1, NR0
1(α, SU(2))

is dense in C0(T1, SU(2)).

Let

(1.5) Σ := ∩∞
N=1 ∪k≥N

{
α ∈ [0, 1) : F k(α), F k+1(α) ∈ DC1

Z
(γ, τ)∩

(1
5
,
1
4

]}
,

in which F : [0, 1) → [0, 1), x �→ {1/x} ({·} represent the fractional part) be the
Gauss map. One can prove Σ is a full measure set of [0, 1). R.Krikorain has also
proved the following result.

Proposition 1.4. (R.Krikorian [11]). For any α ∈ Σ, RE∞
1 (α, SU(2)) is dense

in C∞(T1, SU(2)).

The above result has been proved by a so-called Renormalization method (or
more precisely, R.Krikorian’s Renormalization scheme). Unfortunately, it seems that
such R.Krikorian’s Renormalization method is bounded to 1-dimensional (it means
that the torus is 1-dimensional) discrete-time case.

In this paper, we can obtain a interesting conclusion as follows.
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Theorem 1.3. For any α ∈ Σ ∩ DC1
Z
, ME∞

1 (α, SU(2)) is dense in C∞

(T1, SU(2)).

It is obvious that, for a.e. α, Theorem 1.3 is much more stronger than Proposition
1.3. Moreover, Proposition 1.4 and Theorem 1.3 together give a global picture for
dynamics of cocycles in SW∞(T1, SU(2)): for a.e.α, RE∞

1 and ME∞
1 are both

dense in C∞(T1, SU(2)).
Now we consider the case of SO(3,R). In [5], R. Fahti and M.Herman have

proved a conclusion as follows.

Proposition 1.5. (R. Fahti and M. Herman [5]). For any irrational α ∈ Td,
the set UE0

d(α, SO(3,R)) (ue0
d(α, so(3,R))) is a Gδ set.

In [3, 4], H.Eliasson has ask such a open problem : if the local picture of the dy-
namics of cocycles on SO(3,R) is still true in global case? LetCr

hom(T1, SO(3,R))
denotes the set of all maps in Cr(T1, SO(3,R)) which are homotopic to constant
maps. Thus Cr(T1, SO(3,R)) has two connected components: Cr

hom(T1, SO(3,R))
and its complementary set. The following theorem give a positive answer to the
open problem given of H.Eliasson (at least for discrete-time case).

Theorem 1.4. Let G = SO(3,R), we have conclusions as follows.

(a) For any α ∈ Σ, RE∞
1 (α,G) is dense in C∞

hom(T1, G).
(b) For any α ∈ Σ ∩DC1

Z
, UE∞

1 (α,G) is generic in C∞
hom(T1, G) .

Outline of the paper: In the remainder of the paper, we will prove Theorem 1.2
in section 2, then we use the resuls of Theorem 1.2 to prove Theorem 1.4 in section
3, and we prove Theorem 1.1, 1.3 in section 4 in the the end.

2. PROOF OF THEOREM 1.2

In this section, we give the proof of Theorem 1.2. We will consider it for
different cases: continuous-time Cω case, continuous-time C∞ case and discrete-
time case.

The proof of continuous-time Cω case is easy.

Proof. (Continuous-time Cω case). Let δ = δ(h) (we keep the dependence on
γ, τ, C implicit) be the same on as in Proposition 1.2, we define the open set

V = {C + F : ∃h > 0 s.t. F ∈ Cω
h (Td, g) and |F |h < δ(h)}.

By Proposition 1.2, ueωd (α, so(3,R)) is dense in V . By Proposition 1.5, ueωd (α,
so(3,R)) is a Gδ set w.r.t. C0 topology, so is it w.r.t. Cω topology. Thus
ueωd (α, so(3,R)) is generic in V .
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Now we can use the conclusion of Cω case to prove the C∞ case.

Proof. (Continuous-time C∞ case). By Proposition 1.1, there exist V around
C, such that the set of re∞d (α, so(3,R)) is a dense in V (w.r.t. C∞ topology).
Thus for any A ∈ V , one can find a sequence of A(n)

0 ∈ re∞d (α, so(3,R)), such
that A(n)

0 → A as n → ∞ w.r.t. C∞ topology. For A(n)
0 ∈ re∞d (α, so(3,R)),

A
(n)
0 can be C∞ conjugated to a sequence of constants C(n). By the conclusion of

Theorem 1.2 for continuous-timeCω case, for every C(n), one can find a sequence of
A

(m,n)
1 ∈ ueωd (α, so(3,R)), satisfying A(m,n)

1 → C(n) w.r.t. Cω topology as m →
∞. It is obvious that A(m,n)

1 → C(n) as m → ∞ w.r.t. C∞ topology for every n.
By conjugacies, for every n, there exists a sequence of A(m,n)

0 ∈ ueωd (α, so(3,R)),
satisfying A(m,n)

0 → A
(n)
0 as m → ∞ w.r.t. C∞ topology. Thus we can select a

subsequence of Ã(n) ∈ ue∞d (α, so(3,R)) such that it converges to A as n → ∞
w.r.t. C∞ topology. The proof for continuous-time C∞ case is thus completed.

In order to deduce the discrete-time case, we need some preparing.
Let α ∈ Td and a ∈ Cr(Td+1, G). For any x = (x1, · · ·xd) ∈ Td and w ∈ R,

we define x⊕ w = (x1, · · ·xd, w) ∈ Td+1. Assume that ((α⊕ 1)t,Φ(t, ·)) be the
flow of system {α⊕ 1, a} ∈ swr(Td+1, G). There is a cocycle (α, A) defined as

(α, A) : Td ×G → Td ×G

(x, y) �→ (x+ α,Φ(1, x⊕ 0)y).

We call that (α, A) is a Poincaré cocycle of {α⊕1, a} and there is close relationships
between the dynamics of them. Particularly, the unique ergodicity of a Poincaŕe
cocycle of a linear quasi-periodic skew-product ODE can be deduced from the
unique ergodicity of the continuous-time system. Recall that a general dynamical
system Γt (t ∈ R,Z) on a compact topological space X is unique ergodic if and
only if for any f ∈ C0(X,R)

lim
N→+∞

1
N+1

N∑
k=0

f◦Γk(x) (as t ∈ Z) or lim
T→+∞

1
T

∫ T

0

f◦Γt(x)dt (as t∈R)

converges uniformly to some constant (see [Wa81]).

Lemma 2.1. Let Ω be a compact topological space and Φ t (t ∈ R) is a con-
tinuous skew-product dynamic system defined as

Φt : T1 × Ω → T1 × Ω
(x, y) �→ (x+ t, ϕ(t, x, y))



1254 Xuanji Hou

is unique ergodic, where ϕ ∈ C0(R×T1 ×Ω,Ω) and ϕ(t, x, ·) is a diffeomophism
of Ω for any fixed (t, x) ∈ R × T1. Then the homeomorphism

ψ(·) = ϕ(1, 0, ·) = ϕ(1, 1, ·) : Ω → Ω

is unique ergodic also.

Proof. Let πi (i = 1, 2) be the standard projection of T1 × Ω to its ith
component. Choose ξ ∈ C0([0, 1]) such that

ξ(0) = ξ(1) = 0,
∫ 1

0
ξ(t)dt = 1.

For any f ∈ C0(Ω), define

f̃(x, y) = ξ(x)f ◦ π2 ◦ Φ−x(x, y), 0 ≤ x < 1, y ∈ Ω.

f̃ can be extended to a continuous function on T × Ω and

f̃ ◦ Φt(0, y) = ξ(t− [t])f ◦ ψ◦[t](y), t ≥ 0.

Thus we have∫ n+1

n
f̃ ◦ Φt(0, y)dt = f ◦ ψ◦n(y), n = 0, 1, · · · .

So

lim
N→∞

1
N + 1

N∑
n=0

f ◦ ψ◦n(y) = lim
N→∞

1
N + 1

∫ N

0

f̃ ◦ Φt(0, y)dt

converge uniformly to some constant.
Then we can use the above facts to complete the proof of Theorem 1.2.

Proof. (Discrete-timeCr case for r = ∞, ω) For any α ∈ DCd
Z
(γ, τ), r = ∞, ω

and C ∈ SO(3,R), one can find c ∈ so(3,R) satisfying C = ec and a sequence of
an ∈ uer

d+1(α̃, so(3,R)) converging to c, where α̃ = α⊕ 1. Let (α̃t,Ψn(t, ·, ·)) be
the flow of {α̃, an} and An(·) = Ψn(1, ·, 0) It is obvious that An converges to C.
By Lemma 2.1, An ∈ UEr

d(α, SO(3,R)).
Thus for any Ã ∈ REr

d(α, SO(3,R)), one can find Ãn ∈ UEr
d(α, SO(3,R))

converging to Ã. Note that for any constant D ∈ SO(3,R), by Proposition 1.1 one
can find a neighborhood U = U(d, γ, τ,D) aroundD in Cr(Td, SO(3,R)) such that
U∩REr

d(α, SO(3,R)) is dense in U . Then it is obvious that U∩UEr
d(α, SO(3,R))

is dense in U . By Proposition 1.5, U ∩ UEr
d(α, SO(3,R)) is then generic in U .

Thus the proof of Theorem 1.2 is completed.
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3. PROOF OF THEOREM 1.4

It is well-known that there exists a smooth covering homomorphism p from
SU(2) to SO(3,R), i.e., p is a Lie group homomorphism and smooth covering
projection (the covering number is 2) satisfying

p(y) = p(−y), y ∈ SU(2).

Then any A ∈ C∞
hom(T1, SO(3,R)) can be lifted to Ã ∈ C∞(T1, SU(2)) satisfying

A = p ◦ Ã and p does not change C∞ reducibility, i.e., (α, A) is C∞ reducible if
and only if (α, Ã) is C∞ reducible.

Proof. (Proof of Theorem 1.4) From Proposition 1.4, Theorem 1.4. a) is
obvious. Then by Theorem 1.2 and Theorem 1.4. a), for any α ∈ Σ ∩ DC1

Z
,

UE∞
1 (α,G) is dense in C∞

hom(T1, G) (w.r.t. C∞ topology). By Proposition 1.5,
UE0

1(α,G) is a Gδ set w.r.t. C0 topology, which implies that UE∞
1 (α,G) is a

Gδ set w.r.t. C∞ topology. So UE∞
1 (α,G) is generic in C∞

hom(T1, G) (w.r.t. C∞

topology).

4. PROOF OF THEOREM 1.3

Let λ, λ̃ and md be the Haar measure of SO(3,R), SU(2) and Td respectively.
Thus the product measure µd := m× λ and µ̃d := m× λ̃ be the Haar measure of
Td × SO(3,R) and Td × SU(2) respectively.

Recall that there exists a smooth covering homomorphism

p : SU(2) → SO(3,R)

satisfying
p−1({p(y)}) = {y,−y}, y ∈ SU(2).

Thus
Πd := idTd × p : Td × SU(2) → Td × SO(3,R)

is also a smooth covering homomorphism, where idTd represents the identity map
of Td. We use the notation ẑ represents (x,−y) for any z = (x, y) ∈ Td × SU(2)
and Ŵ represents the set

{z ∈ Td × SU(2) : ẑ ∈W}

for any W ⊆ Td × SU(2). One can see

Π−1
d (Πd(W )) = W ∪ Ŵ
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for any W ⊆ Td × SU(2), and particularly

Π−1
d ({Πd(z)}) = {z, ẑ}

for any z ∈ Td × SU(2).
We use the notation Md (M̃d) to represent the space of all probability Borel

measures of Td × SO(3,R) (Td × SU(2)), and equip it with week* topology (see
[14]). For any ν ∈ M̃d, (Πd)∗(ν) ∈Md is defined as

(Πd)∗(ν)(W ) = ν(Π−1
d (W )),

for any Borel set W ⊆ Td × SO(3,R). It is obvious that

(Πd)∗(µ̃d) = µd,

which implies that for any Borel set W ⊆ Td × SO(3,R), there is

µd(Πd(W )) = µ̃d(Π−1
d (Πd(W ))) = µ̃d(W ∪ Ŵ ).

Let us consider the discrete-time case firstly. We use the notation Md(α, A)
(M̃d(α, Ã)) to represent the space of all probability measures of

Td × SO(3,R) (Td × SU(2))

which are invariant under the iterations of (α, A) ∈ SW 0(Td, SO(3,R)) ((α, Ã) ∈
SW 0(Td, SU(2))).

We obviously have the following Lemma.

Lemma 4.1. For any (α, Ã) ∈ SW 0(Td, SU(2)), we have:

(a) For any Borel set W ⊆ Td × SO(3,R). it is a invariant set of (α, Ã) if and
only if p(W ) is a invariant set of (α, p ◦ Ã);

(b) For any ν ∈ M̃d, ν ∈ M̃d(α, Ã) ⇔ (Πd)∗(ν) ∈Md(α, p ◦ A).

Now we can prove the following conclusion.

Lemma 4.2. Let α ∈ Rd be irrational and Ã ∈ Cr(Td, SU(2)) satisfying
p ◦ Ã ∈ UEr

d(α, SU(2)). Then we have Ã ∈ MEr
d(α, SU(2)).

Proof. Let K be a nonempty invariant compact minimal set of (α, Ã). Then
so is K̂ and K ∪ K̂ is a nonempty invariant compact set. For Πd(K ∪ K̂) is a
nonempty invariant compact set, we have

Πd(K ∪ K̂) = Td × SO(3,R),
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which implies that

K ∪ K̂ = (K ∪ K̂) ∪ ̂(K ∪ K̂) = Π−1
d (Πd(K ∪ K̂)) = Td × SU(2).

For Td × SU(2) is connect, we have

K ∩ K̂ �= ∅,
otherwise K ∪ K̂ would be a partition of Td ×SU(2). By minimality of K one has
K = K̂, which means

K = K̂ = K ∪ K̂ = Td × SU(2).

We then complete the proof of minimality.
Now we prove that there are at most two ergodic measures. We assume that

(α, Ã) is not unique ergodic without lose of generality. Then there exists a invariant
Borel set W of (α, Ã) satisfying 0 < µ̃d(W ) < 1. We then have

µ̃d(W ∩ Ŵ ) = 0.

Otherwise, µ̃d(W ∩ Ŵ ) > 0, for W ∩ Ŵ ≥ ̂
W ∩ Ŵ , we have

µ̃d(W ∩ Ŵ ) = µd(Πd(W ∩ Ŵ )) = 1,

for Πd(W ∩ Ŵ ) is a invariant set (by Lemma 4.1) and µ is ergodic, which is
contradict to

1 > µ̃d(W ) ≥ µ̃d(W ∩ Ŵ )

In the same way, we also have µ̃d((W ∪ Ŵ )c) = 0. Let

W1 = W\Ŵ , W2 = Ŵ1 = Ŵ\W, and W∗ = (W ∪ Ŵ )c ∪ (W ∩ Ŵ ).

We define

µ̃i(X) = µ̃(X ∩Wi)/µ̃(Wi), i = 1, 2, for any Borel set X.

Then µ̃1 and µ̃2 are two ergodic measures, and there is no other ergodic measures.
In fact, if ν is such a measure, one must has

ν(W1 ∪W2) = 0 and ν(W∗) = 1.

But it is contradict to the fact that (Πd)∗ν = (Πd)∗µ̃ = µ (by Lemma 4.1, notice
that (α, p ◦ Ã) is unique ergodic).

In the same way, one can prove a similar conclusion for continuous-time case.
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Lemma 4.3. Let α ∈ Rd be irrational and Ã ∈ Cr(Td, su(2)) satisfying
p ◦ Ã ∈ uerd(α, su(2)). Then we have Ã ∈ mer

d(α, su(2)).

Now the proofs of Theorem 1.1, 1.3 are obvious.
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