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A GENERAL SYSTEM OF GENERALIZED NONLINEAR MIXED
COMPOSITE-TYPE EQUILIBRIA IN HILBERT SPACES

Hui-Ying Hu' and Lu-Chuan Ceng?*

Abstract. Very recently, Ceng and Yao [L. C. Ceng, J. C. Yao, A relaxed
extragradient-like method for a generalized mixed equilibrium problem, a gen-
eral system of generalized equilibria and a fixed point problem, Nonlinear
Anal., 72 (2009), 1922-1937, suggested and analyzed a relaxed extragradient-
like method for finding a common solution of a generalized mixed equilibrium
problem, a general system of generalized equilibria and a fixed point prob-
lem of a strict pseudocontractive mapping in a Hilbert space. In this paper,
based on the authors’ iterative method, we introduce a modification of the
relaxed extragradient-like method for finding a common solution of a gener-
alized mixed equilibrium problem with perturbed mapping, a general system
of generalized nonlinear mixed composite-type equilibria and a fixed point
problem of a strict pseudocontractive mapping in a Hilbert space, and then
obtain a strong convergence theorem. Utilizing this theorem, we establish
some new strong convergence results in fixed point problems, variational in-
equalities, mixed equilibrium problems and systems of generalized nonlinear
mixed composite-type equilibria in Hilbert spaces.

1. INTRODUCTION

It is well known that the equilibrium problem includes, as special cases, vari-
ational inequalities, optimization problems, minimax problems, Nash equilibrium
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problems in noncooperative games, saddle point problems, fixed point problems
and complementarity problems. Up to now it has been widely studied by many
authors; see, for example, [3, 4, 16-21] and the references therein.

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. Let C be
a nonempty closed convex subset of H and S : C' — H be a mapping on C. We
denote by F'(S) the set of fixed points of S and by P the metric projection of H
onto C. Moreover, we also denote by R the set of all real numbers. Consider the
following generalized mixed equilibrium problem with perturbed mapping, which
consists of finding z € C such that

(1.1a) O(z,y) +¢(y) — @) + (F+T)z,y —2) >0, VyeC,

where F' : C' — H is a nonlinear mapping, 7' : C — H is a perturbed mapping,
¢ : C — Risa functionand © : C x C — R is a bifunction. We denote by
G M E P the set of solutions of problem (1.1a). Here some special cases of problem
(1.1a) are stated as follows:

If T = 0, then problem (1.1a) reduces to the following generalized mixed
equilibrium problem of finding z € C such that

(1.10) O(z,y) + o(y) — (&) + (Fz,y —7) >0, VyeC,

which was recently introduced and studied by Peng and Yao [1]. The set of solutions
of problem (1.1b) is denoted by GM EP(6O, ¢, F). Subsequently, Yao, Liou and
Yao [2] also considered this problem.

If ¥ = 0, then problem (1.10) reduces to the following mixed equilibrium
problem of finding z € C such that

O(z,y) +¢(y) —¢(x) >0, VyeCl,

which was considered by Ceng and Yao [3]. The set of solutions of this problem
is denoted by MEP.

If ¢ =0, then problem (1.1b) reduces to the following generalized equilibrium
problem of finding z € C such that

(1.2) O(z,y) + (Fz,y—x) >0, VyeC,

which was studied by Takahashi and Takahashi [4].
If © =0, p =0and FF = A, then problem (1.1) reduces to the following
classical variational inequality problem of finding z € C such that

(1.3) (Az,y— 1) >0, VyeC.
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The set of solutions of problem (1.3) is denoted by VI(A,C). The variational in-
equality problem has been extensively studied in the literature; see [5-15] and the
references therein. Recently, in order to solve problem (1.1b), Peng and Yao [1] de-
veloped a CQ method. They established some strong convergence results for finding
a common element of the set of solutions of problem (1.15), the set of solutions of
problem (1.3), and the set of fixed points of a nonexpansive mapping.

On the other hand, let C' be a nonempty closed convex subset of a real Hilbert
space H. Let G1,Go : C x C — R be two bifunctions, By, By, T1,T> : C — H
be four nonlinear mappings and 1,1, : C — R be two functions. Consider the
following problem of finding (z,y) € C' x C such that

(1.4) {MlGl(fv$)+<M1(31+T1)ﬂ+9_€—@$—55> 11 (Z) — o1 (z), Ve e,
' p2Go(F, y)Hpo(Be+1o)T+§—T, y—1) > path2(§) — patb2(y), Yy € C,

\Y

which is called a general system of generalized nonlinear mixed composite-type
equilibria where 1 > 0 and o > 0 are two constants. We denote by U the set of
solutions of problem (1.4).

Next we present some special cases of problem (1.4) as follows:

|fG1:G2: @,BlzBQZA, T1:T2:Tandw1:¢2:<p,then
problem (1.4) reduces to the following problem of finding (z, ) € C x C such that

5) {m O(Z, 2) +(m(A+T)y+2~g, =) > 1 p(T) — p(z), Yz eC,

which is called a new system of generalized nonlinear mixed composite-type equi-
libria where 1 > 0 and us > 0 are two constants.

If C=H, G =G, =0and vy =1y = ¢, then problem (1.4) reduces to the
following new system of generalized nonlinear mixed variational inequalities: Find
(z,y) € H x H such that

(L.6) { (m(B1+T)yg+z -9,z —) > p1p(x) — pe(x), Voe H,
(2B +T2)T 4§ — 2,y — §) > pop(y) — pee(y), Vy e H,

where p1 > 0 and pe > 0 are two constants, which is introduced and considered
by Kim and Kim [29].

If Ty = Ty, = 0 and 1 = 1o = 0, then problem (1.4) reduces to the following
general system of generalized equilibria: Find (z,y) € C x C such that

G1(2,2) + (B, o — &) + 1-(f —§,0 — &) >0, Ve e,
(1.7)

G2, y) + (BoZoy — ) + ;0 — T,y —9) 20, Vy e,



930 Hui-Ying Hu and Lu-Chuan Ceng

where p1 > 0 and pe > 0 are two constants, which is introduced and studied by
Ceng and Yao [30]. We denote by {2 the set of solutions of problem (1.7).

If T'=0and ¢ = 0in problem (1.5), then problem (1.5) reduces to the following
new system of generalized equilibria: Find (z,y) € C x C such that

M1

Oy, y) + (Az,y — ) + 1§ — T,y —5) 20, Wy eC,

L9 {Q(Q,m)Jr<Agj,m—a‘c>+if—y‘,x—f>zo, Yz e C,
1.8

where p1 > 0 and pe > 0 are two constants, which is introduced and considered
by Ceng and Yao [30].

|fG1:G2:@,BlzB2:F, T1:T2:T, wlzwgzapandi:yj,
then problem (1.4) reduces to problem (1.1a).

If Gy = G5 =0, then problem (1.7) reduces to the following general system of
variational inequalities: Find (z,y) € C' x C such that

<M1B1g—|—{f—g7$—"f‘>207 vxecv
(1.9)

<,U/2B2‘rf+y__{f7y_g>207 vyecv

where p1 > 0 and pe > 0 are two constants, which is introduced and studied by
Ceng, Wang and Yao [22].

If By = By = A, then problem (1.9) reduces to the following new system of
variational inequalities: Find (z,y) € C' x C such that

<M1Ag+i‘_g7x_‘f>207 vxecv
(1.10)

where p; > 0 and pe > 0 are two constants, which is defined and studied by Verma
[23] (see also [24]).

If £ = g, then problem (1.10) reduces to the classical variational inequality
(1.3).

We remark that Zeng and Yao introduced a system of variational inequalities in
[25] similar to but different from (1.9). Recently, Ceng, Wang and Yao [22] intro-
duced and studied a relaxed extragradient method for finding solutions of problem
(1.9). It is clear that the authors’ results unifies and extends many results in the
literature. Later on, Yao, Liou and Yao [2] proposed a new iterative method based
on the relaxed hybrid method and the extragradient method for finding a common
element of the set of solutions of problem (1.156), the set of fixed points of a strictly
pseudocontractive mapping and the set of solutions of problem (1.9).

Very recently, Ceng and Yao [30] introduced and considered a relaxed extragradient-
like method for finding a common element of the set of solutions of problem (1.1b),
the set of fixed points of a strictly pseudocontractive mapping and the set of so-
lutions of problem (1.7). The authors’ results [30] include, as special cases, the
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corresponding ones of Takahashi and Takahashi [4], Ceng, Wang and Yao [22],
Peng and Yao [1], and Yao, Liou and Yao [2].

Theorem CY. (see [30, Theorem 3.1]). Let C be a nonempty closed convex
subset of a real Hilbert space H. Let ©, G1, G4 : C' x C' — R be three bifunctions
satisfying conditions (H1)-(H4) and ¢ : C — R be a lower semicontinuous and
convex function with assumptions (A1) or (A2), where
(H1) O(z,z)=0, Yz € C,
(H2) © is monotone, i.e., O(z,y) + O(y,x) <0, Vz,y € C;

(H3) foreachy € C, z — O(z,y) is weakly upper semicontinuous;
(H4) for each z € C, y — O(z, y) is convex and lower semicontinuous;
)

(A1) for each x € H and r > 0, there exist a bounded subset D,,  C and y,, € C
such that for any z € C'\ D,,
1
O(24z) + ¢(ys) = 9(2) + —{yz — 2,2 — 2) <0;
(A2) C'is a bounded set.

Let the mappings F, By, By : C' — H be a-inverse-strongly monotone, 3;-inverse-
strongly monotone and [3,-inverse-strongly monotone, respectively. Let S : C' — C
be a k-strictly pseudocontractive mapping such that = := F(S)N2NGMEP (6O, ¢, F)
#(. For fixed ue C and xp € C arbitrary, let {x,,} C C be a sequence generated by

O(zn, 2) + (2) = @(2n)

+H(FXp, 2z — zn) + ﬁ(z — Zny Zn — Tn) > 0, Vz € C,
(1.11) Go(un,u) + (Bazp, u — uy) + l}—g(u — Up,y Uy — 2p) > 0, Yu € C,
G1(yn, y) + (Bitn, ¥ = Yn) + 55U = Yo, Yo — un) 2 0, ¥y € C,
Tpg1 = QU+ BnZy + Ynln + 0,.5Yn, Vn >0,

Where M1 S (07 2/31)7 12 € (07 2/32)1 and {An} - [07 20&], {an}v {/Bn}v {771}7 {571} C
[0, 1] satisfy the following conditions:

(i) an+ Bn+ v+ 0, =1and (v, + on)k <, for all n > 0;
(if) limp oo oty =0and > 07 v, = 00;

(iif) 0 < liminf,, .~ By < limsup,,_ . Bn < 1 and liminf, o 6, > 0;

)
() lim (2525 = 2) =0
)

(V) 0<liminf, oo Ay <limsup,,_, . An <2a and liminf,, o (A, — Apt1) =0.
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Then, {x,} converges strongly to © = Fzu and (z,y) is a solution of problem
(1.7), where

i _ N 1 o
G2(y7y)+<32w,y—y>+E<y—y7y—w> >0, VyeC.

Throughout this paper, suppose that S is a k-strictly pseudocontractive self-
mapping on a nonempty closed convex subset C' of a real Hilbert space H. Inspired
by Takahashi and Takahashi [4], Ceng, Wang and Yao [22], Peng and Yao [1],
Yao, Liou and Yao [2], Kim and Kim [30], Ceng and Yao [29], we introduce a
new relaxed extragradient-like algorithm for finding a common solution of problem
(1.1a), problem (1.4) and the fixed point problem of S,

n = T){fvw)(xn — M(F +T)zn),
Yo = TYIT2Y2) (2, — p1y(By + To) 2n)

— 1 (B + T)TA*" (2 — pa(Ba + To) )]s
Tptl = QU + ﬁnxn + YnYn + 5nsyn7 Vn > 0,

where ©,G1,G2 : C x C — R satisfy conditions (H1)-(H4), ¢, ¥1,¢9 : C —
R are three lower semicontinuous and convex functions with assumption (A1) or
(A2), F,By, B, : C — H are a-inverse-strongly monotone, 3;-inverse-strongly
monotone and (.-inverse-strongly monotone, respectively, and 7, 7, T : C — H
are n-Lipschitz continuous, n;-Lipschitz continuous and no-Lipschitz continuous,
respectively, and then derive a strong convergence result. Utilizing this theorem, we
establish some new strong convergence theorems in several aspects:

(1) problem (1.1a), problem (1.4) and the fixed point problem of nonexpansive
mapping S;

(2) the mixed equilibrium problem, problem (1.4) and the fixed point problem of
k-strictly pseudocontractive mapping S;

(3) problem (1.3), problem (1.4) and the fixed point problem of k-strictly pseu-
docontractive mapping S;

(4) problem (1.1a), problem (1.4) and the fixed point problem of k-strictly pseu-
docontractive mapping S, where F = T = (I — A)/2 and A is k-strictly
pseudocontractive mapping on C;

(5) different conditions imposed on the iterative parameters {au,}, {Gn}, {7n},

{0n}; {An}-

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, and let
C be a nonempty closed convex subset of H. We write z, — z to indicate that
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the sequence {z,} converges weakly to z. z, — = implies that {z,} converges
strongly to . We denote by w,({z,}) the weak w-limit set of {z,,}. For every
point x € H, there exists a unique nearest point of C, denoted by Pcx, such that
|z — Poz|| < ||z —y]| for all y € C. Such a P is called the metric projection of
H onto C. We know that P¢ is a firmly nonexpansive mapping of H onto C, i.e.,

(x —y, Pox — Poy) > |[Pex — Poyl®, Vz,y € H.
It is also known that, Pox is characterized by the following property:
(x — Pox,y— Pox) <0, VxreHandyceC.
In a real Hilbert space H, it is well known that
Az + (1= N)yll* = Alz[* + (1 = Mlyl* = A1 = Nl - 2

forall z,y € H and X € [0, 1].
A mapping S : C — C' is called a strictly pseudocontractive if there exists a
constant 0 < k < 1 such that

(22) ISz = Sy|P* < llz — yl® + k(I = S)z — (I = S)yll*, Va,yeC.

In this case, we say that S is a k-strict pseudocontraction. A mapping A: C — H
is called a-inverse-strongly monotone if there exists o > 0 such that

<fIf-y,A(I,‘—Ay> Z(X”A(I)—Ay”Q, vayec-

It is obvious that any inverse-strongly monotone mapping is Lipschitz continuous.
Meantime, observe that (2.2) is equivalent to
(23) (52— Sy, 2 —y) <~y ~ 15| ~S)a— (I -S|, VryeC.
From [26], we know that if S is a k-strict pseudocontractive mapping, then S
is Lipschitz continuous with constant 12 e, [|Sz — Sy|| < E£|jz — y| for all
x,y € C. We denote by F'(.S) the set of fixed points of S. It is clear that the class of
strict pseudocontractions strictly includes the one of nonexpansive mappings which
are mappings S : C — C such that || Sz — Sy|| < ||z — y| forall z,y € C.

In order to prove our main results in the next section, we need the following
lemmas and propositions.

Lemma 2.1. (see [3]). Let C' be a nonempty closed convex subset of H. Let
6 : C'xC — R be a bifunction satisfying conditions (H1)-(H4) and let o : C — R
be a lower semicontinuous and convex function. For » > 0 and x € H, define a
mapping 7,\% : H — C as follows:

T 99 () = {z € C: O(z,y) + p(y) — o(2) + %<y —zz—x) 20, Wyel}

forall z € H. Assume that either (A1) or (A2) holds. Then the following statements
hold:
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(i) T'9?) () +# 0 for each z € H and 7' is single-valued;

(i) 7€) is firmly nonexpansive, i.e., for any xz,y € H,
TP — TLOP)y||> < (T(O)w — Ty, 2 — y);

(i) F(T®?) = MEP(6, ¢);
(iv) MEP(O,¢) is closed and convex.

Remark 2.1. If o =0, then T,ge’“") is rewritten as T,,@.

Lemma 2.2. Let C be a nonempty closed convex subset of H. Let G1,Gs :
CxC — R be two bifunctions satisfying conditions (H1)-(H4) and let the mappings
By, By : C — H be (3;-inverse-strongly monotone and 3,-inverse-strongly mono-
tone, respectively, and Ty, T : C — H be n;-Lipschitz continuous and 7 o-Lipschitz
continuous, respectively. Let u; € (0,28;) and uy € (0,203:), respectively. Let
1,9 : C — R be two lower semicontinuous and convex functions with assump-
tion (A1) or (A2). Then, for given z,y € C, (z,y) is a solution of problem (1.4)
if and only if z is a fixed point of the mapping I" : C — C defined by

I(z) = T [T(CG2%2) (3 — po(By + To)x)
—pi1 (By + )T (x = po(By + To)z)], Va € C,
where y = T( - ¢2)( — p2(Ba +T5)T).
Proof. Observe that

{ mG1(Z,z) + (i (B + Th)y
p2G2(Y, y) + (p2(B2 + To)Z

7 =T VT2 (3— g (ByATa) ) —pn (By + T1) TNV (i—p1o (Bo+T3) 7)) m

Corollary 2.1. (see [30, Lemma 2.2]). Let C' be a nonempty closed convex
subsetof H. Let G1, G2 : C'xC — R be two bifunctions satisfying conditions (H1)-
(H4) and let the mappings By, B, : C — H be 3 -inverse- strongly monotone and
[Bo-inverse-strongly monotone, respectively. Let 1 € (0,23;) and po € (0,202),
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respectively. Then, for given z,y € C, (z,y) is a solution of problem (1.7) if and
only if z is a fixed point of the mapping I : C — C defined by

I'(z) = TMG11 [TMGQ2 (x — poBox) — ulBlTMG; (x — poBax)], Vz e C,
where § = TMG; (% — poBoT).

Corollary 2.2. (see [22, Lemma 2.1]). For given z, 5 € C, (z,7y) is a solution
of problem (1.9) if and only if z is a fixed point of the mapping G : C' — C defined

by
G(r) = Pc[Po(x — poBox) — p1 B1 Po(x — peBax)], Vo € C,

where § = Po(Z — p2BaX).

Remark 2.2. From the proof of Theorem 3.1 in Section 3, we know that if
G1,G2 : C x C — R are two bifunctions satisfying (H1)-(H4), the mappings
Bi, By : C — H are (y-inverse-strongly monotone and [3»-inverse-strongly mono-
tone, respectively, 71,7, : C — H are np-Lipschitz continuous and ns-Lipschitz
continuous, respectively, and v, : C — R are two lower semicontinuous and
convex functions with assumption (A1) or (A2), then I" : C' — C'is a nonexpansive
mapping provided 1 € (0,2051) and pg € (0,202).

Throughout this paper, the set of fixed points of the mapping I" is denoted by U.

Lemma 2.3. (see [27]). Let {z,} and {y,} be bounded sequences in a Ba-
nach space X and let {$3,,} be a sequence in [0,1] with 0 < liminf,, . B, <
limsup,,_,. Bn < 1. Suppose x,+1 = (1 — Bn)yn + Bz, for all integers n > 0
and lim sup,, o ([[Yn+1 = Yn || = [|[Zn+1 —25[]) < 0. Then, limy, oo ||y — 2| = 0.

Proposition 2.1. (see [30, Proposition 2.1]). Let C, H, ©, ¢ and Tﬁe’“") be as
in Lemma 2.1. Then the following holds:

HTS(Q,SO)x _ Tt(e#’)xw < S — t<TS(9#>)x _ Tt(e#’)x’ Tg(@,@)x — 1‘>
S

forall s,t >0and x € H.

Corollary 2.3. (see [4, Lemma 2.3]). Let C, H, 6 and T.° be as in Remark
2.1. Then the following holds:

s—t

HTSQQU—Tt@avH2 < <T89x—Tt9x,T89x—x>

forall s,t >0and x € H.
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Lemma 2.4. (see [26]). Demiclosedness Principle. Assume that 7" is a k-
strictly pseudocontractive self-mapping on a nonempty closed convex subset C
of a real Hilbert space H. Then, the mapping I — T is demiclosed. That is,
whenever {z,,} is a sequence in C converging weakly to some z* € C (for short,
x, — z* € (), and the sequence {(I — T")z,,} converges strongly to some y (for
short, (I — T)x,, — ), it follows that (I — T)xz* = y. Here I is the identity
mapping of H.

Lemma 2.5. (see [26]). Assume that {a,} is a sequence of nonnegative real
numbers such that
An+1 < (1 - P)/n)an + 5n7 Vn > 17
where {~,,} is a sequence in (0,1) and {4, } is a sequence such that

(i) Y55, 90— oo
(if) limsup,, o g—z <0or ) > [0, < oo

Then lim,,_,o a, = 0.

The following Lemma is an immediate consequence of an inner product.

Lemma 2.6. In a real Hilbert space H, there holds the inequality

lz +yl* < lle|® +2(y, 2 +y), Vo,yeH.

3. MaIN ReEsuLTS

We are now in a position to prove the main result of this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let ©,G1,G5 : C x C — R be three bifunctions which satisfy assumptions
(H1)-(H4) and ¢, 1,799 : C — R be three lower semicontinuous and convex
functions with assumption (A1) or (A2). Let the mappings F, B1, B : C — H be a-
inverse-strongly monotone, [3;-inverse-strongly monotone and 3,-inverse-strongly
monotone, respectively, and T, 71,7, : C — H be n-inverse-strongly monotone,
n1-inverse-strongly monotone and 7o-inverse-strongly monotone, respectively. Let
S : C — C be a k-strictly pseudocontractive mapping such that F'(S) NnGMEPN
U # 0. For fixed u € C and zo € C arbitrary, let {x,,} € C be a sequence
generated by

Zn = T)(\f#’) (xn - )‘n(F + T)xn)v
yn = T "L (2 — p1a(Ba + o) z)

—p1(B1 + Tl)T;SQGQ’%)(Zn — p2(Ba + T2)zp)],
Tptl = QpU + ﬁnxn + YnYn + 5nsyn7 Vn > 0,

(3.1)



Generalized Nonlinear Mixed Composite-type Equilibria in Hilbert Spaces 937

where 0 < 1 < min{ﬁl,m}, 0< g < min{ﬁg,ng}, and 0 < A\, < min{a, n},
{an}, {Bn}, {7} {0n} C [0, 1] satisfy the following conditions:

(i) an+ Bn+vn+0n=1and (v, + 0p)k <, for all n > 0;

(il) limp ooy =0 and > 07 ; ay, = 00;

In+t1 In

(V) dimp—oo (=57 — 725,) = O

)

(iif) 0 < liminf,, .~ By < limsup,,_ . B, < 1 and liminf,, . 6, > 0;
)
)

(V) 0 < liminf, o Ay < limsup,_,. An < min{a,n} and lim, o (A, —
Ant1) = 0.

Then, {z,,} converges strongly to Z = Pp(synaameprow and (Z,y) is a solution of
problem (1.4), where y = T,Sf%w)(f — p2(Ba + 1) ).

Proof. We divide the proof into several steps.

Step 1. {z,} is bounded.

Indeed, take z € F(S) N GMEP N U arbitrarily. Since z = Tif’“")(z —
M (F +T)z) = Sz, F is a-inverse-strongly monotone and 7' is n-inverse-strongly
monotone, we know from 0 < A, < min{«, n} that for any n > 0

I(@n = 2) = Aa((F + T)am — (F + T)2)|”

= H%[(mn —z) =2\, (Fzx, — Fz)| + %[(mn —2) =22\ (T, — T2)]||?

< %H(mn —2) =2\ (Fay — F2)|% + %H(mn —2) =2\ (T2, — T2)|?
= %[Hxn — 2|2 — 4\ — 2, Fxyy — F2) + 402 || F2,, — Fz||?]
—1—%[Hxn — 2|2 — 4\ — 2, Ty — T2) +4X2|| T2y, — T2|)?]

< %[Hxn —z||? — 4\l F, — Fz||? —|—4A%HF$R — Fz|]?]

_|_

sllzn = 2l = | Tary — Tz||? + AN} Tz, — T2
= 3lllzn — 2l = 4hn(a = Xn) | Fzy — F2|]
+ylllan — 21 = 4 (n — Ao | Tz — T2
= |lzn — 2)|? = 22\ (a0 — M) | Fp — Fz||? — 200 (0 — Ao || T2 — T2||?
< |z — 2112,

and hence
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2 — 2|
= |17 (@ — A F + T)an) — TLO9 (2 = M(F +T)2) |2
<N = Ma(F +T)xy) — (2 = M(F +T)2)|?
= [[(zn = 2) = A((F + T)z — (F + T)2)||?
< lln =212 =2An(@ =) | Fatn— Fz||* = 2An(n=An) | T = T2

< flzn - 2|,

(3.2)

Also, since z = Tp YV [T (2 — g (By +T0)2) — jun (By +T0) T2 (2~
MQ(Bg + T5)z)], and By, Be,T1,T> : C — H are (31-inverse-strongly monotone
and Ss-inverse-strongly monotone, m-inverse-strongly monotone and rp-inverse-
strongly monotone, respectively, we deduce from 0 < 4 < min{31, 71} and 0 <
wa < min{ s, n2} that for any n > 0

lyn — 2|12
= | T VTR (2 — pa(Bo + Ta) )
—pi1 (By + )T > (2 — pia( By + To) )]
—T TS (2 — po(By + Th)2)
—pi1 (By + )T > (2 — o By + T)2)) |2
< T (20 — 2By + To) )
—pi1 (By + )T > (2 — pia(By + To) )]
(T35 (2 — pa(Ba + Th)2)
(3.3) —pi1 (By + )T > (2 — pa( By + T)2)) |2
= [T (2 = 2 (Bo + Ta)zn) = Ti5 (2 = pio(Ba + 1) 2)]
—pun [(By + TV (2 — pia(Ba + T)z)
—(B1 + T)TH " (2 = pia(By + T)2)] |
T (2 = pa(By + o)) = T (2 = pa(Bo + T2)2)]
—241 [Br TS (5 — pia(Ba + T) )
—BiTi ") (2 — o By + T)2)) |2
TR (20 — pia(Ba + To)2n) = T{5 Y (2 — pia( B + T)2)]
~2y11 [TlT,SS”?’W)(zn — pa(Bo + Tz)z,)

<



Generalized Nonlinear Mixed Composite-type Equilibria in Hilbert Spaces 939

~TITRY) (2 — pa(Ba + T2)2))|?
< LTS (20— pa(Ba + To)za) — Tis™ ") (2 = pa(Ba + To)2)?
~4p1 (B1 — i) || BATSS > (2 — i (Ba + To) 2)
BT (2 — pa(By + T)2) |
ST (2n = p2(Ba + To)zn) — Ti5 > (2 — pa(Ba + Ta)2) |2
~4p1 (m — p) I TITES Y (2 — pa(Ba + To) )
VT (2 — pa(By + T)2) |
= [T (20 — p2( By + Ta)za) — TS5 (2 — pa(Ba + T)2)|?
~2001 (B1 — i) || BTS2 — i (Ba + T2) )
~BIT (2 — pa(By + T)2) |2
—241 (1 — p)ITV TR (20 — po(Ba + T) 2)
~TT) (2 — pa(By + To)2) |2
< NTE> (20— pa(Ba + Ta)zn) — Tis™"?) (2 — pa(Ba + T)2)?
< [(zn = p2(Ba + To)zn) — (2 — pa( B2 + To)2)|2

= [[(zn — 2) = p2((Ba + T2)2n — (B2 + T2)2) |
< 3l (zn — 2) = 2p2(Bozn — Ba2)|? + 5ll(2n — 2) — 2p12(Tozn — T22) |
< 5lllzn — 21° — 4p2(B2 — o) || Bozn — Baz||?]

+3{[12n — 2% — dpa(ne — p2) | Tozn — Toz||?]
= |lzn — 2|1* = 2p2(B2 — p2)|| Bazn — Baz||* — 2p2(n2 — p2) || Tozn — Toz|)?
< lzn — 2|

Furthermore, from (3.1) we have

(3.4) [2n+1 = 2] = llan(u=2) + Ba(2n=2) +n(Yn—2) + 0n(Syn—2)]|
< apllu—z] + Ballzn =2l + I (Yn—2) + 6 (Syn—2) |-

Combining (2.2) with (2.3), we have

1Va(yn — 2) + 0n(Syn — 2)|1?
= Yallyn — 2lI> + Sl Syn — 211> + 27000 (Syn — 2, yn — 2)
< vallyn = 21I? + Salllyn — 211 + Ellyn — Syall?)

+290n [lyn — 2lI* = 255 yn — Synll’]
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= (Y + 0n)?llyn — 2| + [05k — (1 = E)yndn]llyn — Synl?
= (Y + 00)?lyn — 2[1* + ul(n + 90)k — ] lyn — Synll®
< (Y + 00)?lyn — 2|17,
which implies that
(3.5) [ (yn = 2) + 60(Syn — 2)|| < (90 + 0n)llyn — 2|
From (3.2)-(3.5) it follows that
[Zn41 — 2] < anllu— 2]l + Bullzn — 2 + |(yn — 2) 4+ 6n(Syn — 2)||
< anllu = 2| + Ballzn — 2[| + (0 + 0n) lyn — 2|
< anllu = 2|| + Ballzn — 2]l + (yn + dn)ll2n — 2|
< anllu — 2|| + Ballzn — 2]l + (0 + dp)||zn — 2|

= anllu = 2| + (1 — an)|lzn — 2.

By induction, we obtain that for all n > 0
ln = 2|l < max{||zo — 2|, [lu — 2|}

Hence, {x,} is bounded. Consequently, we deduce immediately that {(F' +T)x,},
{zn},{yn}, {Syn} and {u,} are bounded, where u, = T,SSQ’W)(ZR — ua(Ba +
Ty)zy,) for all n > 0.
Step 2. limy, oo [|Tnt1 — xn|| = 0.
Indeed, define 1 = Bpan + (1 — B,)wy, for all n > 0. It follows that
Wn41 — Wp

_ Tp42 — Brnt1Tntl T+l — BnZn

1- ﬁn—f—l 1- ﬁn
_ Qn41U + Ynt1Yn+1 + Ont15Ynt1 _ apl + YnYn + 00 SYn
(3.6) 1= Bnt1 1—Bp
_ Qp41U apU 7n+1(yn+1 - yn) + 5n+1 (Syn—I—l - Syn)
= - +
1- ﬁn—f—l 1- ﬁn 5 1- ﬁngl
Yn+1 TIn n+1 n
+ - + - Syn.
(1_ﬁn+1 1_ﬁn)yn (1_ﬁn+1 1_ﬁn) "

Observe that
1Yn41(Ynt1 = Yn) + 0nt1 (SYnt1 — Syn)|?
= i1 [Yn1 = ynll* + 61 [1SYnt1 — Synll?
+2Yn4+16n+1(SYn+1 = SYn, Yn+1 — Yn)
< Vs llYnar = yall? + G i [Yns1 — vall?

k[ (Ynt1 — Syn+1) — (Yn — Syn)|1?]
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+2Yn+10n+1[|Yn+1 —

I

= (Yn1 + 5n+1)2Hyn+1 - ynH2 + [5721+1k — (1 = k)yn+16n+41]

|(Yn+1 — SYn+1) —

(Y — Sya)|I?

= (7n+1 + 5n+1)2Hyn+1 - ynH2 + 5n+1[(7n+1 + 5n+1)k - 7n+1]

|(Yn+1 — SYn+1) —

(Y — Sya)|I?

< (Vg1 + Ons1) Y1 — wnll?,

which implies that

(3'7) ”7n+1(yn+1 - yn) + Ont1 (Syn—i—l - Syn)H < (’Y?H—l + 5n+1)”yn+1

Next, we estimate ||y, 11

— ynl||. From (3.1) we have

Hyn+1 - yn”2

_ HT(G1 1)

(Uns1 — p1(Br + T1)tung1)

~T3 ) (= g (By + Ty |2

< [ (unta

= [I(uns1 =

A

< 3l (unt -

— 1 (B1 + T1)un1) — (un — 1 (Br + Th)uy) ||?

wn) — 1 (B + T1)upsr — (B + T )uy) ||
Un) — i1 (Brtng1 — Biuy)|?

+%H(un+1 —up) = i (Trting1 — Thu) |2

< Jtnt1 — unl? = 201 (B1 — 1) || Biuns1

—Biuy, H2

— 2p1(m — )| Thtingr — Thug|?

(3.8) < lluns1 — un?

— | TS5>) (241 — pa(Ba + To)zni1)

_TISSQan)

< [ (znia

= [1(zn41 =

< %H(Zn—i—l -

+%H(Zn+1 — Zn

(zn = p2(Ba + T)zn) |I°

— wa(Bay 4+ To)2nt1) — (20 — pa(Ba + T2)z) ||

2n) — p2((Ba + T2)znt1 — (B2 + T)z,)||?
2n) — pa(Baznt1 — Bazy)||?
) — pi2(Tozny1 — Toz) |2

= ||Zns1 — 2znll? — 2u2(B2 — p12) || B2zn i1

—Bazy, H2

< |lznt1 — 2

— 2u2(n2 — p2) || Tozng1 — Tozpl?

2
nll”,

941

— BE | (Ynt1 — Synt1) = (Yn — Syn)|1?]

— Ynl|-
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[(@nt1=Ant1 (F + T)wpg1) = (@ —An(F + T)zn) ||
= |lZnt1 —2n = Anp1 (F + T2
—(F4+T)xy) + (An—=Ang1)(F + Ty |

(3.9)
< ”xn+1_xn_)\n+l((F+T)xn+l
—(F + T)xn)|l + [Ans1 =l [[(F + T)zy||
< Hxn—I—l_an + ‘)‘n-i—l_)‘n‘H(F"‘T)anv
and
Hzn—I—l_an
— ||7(®¥) A (F+T —T(Q’“") M(F+T
I Ant1 (Tpi1=Anr 1 (F 4+ T)xpy1) (T = An(F +T)zy) ||
- HT/{@,%O)(%H—)\”H(F+T)xn+1) T\ +1)( —A(F +T)z)
o, o,
Ti O (=M (F + T)n) =T (0= An(F + T)) |
o,
(3.10) < |ITy +1)(xn+1_)\n+1(F+T)xn+1) Ti +f)(xn_)‘n(F+T)$n)H
TS (= A (F + D)) = T4 (= An(F + T |

< (@nt1 = A1 (F + T)2ny1) = (@n = A (F + T)zp) ||
o, 0,
TS (= A (F + ) = T4 (0 = An(F + T |
< Nznt1 —2nll + [Ansr = [|(F + T)ay |

o, o,
HITE? (0= Aa(F + T)an) =T (@n = An(F + T)ay)||-

So, from (3.8) and (3.10) it follows that

Hyn—I—l - yn”
< lzn+1—2znll
< lznt1 =zl + [An1 = Anl | (F + T2y ||

o, o,
HIT (= A (F+T)0) =T\ O (= A (F+ Tz

(3.11)

Hence it follows from (3.6), (3.7) and (3.11) that

[ wn+1 — wall
< ( Qnt1 + 7% )HUH + ”7n+1(yn+1 - yn) + 5n+1(syn+1 - Syn)”
o 1_ﬁn+1 1_ﬁn 5 1_ﬁn+1

Tn+1 Tn n+1 n
+ - + = S
Qpt1 Qp Yn+1+0n+1

< 0 (|lull + [|1Synll) + ul + || Synl) + =1 -

1—ﬁn+1(” I+ 15yall)+1= ﬁn(” |+ [1Synl) e [Yn+1—ynll
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Tn+1
+ - ol 4 1Syn
‘Olé_ = 12l + Swnl)
< T FL IS " ull + 1Sy,
< 7 e H all) + =5l + 1Sl

Hzns1 = @all + s = Al | (F + T)a|
o, o,
HITLED (@ = Al(F + T)an) = Ty (w0 = A F + T)ay)|
Yn+1 7
1-— ﬁn—f—l ﬁn

Note that 0 < liminf,, oo Ay, < limsup,,_,. A\p < min{a, n} and lim,,_ oo (Ay, —
An+1) = 0. Then utilizing Proposition 2.1 we have

+ [(lynll + 11Syal)-

(3.12) T [T{% (2 = Aa(F +T)z0) = T4 7 (@ = Aal(F + )| = 0.

Consequently, it follows from (3.12) and conditions (ii), (iv), (v) that

lim sup(||wn 41 — wnll = |51 — an)
n—oo
. Qi1
< lim sup{-——>— _”ﬁ (Nl + 118yall) + =7 (llull + 1Synll)
n—o00 n+1 ﬁn

A1 = Al[|(F + Ty ||
TS (2 = M (F + T)an) — T (@0 — Aa(F + T)a) |

A n+1
Yn+1 Tn
+ — + ||.8
72— (gl + Sl
= 0.

Hence by Lemma 2.3 we get lim,,_. ||wy, — x| = 0. Thus,

(3.13) lim [|zp41 — 2] = lim (1= B,)]Jwy, — 2| = 0.
n—00 n—oo

Step 3. limy,— H(Bl —|—T1)’U,n — (Bl —|—T1)’U,*H =0, lim;,_ H(BQ +T2)Zn —
(B + To)z|| = 0 and limy oo ||(F + T)an — (F + T)z|| = 0, where u* —

T4 (2 = pa(By + T)2).
Indeed, from (3.1) and (3.7) we get
[zt — 2]
= (ap(u—2) + Bn(zn — 2) + Y (Yn — 2) + 3 (Syn — 2), Tnt1 — 2)
= ap{u— 2, Tpt1 — 2) + Bnl@n — 2, Tpy1 — 2)
+(n(yn = 2) + 0n(Syn — 2), Tns1 — 2)
< an(u = 2, Tny1 — 2) + Ballen — 2[l[|ns1 — 2]

v (yn = 2) + 0n(Syn = 2)ll[[€ns1 — ||
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< on(u =z, Tpp1 — 2) + Bullzn — 2ll[|2n1 — 2||
+ (W + )y — 2llll2nt1 — 2|l
< ap{u— 2z, Tpt1 — 2)
+ 5 (lzn — 212 + llznsr — 21%) + 252 ([l — 212 + l20t1 — 2[12),
that is,

41 = 212

(3.14) 20 B Yot On
< n _ _ 2 n n
< 1+an<u 2y Tpp1—2) + |lzn — 2]|°+ fa,

So, in terms of (3.2), (3.3) and (3.14), we have

2.

Hyn

141 — 2]
< Foallu — 2llllns — 2l + e llzn — 2|1

A tOn [\ T2V () py(By + To)zn) — T Y2 (2 — pa(Ba + To)2) |2

=201 (B — )| BITES > (20 — pia(Ba + Tz) )
BT (2 — pa(Bo + To)2) |12

—2gu1 (. — ) ITATHS™> ") (2 = pa(Ba + o) 2n)

T TS (2 — pa(Ba + Tz)Z)H2]

= 29|y — 2|[[@ns1 — 2] + T2z — 2J2
+ 2 [ T2V () — pin(By + T ) — The ) (2 — pa(Ba + To)2) |2
—2p1 (B1 — p)[|| Buuin — Blu*H2 —2p1(m — p) | Ty, — Trw*|?]

< 2o |lu — 2| |ng — 2] + 1+an lzn — 2|2

"‘713:46:[Hzn—2H2—2M2(B2—M2)HB22n—B22H2—2M2(n2—u2)Hngn—T22H2
—2p1 (61 — ) [|| Brug, — B1u*H2 —2p1 (1 — p1) || Thwy, — Tru*||?]
22l = zl||@ng1 — 2l + 2 lon — 2] + P22, — 2|
—2Xn (a0 = M) | Fop — F2||2 = 200 (n — o) | Ty, — T2||?
—2p2(f2 — p2) || Bazn — Boz||? — 2p2(n2 — p2) | Tazn — Toz |2
—2pu1 (B — m)[|| Brun — B1u*H2 — 21 (m — )| Trwy, — Thu*|)?]
2an

= 1ray lv = 2lllzn1 = 2l +

IN

—Qn

ez llan — 2|
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— 20 (0 = A | Fap — F2|2 4 20 (n — An) [T, — T2
+242(Ba2 — p2) || Bazn — Baz||? + 2ua(n2 — p2) || Tozn — Toz||?
+2p1(B1 — )| By — Bru||® + 2p (m = ) [ Trun — T[]
Therefore,
20 (a0 = M) | Fzy, — F2||2 + 200 (0 — M| Ty — T2|)?
+202(F2 — p12)|| Bazn — Baz||? + 2p2(n2 — pi2) | Tozn — Toz||?
21 (B1 — ) | Brun — Bra* |2 + 20 (m — o) | Ty, — Ty’

2a, 1—a,

< u — zZ\|\|||xr — 2zl + Tp — % 2 _ X —Z 2
= 5nH HH n+1 H Y+ On (H n H H n+1 H )
=, 5n n+1— Y 5 n— n+1 n n+1

Since a,, — 0, ||z, — Tpy1|| — 0, 0 < liminf, oo Ay, < limsup,_ o A\p <
min{«, n}, and lim inf,, . (v, + d,) > 0, we have

lim ||Byu, — Biu*|| = lim ||Thu, — Tiu*|| =0,
n—00 n—oo

(3.15) lim ||Boz, — B2zl = lim ||Taz, — Tez|| =0,
n—00 n—oo

lim ||Fz, — Fz| = lim T2, — Tz| =0.
n—00 n—00

Step 4. limy, . || SyYn — ynl|| = 0.
Indeed, using the firm nonexpansivity of
(3.2) and (3.3)

T}S?lﬂﬂl) T}S§2,¢2)

and , we get from

llep, — ||
= T4 (2 — o (Ba + Ta) ) — T35 ") (2 — pia( B + T)2) |2
((zn = p2(B2 + T2)zn) — (2 — p2(Bz + T2)z), un — u*)
3lll(zn = p2(Bz + To)zy) — (2 — pa(Ba + T2)2) |* + [|un — u*|]?
~[(zn = p2(B2 + Ta)2n) — (2 — p2(Ba + T2)2) — (un — u*)||?]
alllzn = 217 + lu — w1 = | (20 — uy)
—p2((Bz + T)2n — (Bz + Tn)2) — (2 — u*)|]?]
< glllen = 27 + lun — w*|> = (20 — un) = (2 = u*)|?

+2u2((2n — up) — (2 —u*), (Ba+ T2)zn — (B2 + T)z)

—p5 (B2 + To)2n — (B2 + T2)2|1%],

IN

IN



946 Hui-Ying Hu and Lu-Chuan Ceng

and
[y — 2|7

— |59 (= pa (Br + T)un) — T (w = i (By + T)u)| 2

< ((un — 1 (Br + T)ug) — (u* — pa(By + T1)u"), yn — 2)

= 5 l(un = 1 (Br + Th)un) = (u* = pa (By + T1)uw) || + [lyn — 22
~[|(un — p1 (B + Th)un) — (u* = pa(Br + Ti)u*) = (yn — 2) %]

< 3lllun = w1 + llyn = 211° = [ (un = yn) + (2 = u*)|]?

+2p1 (B + Tr)up — (B + Th)u”, (un — yn) + (2 —u7))
i (B1 + T )uy, — (B + T )u*||?]
< glllwn =217 + lyn = 2I1° = ll(un = ya) + (2 — u)|?

201 ((B1 + Th)up — (B + Th)u”, (un — yn) + (2 — u7))].

Thus, we have
lun —w|* < Jlzn — 21 = | (20 = un) = (2 = u")||?
(3.16) +2u2((zn—upn) — (z—u), (Ba+T2)zn— (Ba+T13)z)
—153]|(Ba + To)z — (B2 + To)2| 1%,
and
(3.17) lyn = 2l1* <l = 2[* = | (un = yo) + (= = u*)|?
+2p || (Br4T1)un— (Br+T1)uw*|[[| (un—yn) +(z—u7)]|.

In terms of (3.3), (3.14) and (3.16), we have

2a,

Bn

_ L2 < _ _ 2
Iooss =2l € T (= =)+ 1 len =
+ .
+71”+ a: [llzn = 217 = (20 — un) = (z = u)?
+2u2((2n — un) — (2 — "), (B2 + T2) 2 — (B2 + 13)2)].
So, we obtain
+34 .
T = ) = (2 =)
20&n 1- Qp,
< _ _ _ _ _
< T ol = lllleney = 2l 4 7 llan = 2017 = flzns = 2]

4 M2(’Y )

1t o, 1(zn = un) = (2 = w)|| (B2 + T2)zn — (B2 + T2)z||
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2c
< el = 2lllzass = 2l + (lan = 2l 4 lani = 2z = 2nn
2 +6 .
+WH<% ) = (2 = w)[(B2 + T)za — (B +To)z|
n

Since liminf,, erfjn >0, ap — 0, ||Zpt1 — zp]| — 0 and [[(Bs + Ts)zy,

(By + Ts)z|| — 0, we conclude that

(3.18) lim |[(z, —un) — (2 —u™)|| = 0.
n—oo
Utilizing (3.14) and (3.17), we have
2a
fonss =2l € o= 2, ms1 = 2) + o — 2P
+ 0y, .
+71”+ - e — 2l = [ (un = yn) + (2 = u)|?

2 |[(Br + T1)up — (Br + T ||| (un — yn) + (2 — u") |-
It follows that

+0. .
T =)+ (=)
20— 2l s = 2l + (e = 2l + zss = 2l = naa
> 1+Oén n+1 n n+1 n n+1
2 +4 X ¥
20000 oy, — (B T )+ 2 )],
+ ap,
which implies that
(3.19) lim ||(up —yn) + (2 —u™)|| = 0.
n—oo

In addition, from the firm nonexpansivity of Zf\:)’“"), we have

2 — 2II2 = [T (2 — An(F + T)ap) — Tf#)(z — M(F +T)2)|?
<{(xn = M(F+T)xy) — (2= AN(F+T)2), 25, — 2)

l[H(ﬂcn = M(F+T)an) = (2 = M(F +T)2)|I° + |20 — 2|2

—H( M(F +T)zn) = (2= A(F +T)2) = (20 — 2)|1%]

1
< 5[!!wn—2!!2+Hzn—ZH2— |2 =20 = An((F+T) 20— (F+T)2) ]

1
= gllzn — 202+ llzn = 2l = |20 — 2all?
—NoI(F +T)an — (F+T)z|%,
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which implies that
(3:20) llzn—2[* < llan—2l*~ll2n—znl*+ 22l (F+T)2n—~(F+T) 2|20 —2n]-

From (3.3), (3.14) and (3.20), we have

[
2« 16}
< T = s 2+ o — 4
Yn + On 2
e 0 12—
2« 16}
< T = s 2+ T — 4
Yn+0n 2 2
1. [lzn =21 = l|lzn— 20"+ 22X [[(F+T)zn — (F+T) 2 ||| 25 — 2al]].
n

It follows that
Yn + On

1+a, |Zn — an2

2a, 1—a, 9
< - -zl + Ty — 2
< T u = 2l = 2l + e |

1
22X (Yn + )

~llzni1 — 2] + ICE + T)wn — (F + T)z|||l2n — 2l

14+ a,
< 2o | il zll 4+ (lzn — 2l + [|= 2|z |
u—2|||| 1 — - - -
> 1+Oén n+1 n n+1 n+1 n
2 (Y + 6
20l )y oy, — (B )2 2l
+ ap

Hence, we deduce immediately that
nli)rglo |xn — 2zn]| = 0.
Thus, from (3.18), (3.19) and (3.20), we conclude that
(3.21) nh_)rglo |zn — ynl| =0 and nh_)rglo |z — ynll = 0.
So, from (3.1), (3.13) and (3.21), we have
Jim [|Sy, —zpfl =0 and  lim |[Sy, — ynl| = 0.

Step 5. limsup,,_,(u — 7, 2, — Z) < 0 Where T = Pr(s)namernst-
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Indeed, take a subsequence {ys,, } of {y,} such that

(3.22) limsup(u — z,y, — &) = lim (u — Z,yp, — T).
n—oo

n—oo
Without loss of generality, we may assume that y,, — w. First, it is clear from
Lemma 2.4 that w € F'(S). Second, let us show that w € ©. Utilizing Lemma 2.1
we have for all 2,y € C

I (x) = I (y)]I?
= | LT (@ — pa(Ba + Ta)z)
—p1(By + )T (z — pa(By + Ty)x))
—T;S?l’wl) [T;SSQ’W)(Z/ — p2(Ba + T)y)
—p (B + TS (y — o (Ba + Ta)y))|12
<T@ — pa(By + o)) — p(By + T)T > (@ — pa(By + Ty))
[T (y — pa(Ba + To)y) —m(Bl+T1>T,S§2’¢2><y—u2<32+T2>y>1 12
= | TSP (& — pa( B + To)z) — Ths>") (y — pa( B + To)y)
— i [(B1 + TTS*Y (& — pa(Bo + To))
~(B1 + T)TA>" (y — pa(Ba + To)y)]|I?
<NTEY) (@ — pa(Ba + To)z) — TiS>" (y — pa(Ba + To)y) |2
~2p1 (B — ) | BiTis > (2 — o (Ba + Ty)z)
~BITS (y — 2 (By + To)y)|I?
~2p (1 — ) IV TRs > (& — pa(Ba + To)z)
TV (y — 2By + To)y)|I2
<NTEY) (@ — pa(Ba + To)z) — TiS>" (y — pa(Ba + To)y)I?
< (2 = p2(B2 + To)x) — (y — p2(Ba + To)y)||?
< |lz — yl|* = 2p2(B2 — p2)|| Box — Bayl|* — 2u2(n2 — p2) | T — Toy|?
<z -yl
This shows that " : ¢ — C' is nonexpansive. Note that
lyn — I ()| = TG PITG202) (2, — i (Ba + T2) )
—p1(By + T1)TS2%2) (2, — po(Ba + Ta)zn)] — I'(yn) |

- Hp(zn) - (yn)H
< |lzn = yull — 0.
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According to Lemma 2.4 we obtain w € U.

Next, let us show that w € GM EP. From z, = Tf’“")(xn — M (F +T)xy),
we know that

1
Q(Zn,y)—l—ap(y)—ap(zn)—i—((F—i—T)xn,y—zn>+)\—<y—zn, Zn—Tn) >0, VyeC.

From (H2) it follows that

1
(P(y) - “P(zn) + <(F+T)xnv Yy— zn> + )\_<y — Zn,Zn — xn> > @(y, Zn), Vy € C.

Replacing n by n;, we have
‘P(y) - (P(znz) + <(F + T)xnivy - znz>

(3.23) R
Y — 2n, n>\n,n ) > O(y,zn,), VyeC.

Put z; = ty + (1 — t)w for all t € (0,1] and y € C. Then, we have z € C. So,
from (3.23) we have

<Zt — Zn;, (F + T)zt>
> <zt — Zns (F + T)zt> - (P(zt) + (P(znz) - <zt — Zngs (F + T)xnz>

—<Zt — Zni, ZT> + Q(Zt, an)
- <zt — %n;, (F + T)zt - (F + T)znz> + <zt — Zn» (F + T)zni - (F + T)xnz>

)+ Oz, zn,)-

Zn; —Tn,;
i

—p(z) + ‘P(zm) — (2 — Znis " A,
Since ||zn, — zn,|| — 0, we have ||[(F + T)z,, — (F + T')xy,|| — 0. Further, from
the monotonicity of F'+ T', we have (z — zp,, (F + 1)z — (F' +T)zy,,) > 0. So,

an—mni

from (H4), the weakly lower semicontinuity of ¢, =5—= — 0 and z,, — w, we
have Z

(3.24) (zt —w, (F+T)z) > —p(2t) + o(2w) + Oz, w),
as i — oo. From (H1), (H4) and (3.24), we also have

0= O(z, 2z) + o(z) — o(2)

Il
=
O
—~
N
<
<
SN—
_|_
S
—~
<
N—
|
S
—~
N
B
=
+
—~
—_
|
~

I
=
<
&
S
_|_
5
S

|
5
&
+
_

|
~
=

<

|
&
|
_|_
3
&
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and hence
0< O(z,y) +o(y) —o(ze) + (1= ) (y — w, (F+ T)z).
Letting ¢ — 0, we have, for each y € C,
0< O(w,y)+ ¢(y) —p(w) + (y —w, (F+T)w).

This implies that w € GMEP. Now, we show that w € F(S). Indeed, since
tn, — w and [|St,, — t,,|| — 0 due to (3.19), utilizing Lemma 2.5 we have
(I — S)w = 0 and hence w € F(S). Therefore, w € F(S)NGMEP NU. This
together with (3.21) and the property of metric projection, implies that
limsup(u — z,z, — Z) = lim (u — Z, z,, — T)
=(u—z,w—1T) <0.

Step 6. x, — T as n — oc.
Indeed, from (3.2), (3.3) and (3.14), we have

QOén _ _ ﬁn =112
— < -, —I)+ Ty — T
lns =72 < T (= & w3+ L — 7]
Tt O |
t g n 2
a _ a _ _
=(1- : +Zn)Hxn — %+ 1 +Zn<u—x,xn+1 — ).
It is_clear t_hat Yoo f—ﬁgg = oo. Hence, applying L_emma 2.5 to the last inequality,
we immediately obtain that x,, — Z as n — oo. This completes the proof. |

Utilizing Theorem 3.1, we obtain several strong convergence results in a Hilbert
space.

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let ©,G1,G, : C x C — R be three bifunctions which satisfy assumptions
(H1)-(H4) and ¢, 11,12 : C — R be three lower semicontinuous and convex func-
tions with assumption (A1) or (A2). Let the mappings F, B, B, : C — H be a-
inverse-strongly monotone, /3;-inverse-strongly monotone and J3,-inverse-strongly
monotone, respectively, and T, 71,7, : C — H be n-inverse-strongly monotone,
n1-inverse-strongly monotone and 7o-inverse-strongly monotone, respectively. Let
S : C — C be a nonexpansive mapping such that F(S) NGMEP NU # (. For
fixed w € C and z¢ € C arbitrary, let {x,,} C C be a sequence generated by

2 = T30 (@0 — Au(F + T)an),
yn = TS (20— pa(By + Tz)zn)
—pu (By + TO)TNTY) (2 — p2 (B + Ta) 2],
Tptl = QU+ BnZp + YYn + 0nSYn, Yn >0,
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where 0 < 1 < min{Bl,m}, 0< g < min{Bg,ng}, and 0 < A\, < min{a, n},
{an}, {Bn}, {7} {0n} C [0, 1] satisfy the following conditions:

(i) an+ Bn+vn+0n=1and (v, + 0p)k <, for all n > 0;

(i) limp oo oy =0 and > ° )y, = 00;

)
(iif) 0 < liminf,, .~ By < limsup,,_ . Bn < 1 and liminf,, . 6, > 0;
)

(W) 2 = ) =0
(V) 0 < liminf, o0 A, < limsup,,_, . A, < min{a,n} and liminf, o (A, —
Ant1) = 0.

Then, {z,,} converges strongly t0 Z = Pp(synamepnow and (7, y) is a solution of
problem (1.4), where 3 = T,gfg’w)(f — p2(Bo + To)T).

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let ©,G1,G, : C x C — R be three bifunctions which satisfy assumptions
(H1)-(H4) and ¢, 41,12 : C — R be three lower semicontinuous and convex
functions with assumption (A1) or (A2). Let the mappings B1,B2 : C — H
be (;-inverse-strongly monotone and 3,-inverse-strongly monotone, respectively,
and T1,T, : C — H be ni-inverse-strongly monotone and ns-inverse-strongly
monotone, respectively. Let .S : C — C be a k-strictly pseudocontractive mapping
such that F(S)N MEPNU # (. For fixed w € C and o € C arbitrary, let

{z,} C C be a sequence generated by

O(zn, ) + (y) — ©(2n) + 3= (Y — 2, 20 — n) >0, Vy € C,

yn = Tis "L (2 — pia(Ba + ) z)
—u1(Br + TT " (e — By + o)),
Tpgl = QU+ BpTn + YoYn + 0,SYn, Vn >0,
where 0 < g < min{By,m}, 0 < p < min{fBs, 12}, and {\,} € (0,00), {an},
{Bn}s {7}, {on} C [0, 1] satisfy the following conditions:
(i) an+ Bn+ v+, =1and (v, + 0,)k <, for all n > 0;

(i) limy oo oy =0 and > 7° ; a, = 00;

)
(iif) 0 < liminf,, .~ By < limsup,,_ . Bn < 1 and liminf,, . &, > 0;
)

()l (25255 — ) = 0

(V) 0 < limy—o0 A < limsup,, o A <00 and lim,, o (A, — Apt1)=0.

Then, {z,,} converges strongly t0 Z = Pp(synypprit and (Z,y) is a solution of
problem (1.4), where §j = T,gfg’w)(f — p2(Bo + To)T).
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Proof. In Theorem 3.1, for all n > 0, z, = Tif’“")(xn—)\n(FqLT)xn) is
equivalent to
1
Q(vay)"”@(y)_@(zn)"’—«F"’—T)xnvy_zn>+)\_<y_znv zn_xn> >0, Vye C.

n

Now, put F' =T = 0. Then it follows that

1

O(zn,y) + @(y) — w(2n) + A—<y — Zn,2n — Tn) >0, VyeC.

Observe that for all «,n € (0,00) and z,y € C
(v —y,Fo — Fy) > o|Fz — Fy|* and (x—y,Te—Ty) >n||Te - Ty|>.

So, taking v and 7 in (0, c0) such that 0 < liminf,, . A, < limsup,_,. Ap <
min{a, n}, we obtain the desired result by Theorem 3.1. |

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let G1,G5 : C x C' — R be two bifunctions which satisfy assumptions
(H1)-(H4) and v, 19 : C' — R be two lower semicontinuous and convex functions
with assumption (A1) or (A2). Let the mappings A, B1,Bs : C — H be a-
inverse-strongly monotone, [3;-inverse-strongly monotone and 3,-inverse-strongly
monotone, respectively, and 77,75 : C — H be n;-inverse-strongly monotone
and no-inverse-strongly monotone, respectively. Let S : C — C be a k-strictly
pseudocontractive mapping such that VI(A, C) N F(S) NG # 0. For fixed u € C
and xo € C arbitrary, let {z,,} C C be a sequence generated by

zn = Po(xn, — A\pAxy,),
Yn = Tlg?l’wl)[Tlgfg’wg)(zn - M2(B2 + T2)zn)
—p1(B1 + Tl)T;ng’wg)(Zn — p2(Ba + T2)zy)],

Tptl = QpU + ﬁnxn + YnYn + 5nsyn7 Vn > 0,

where 0 < 1 < min{Bl,m}, 0 < g < min{Bg,ng}, and 0 < X\, < 2, {an},
{Bn}s {7}, {on} C [0, 1] satisfy the following conditions:

(i) an+ Bn+vn+0n=1and (v, + 0p)k <, for all n > 0;

(il) limy oo vy =0 and > ay, = 00;

)
(iif) 0 < liminf,, .~ By < limsup,,_ . B, < 1 and liminf,, . 6, > 0;
)

(iv limn_,oo(l%%:i—l — 125) =0;

(V) 0<limy oo Ap <limsup,,_,., A\p <2« and lim,, o (A, — A\pt1) =0.
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Then, {z,,} converges strongly to & = Py (4 c)nr(s)nsw and (z,y) is a solution
of problem (1.4), where 3 = T,EQGWQ)(E — po(Be + T)x).

Proof. In Theorem 3.1, for all n > 0, z, = Tif’“")(xn — M(F 4+ T)xy) is
equivalent to

1
Q(vay)"’—‘p(y)_‘p(zn)"’—«F"’—T)xnvy_zn>+)\_<y_znv zn_xn> >0, Vye C.

Now, put © =0, ¢ =0 and F' =T = $A. Then, we obtain that

1
(Azy,y — 2zn) +)\—<y—zn,zn—xn> >0, VyeC, VYn=>0.

This implies that
(Y = 2ny Ty — ApAx, — 2,) <0, VYyeC.

Hence it follows that Po(x, — A\, Ax,) = 2, for all n > 0.
In the meantime, F' (= T') is 2a-inverse-strongly monotone since it is easy to
see that

1 1 1 1
— . ZAx — —Ay) > 20| =Ax — = Ayl|? )
(z Y 5 AT = 5 y) > OéH2 T =3 yll, Vyel

So, taking 2« in (0, 00) such that 0 < liminf, oo A, < limsup,,_,. An < 2.
Thus, we obtain the desired result by Theorem 3.1. ]

Let A: C — C be a k-strictly pseudocontractive mapping. For recent conver-
gence result for strictly pseudocontractive mappings, we refer to Zeng, Wong and
Yao [28]. Putting F' = I — A, we know that for all z,y € C

I(I = F)a — (I - Fy|* < |« — yI> + &l|Fz — Fy|*
Note that
I = F)a — (I = F)y|? = |z — > + | Fz — Fy|? - 2(x — y, Fz — Fy).
Hence we have for all z,y € C
1_#
(z—y, Fa — Fy) > ——|[Fe - Fy|.

Consequently, if A : C — C is a &-strictly pseudocontractive mapping, then the
mapping F' = I — A is (1 — &)/2-inverse-strongly monotone.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let ©,G1,G5: C x C — R be three bifunctions which satisfy assump-
tions (H1)-(H4) and ¢, ¢, ¥2 : C — R be three lower semicontinuous and convex
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functions with assumption (Al) or (A2). Let A : C — C be a k-strictly pseu-
docontractive mapping, B, B> : C — H be (3;-inverse-strongly monotone and
Bg-inverse-strongly monotone, respectively, and 71,7y : C — H be np-inverse-
strongly monotone and 7o-inverse-strongly monotone, respectively. Let S : C — C
be a k-strictly pseudocontractive mapping such that F'(S) N GMEP N U # 0,
where F' =T = (I — A)/2. For fixed v € C and x( € C arbitrary, let {z,,} C C
be a sequence generated by

2 = TL7P (1= M)z + Anday),

yn = T "V ITLE ") (20 — 112 (By + To) 2)
—p(By + T TS (2 — pia(Ba + Ta) ),

Tnp1 = QpU + BuTn + Ynln + 00SYn, Vn >0,

where 0 < up < min{Bl,m}, 0 < pg < min{BQ,ng}, and 0 < )\, < 1 —
Ry {an}, {Bn}, {1} {0n} C [0, 1] satisfy the following conditions:

(i) an+ Bn+vn+0n=1and (v, + 0p)k <, for all n > 0;

(il) limp oo vty =0 and > 07 ; ay, = 00;

(iif) 0 < liminf,, .~ By < limsup,,_ . By < 1 and liminf,, . 6, > 0;

(iv) limn_,oo(lj%—:il - 125) =0;

(V) 0 <limy o0 Ap < limsup,,_, oo An < 1 — & and lim,, o0 (A, — Apg1) = 0.

Then, {z,,} converges strongly to Z = Pp(synaamepnow and (7, y) is a solution of
problem (1.4), where g = T,ESQ’W)(@ — po(Bg + T)x).
Proof. Since A is a &-strictly pseudocontractive mapping, the mapping 7 — A

is (1 — &) /2-inverse-strongly monotone. In Theorem 3.1, put F =T = (I — A)/2.
Then F' (=T) is (1 — &)-inverse-strongly monotone. Moreover, we obtain that

Zn = T){f’w) (xn - )‘n(F +T)xn)
= T\%9 (2, — Aa(I — A)zy,)
= T{%D (1= An)an + AnAzy).
So, from Theorem 3.1, we obtain the desired result. [

In (3.1), if we set oy, = o, B = B, Y = v,k and 6, = ~,,(1 — k) for all
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n > 0, then we obtain the following algorithm

2 = T\0 (23— Al F + T)y),
yn = Tis "L (2 — pia(Ba + ) z)

— 1 (By + )T (2 — pa(Ba + To) ),
Tn1 = apu+ Br@n + Yplkyn + (1 — k) Sy,],  Vn > 0.

(3.25)

From Theorem 3.1 and (3.25), we have immediately the following corollary.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let ©,G1,G5 : C x C — R be three bifunctions which satisfy assumptions
(H1)-(H4) and ¢, 41,799 : C — R be three lower semicontinuous and convex
functions with assumption (A1) or (A2). Let the mappings F, B1, B : C — H be a-
inverse-strongly monotone, /3;-inverse-strongly monotone and J3,-inverse-strongly
monotone, respectively, and T, 71,7, : C — H be n-inverse-strongly monotone,
n1-inverse-strongly monotone and 7o-inverse-strongly monotone, respectively. Let
S : C — C be a k-strictly pseudocontractive mapping such that F'(S) NnGMEPN
U #0. Let0 < py < min{B,m}, 0 < pg < min{fy,m2}, and 0 < X, <
min{a, n}, {a}, {6}, {~.} C [0, 1] satisfy the following conditions:

(i) of, + B, +~, =1forall n > 0;
(ii) limp, oo o, =0 and > 07 a;, = 00;
(iii) 0 < liminf, o 3, < limsup,_,. 5, < 1;
(iv) 0 < limy oo Ay < limsup,,_, o A < min{a, n} and lim,, o0 (A —Apt1) =
0.

For fixed w € C and zo € C arbitrary, let {z,,} C C be a sequence generated by
(3.25). Then the sequence {z,} converges strongly t0 Z = Pp(s)ngamepnsw and

(z,7y) is a solution of problem (1.4), where § = T,ﬁfg””)(f — p2(Ba + T2)Z).

Proof. It is easy to see that
(i) an+Bn+vm+on=0o,+06,+vk+~,(1—k)=1and (v, + 0p)k =
[k + (1= k)k = vk = n;
(i) limy oo oty = limy oo, =0 @Nd D27 gy = Y 07 @y, = O0;
(iii) 0 < liminf, . 8, = liminf, . B, < limsup,,_, ., Bn=limsup,_,, O}, <

1 and liminf, ., ,, = liminf, o v, (1 — k) > 0;

/ /

. . n n . ’Y;l n _1; _“n
(lV) hmn_,oo(lzﬂﬁ— 1zﬂn) = hmn—>oo k(l_ﬂzi&-l - 11ﬂ;l) == llmn—>oo k(lfﬂé _
gy,

1-B 41
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Hence, all conditions of Theorem 3.1 are satisfied. Therefore, the desired con-

clusion follows. This completes the proof. |
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