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CLASSIFICATION THEOREMS FOR SPACE-LIKE SURFACES IN
4-DIMENSIONAL INDEFINITE SPACE FORMS WITH INDEX 2

Bang-Yen Chen and Bogdan D. Suceava

Abstract. Surfaces in 4D Riemannian space forms have been investigated
extensively. In contrast, only few results are known for surfaces in 4D neutral
indefinite space forms R3(c). Thus, in this paper we study space-like surfaces
in Ri(c) satisfying certain simple geometric properties. In particular, we
classify space-like surfaces in E5 with constant mean and Gauss curvatures
and null normal curvature. We also classify Wintgen ideal surfaces in R5(c)
whose Gauss and normal curvatures satisfy K? = 2K.

1. INTRODUCTION

Let E7* denote the pseudo-Euclidean m-space equipped with pseudo-Euclidean
metric of index ¢ given by

t n
(1.1) gt = — Zdw? + Z dx?,
i=1 j=t+1
where (x1,...,x,,) is a rectangular coordinate system of E*. We put
(1.2) SF(e) = {x eEML (g x)=c1 > 0},
(1.3) HF(e) = {x € El;ill r,x)y=c! < 0},

where ( , ) is the associated inner product. Then S*(c) and H(c) are pseudo-
Riemannian manifolds of constant curvature ¢ and with index s, which are known as
pseudo-Riemannian k-sphere and the pseudo-hyperbolic k-space, respectively. The
pseudo-Riemannian manifolds E*, S*(c) and H¥(—c) are called indefinite space
forms, denoted by RF.
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Surfaces in 4-dimensional Riemannian space forms have been investigated very
extensively (see, for instance, [1, 2, 3]). In contrast, only few results are known for
surfaces in 4-dimensional neutral indefinite space forms R3(c) of constant curvature
c and index 2. Thus, we study in this paper space-like surfaces in R3(c) satisfying
some simple geometric properties.

In Section 2 of this paper we provide basic definitions and formulas. In Section
3 we completely classify space-like surfaces in E3 with constant mean and Gauss
curvatures and null normal curvature. In Section 4, we present a result of Sasaki and
the precise expression of a minimal immersion v of the hyperbolic plane H2(—%)
of curvature —% into the unit pseudo-hyperbolic 4-space H3(—1) discovered by the
first author in [4]. It is known that the immersion 3 is a Wintgen ideal surfaces
in H3(—1) whose Gauss and normal curvatures satisfy K” = 2K. In the last
section, we classify Wintgen ideal surfaces in R3(c) whose Gauss and normal cur-
vatures satisfy the condition K = 2K. The later result provides us another simple
geometric characterization of the minimal immersion vz : H?(—%) — H3(-1).

2. PRELIMINARIES

A vector v is called space-like (resp., time-like) if (v, v) > 0 (resp., (v,v) < 0).
A surface M in a pseudo-Riemannian manifold is called space-like if each nonzero
tangent vector is space-like.

Let R3(c) denote an indefinite space form of constant curvature ¢ and with
index 2. The curvature tensor R of Rj(c) is given by

(2.1) RX,Y)Z =c{{Y,2)X — (X, Z)Y}

for vectors X, Y, Z tangent to R3(c). Let v : M — R3(c) be an isometric immer-
sion of a space-like surface M into R3(c). Denote by V and V the Levi-Civita
connections on M and Rj(c), respectively. For vector fields X, Y tangent to M
and £ normal to M, the formulas of Gauss and Weingarten are given respectively
by (cf. [1, 2, 10]):

(2.2) VxY = VxY + h(X,Y),
(2.3) Vxé=—AcX + Dx¢,

where VxY and A¢ X are the tangential components and A (X,Y) and Dx¢ the
normal components of VxY and V x&, respectively.
The shape operator A and the second fundamental form A are related by

(2.4) (M(X,Y), &) = (A X,)Y) .

The mean curvature vector H of M in Hj(—1) is defined by H = Ltraceh.
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The equations of Gauss, Codazzi and Ricci are given respectively by
(2.5) RXYV)Z =Y, 2)X —(X,Z)Y}+ Ah(xz)X — Ah(X,Z)Y,
(2.6) (Vxh)(Y,Z) = (Vyh)(X, 2),

(2.7) (RP(X,Y)&,n) = ([A¢, A X, Y)

for vector fields X, Y, Z tangent to M, and &, normal to M, where VA is defined

by
(Vxh)(Y,Z) = Dxh(Y,Z) - h(VxY, Z) - h(Y,VxZ),

and RP is the curvature tensor associated with the normal connection D, i.e.,
(2.8) RP(X,Y)¢ = DxDy& — Dy Dx¢ — Dix |-

The normal curvature K7 is given by
(2.9) KP = <RD(61, €9)es, e4> .

A surface M in R3(c) is called parallel (resp., minimal) if VA = 0 (resp.,
H = 0) holds identically. An immersion ) : M — R3(c) is called full if the image
(M) does not lies in any totally geodesic submanifold of Rj(c). A surface M in
R3(c) is called isotropic if, at each point p € M, |h(u,u)| is independent of the
choice of the unit vector u € T, M.

For an immersion ¢ : M — H§(—1), let L =109 : M — Eg be the
composition of v with the standard inclusion . : H3(—1) — E3 via (1.2). Since
HZ(—1) is totally umbilical with mean curvature one in E3, we have

(2.10) VxY =VxY +h(X,Y)+ (X,Y) L

for X, Y tangent to M, where  is the second fundamental form of ¢ and V denotes
the Levi-Civita connection of E.

3. SurFACES WITH NuLL NormAL CURVATURE IN IE‘Ql

Theorem 3.1. Let M be a space-like surface in the pseudo-Euclidean 4-space
E3. If M has constant mean and Gauss curvatures and null normal curvature, then
M is congruent to an open part of one of the following six types of surfaces:

(1) A totally geodesic plane in E3 defined by (0,0, z, y);
(2) a totally umbilical hyperbolic plane H ?(—Z;) c E? C E4 given by

(0, a coshu, a sinh v cos v, a sinh u sin v),

where a is a positive number;
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(3) A flat surface in E5 defined by
\/_% < cosh(v/2mz), cosh(v/2my), sinh(v2mz), sinh(ﬁmy)),
m

where m is a positive number;
(4) A flat surface in E5 defined by

<0, 1 cosh(azx), 1 sinh(ax), y),
a a

where a is a positive number;
(5) A flat surface in E5 defined by

cosh(v2x)  cosh(v2y) sinh(v2z)  sinh(v2y)
Vemr T 2m@m —r) V2mr T 2m@m —r) )

where m and r are positive numbers satisfying 2m > r > 0;
(6) A surface of negative curvature —b? in E3 defined by

Y 2_hH2
<% cosh(bx) cosh(by),/ cosh(by) sinh(# tan~! < tanh %)) dy,
0

Y /o2 _}H2
% sinh(bz) cosh(by), / cosh(by) cosh <# tan™! <tanh %)) dy),

0

where b and m are real numbers satisfying 0 < b < m.

Proof.  Assume that L : M — Ej is an isometric immersion of a space-like
surface M into E3. If M is totally geodesic in [, we obtain case (1). Thus, from
now on, we assume that M is non-totally geodesic in E3.

Let us choose an orthonormal tangent frame {e;, e2} of the tangent bundle and
an orthonormal normal frame {es, e4} of the normal bundle of M which satisfy

(3-1) <el7 61> = <627 62> =1, <617 62> =0,
(3.2) <63, 63> = <e4, e4> = —1, <63, e4> =0.

We may also choose e; , e2 which diagonalize A., so that the shape operator satisfies

(3:3) A= (5 1) Aes = (j _l)

for some functions «, ~, 9, p.
By definition, the normal curvature K2 of M is defined by

(3.4) KP = ([Ae,, Acy]er, e2) .
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For the orthonormal frame {ey, e2, €3, e4}, we put
(3.5) Vxer = w%(X)eg, Dxes = wg(X)e4.
From (2.3), (3.2) and (3.3) we have
(3.6)  h(e1,e1) = —aes — dey, h(ey,e2) = —veq, h(es, e2) = —pes + dey.

Thus, the mean curvature vector, the Gauss curvature and the normal curvature are
given respectively by

-+

(3.7) H=- e3, K =7"+6" —ap, K =~(p—a).

It follows from (3.5), (3.6) and the equation of Codazzi that

3.8) o1 — 26 = awl(es) — 2w (e2) — 26w3(er),
(3.9) escr = —yws(e1) + dwi(ez) + (a — pwiler),
(3.10) ey + 10 = pwi(er) — 20wi(ea) 4+ 2yw?(er),
(3.11) e1pp = —dws(e1) — ywi(e2) + (a — pwi(ea).

Since M has null normal curvature, we may also assume that v = 0. Thus, by
the constancy of mean and Gauss curvatures, we obtain from (3.7) that

(3.12) p=2m—aqa, k=04>4a®—2ma
for some constants k&, m. Without loss of generality, we may assume m > 0.

Case (). p = a. Inthiscase, u = a = m is a constant, which gives

A., = mlI. Moreover, (3.12) gives

€3

(3.13) Z=m?+k>0.

Case (i.1). m? = —k. From (3.13), we get 6 = 0. Hence, M is a totally
umbilical surfaces in E3. Such a surface has parallel second fundamental form.
Therefore, after applying Proposition 4.3 of [5], we obtain case (2) of the theorem,

Case (i.2). m? > —k. Without loss of generality, we may put § = vm?2 + k,
which is a nonzero constant. Thus, we find from (3.8)-(3.11) that w? = w} = 0.
Hence, M must be flat. So, we have & = 0. Because w? = 0, we may choose
coordinates {x,y} such that e; = 9/0x,eo = 9/0Jy. The metric tensor is then
given by g = da? + dy®. Moreover, we know that the second fundamental form
satisfies

(3.14) h(e1,e1) = —me3s —mey, h(e1,e2) =0, h(ez,ea) = —mes + mey.
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Now, it follows from (2.1), (3.14) that the immersion L : M — Ej satisfies

Ly, = —me3 —mey, Lyy =0, Ly, = —me3 + mey,
(3.15) Voes=—mLy, Voey=—mLy, Voes=—mLy, Voes=mlLy.
ox dy oz 9y

After solving this system and choosing suitable initial conditions, we get case (3).
Case (ii). w # a. It follows from (3.12) that

(3.16) w=2m-—a, 6§ =vVk+2ma— o

Case (ii.1). 6 = 0. In this case, we have k = o? — 2ma which is constant.
Hence, « is also a constant. Thus, we derive from (3.8)-(3.11) that

(3.17) w? =0, awi(ey) = uwi(er) =0.

Therefore, M is flat and ax = 0. Since M is non-totally geodesic, without loss of
generality we may assume that o # 0 and p = 0. Since w? = 0, we may choose
coordinates {z, y} such that e; = 9/0z, ea = 0/9y. So, we obtain

(3.18) h(e1,e1) = —aes, h(ei,e2) = h(ez,e2) = 0.

It follows from (3.17) and (3.18) that immersion L : M — Ej satisfies

h

rxx — —QE€3, La:y = Lyy =0,
(3.19)

<

iegz—aLm, Viegzo.
ox oy

After solving this system and choosing suitable initial conditions, we get case (4).
Case (ii.2). 6 # 0. We have

(3.20) pw=22m—a, y=0, § = Vk+2ma—a2#0.

Case (ii.2.1). ma = —k. In this case, « and ¢ are constant. Moreover, we
have

k —k(k +m?)

k
(3.21) a=——, 6= , p=2m+—, v=0.
m m

m
Because § is a real nonzero number, we must have —m? < k < 0. Thus, we may
put & = —b% with 0 < b < m. Substituting (3.21) into (3.8)-(3.11) yields

2\/m2—b2 2

(3.22) wiez) = wi(e1) =0, wiylex) = 2 wi(e1)
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Thus, if f is a function satisfying ez(In f) = w?(e1), then we get [fei, es] = 0,
which implies that there exist coordinates {x, y} such that

0 0
(323) % = fel, a—y = €9.
Therefore, the metric tensor is given by
(3.24) g = f2da? + dy?.

Consequently, the Levi-Civita connection satisfies

a_fma ) N 5_

From (3.22), (3.23) and (3.25), we derive that

2f,Vm?2 — b2
(326)  wi(er) = —%7 wi(ez) = wi(e1) =0, wi(eg) = —JCZ’T.
Moreover, it follow from (3.24) and K = —¥? that f satisfies

(3.27) fyy - b2f'

By solving (3.27) we obtain f = u(x) cosh(by+uv(x)) for some functions u(z), v(x).
After replacing x by an anti-derivative of u(z), we find from (3.24) and (3.25) that

(3.28) g = cosh?(by + v(z))dz? + dy?,
V o =— = v tanh(by + v)g — ésinh(Qby + 21))&,
(3.29) 35z 0T Jdr 2 oy
' 0 0 0
V s — = btanh(by + v , Vag=—=0.
5 0y byt )50 Vi oy

Also, it follows from (3.6), (3.21), and (3.28) that

12
h <£7 ﬂ) = _W{b%g + bv/m? — b2ey},
oz’ Oz m
o 0
(3.30) h(%’@) =0,
b A (b* — 2m*=)es + bvm? — b2ey
oy’ oy ) m
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Therefore, the immersion L : M — E3 satisfies
b
Lz = v tan(by +v) L, — 3 sinh(2by + 2v) L,
h?(b
_ oSOy ) s/ — Bey),
m

L,y = btanh(by + v)L,
(b —2m?)es + b\/ m? — 6264

L
(3.31) v = m

~ 62 bm2 — b2

Vg e3= qu7 V864——m7[u:7
ox ox m

~ b2 —2

vi = TmLy -2 \V m2 — b2 tanh(by + 'U)e4,
Oy

~ b/ m?2 — b2
Voes= mTLy +2v/m? — b2 tanh(by+v)es

Dy
The compatibility condition of (3.31) is given by +/(x) = 0. Then, after applying a
suitable translation in y, we may put v = 0. Therefore, system (3.31) reduces to

b h*(by)
Ly, = —3 sinh(2by) L, . m( y) %e3 + bV m? — b2ey},
Ly, = btanh(by)L,,
(b? — 2m?)es + bv/m?2 — b2ey

Lyy = m
3.32 - b2 . bvm2 — b2
( ) vi :—_Lm, V864:_m7[/$7
ox m oz m
~ b2 —2m?
Vg e3= 7Ly — 2v/m? — b? tanh(by)ey,
y

N bV
Vaoe m L +2v/m? — b% tanh(by)e

oy

Solving the second equation in (3.32) gives
(3.33) L = A(x) coshby + B(y)

for some vector-valued functions A(z), B(y). Substituting this into the first, third
and fourth equations in (3.32) gives A" (x) = b>A’(x). Thus, we get

(3.34) A(z) = ¢5 + ¢1 cosh(bz) + co sinh(bzx)
for some vectors ¢, c1, co. Combining this with (3.33) gives

(3.35) L = (c5 + ¢ cosh(bz) + co sinh(bx)) coshby + B(y).
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By substituting (3.35) into the first, third and fifth equations in (3.32), we find

cosh?(by) B" — gsinh(Qby)B” + (3b2—4m?)B’
= c5b(3b?—4m?) sinh(by).

(3.36)

A direct computation shows that B,, = —cs5 cosh(by) is a particular solution of
(3.36). Thus, it follows from (3.35) and (3.36) that

(3.37) L = (¢1 cosh(bx) + co sinh(bz)) coshby + C(y),

where C(y) satisfies the homogeneous differential equation:
(3.38) wgﬁwwcmw)—gsmh@mnc%yy+@w—4m%cxw::u

After solving this differential equation, we have
Y 2 _}2
Cly) = C3/ cosh(by) cosh(@ tan~! <tanh %U)) dy
0

3.39
( ) 4\/ m2 — b2 —1
T n <

y
+ 64/ cosh(by) sinh( tanh %)) dy + ¢
0

for some vectors cz, ¢4, c5 € E3. Combining this with (3.37) yields

L = ¢y + (c1 cosh(bz) 4 co sinh(bx)) cosh by

Y /2 — h2
+c3 / cosh(by) cosh(# tan~! <tanh %)) dy
0

Y /2 _ h2
+ca / cosh(by) sinh(# tan~! <tanh %)) dy.
0

Therefore, after choosing suitable initial conditions, we obtain case (6).
Case (ii.2.2). ma # —k. By substituting (3.20) into (3.8)-(3.11) we obtain

2(k +m*)wi(es) 4 2(k +m?)wi(e1)

) w e - )

mvVk + 2ma — o? s(e2) mvVk + 2ma — o?

(3.41) wi(er) = ea(InVE +ma), wi(ez) = ei(InVk+2m? —ma).

It follows from (3.41) that [el/\/k + ma, e /Vk +2m? — ma] = 0. Thus, there

exist coordinates {x, y} such that

(3.40) ws(e1) =

0 eq 0 €2

3.42 R .
(3.42) or Vk+ma 9y  VE+2m2—ma
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Hence, the metric tensor is given by

da? dy?

4 = .
(3.43) g k+ma+k+2m2—ma

From (3.43) we have

v o —may 9 n m(k 4+ 2m? — ma)ay
5 0r 2(k 4+ ma) 0x 2(k+ma)? oy’
0 —mao 0 Moy, 0
44 Vy L= "% 9 9
(344) 50y 2(k+ ma) oz + 2(k + 2m2 — ma) dy
5} —m(k +ma)a, 0 maoy, o
Vo=

550y 2(k+2m2—ma)?0x ' 2(k+2m2 —ma) dy’
It follows from (3.6), (3.20) and (3.23) that the second fundamental form satisfies

h(a 8) —oaeg—\/k—i—2m04—042647 h(a 8)

)

9z 9 ) k 4+ ma 9z’ oy
h<8 8) (e =2m)e3z + Vk 4 2ma — a?ey

oy oy ) k+2m? — ma

(3.45)

By applying (2.1), (3.24), (3.25) and (3.26) we obtain

—mazL,  m(k+2m?—ma)ayL, aes+Vk+2ma—aZe,

Law = 2(k+ma) * 2(k + ma)? a k + ma
I —maoy Ly n mao Ly,

Y2k +ma)  2(k+2m2 — ma)’
I —m(k + ma)oy Ly mavy Ly

v~ 2(k+2m?—ma)?  2(k+2m2—ma)

N (a—2m)es+Vk—+2ma—a?ey

k+2m?2 — ma

)

(346) 5 k 2
Voes=—al, + (k +m”)os ey,
oz (k +2m? — ma)Vk + 2ma — o?
- (k+m?)ay
Voes=(a—2m)L, + ey,
i ( MLy (k +ma)Vk + 2ma — o? !
- k 2) vy
Voes=—Vk+2ma—ao?L, — (k +m)a es,
Bz (k 4+ 2m? — ma)Vk + 2ma — o?
~ k 2
Voes=Vk+2ma—ao?L, — (k+ m)ay

e
dy (k +ma)Vk + 2ma — o? ’
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After applying (3.46) and a long computation, we find from (L., L,) =
(Lpyx, Ly) and from (Lyyy, Ly) = (Lyye, Ly) that

(3.47) ay{(k +ma)a, + (k + 2m* — ma)a,} = 0.

Hence, we have either
(1) ay=00r
(2) (k+ma)ay + (k +2m? — ma)a, = 0.

Case (ii.2.2.a). a, = 0. In this case, system (3.46) reduces to

—maovg Ly, aeg—i—\/k—i—Qma o? e4

L =
T 9(k+ma) k +ma
I mao Ly
Y 2(k+ 2m2 — ma)’
_ —m(k+ma)a, Ly N (a—2m)es+Vk+2ma—a? e4
W 2(k42m2—ma)? k4 2m? — ma
- k
(3.48) g b es = —aLy + (k+m?)a, ou.
oz (k +2m? — ma)Vk + 2ma — o?
Vaoes=(a— 2m)Ly,
dy
N k 2
Voes=—Vk+2ma—ao?L, — (k +m)ay €3,
9z (k +2m? — ma)Vk + 2ma — o?
V o es = Vk+2ma — oL,
dy

Now, after applying (3.48), (Lyzzy, Ly) = (Laya, Ly) and (Lyyy, Ly) = (Lyyz, Ly),
we obtain that
2k(k +2m? — ma)? — m?(2k + m? 4+ ma)a?

m(k 4+ 2m? — ma)(k + ma)

2k(k + 2m? — ma)?

3.50 =
(3.50) Y m2(k +m?)
Next, by differentiating (3.50) and by applying (3.49), we find o, = 0. Thus, «
is a constant, say a = r. Because § # 0, (3.50) gives & = 0. Therefore, system
(3.48) becomes

(3.49) Qpy = —

res+vV2mr — r2ey
La:a: = - )
mr
L., =0,
I (r—2m)es + V2mr — r? e4

vy 2m?2 — mr
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6163 = _aLmv @ie,’j - (CY - Qm)Lyv
ox oy
Voes=—V2mr—1r2L,, Vaeq=/2mr—r2L,.

ox oy
After solving this system and choosing suitable initial conditions, we have case (5)
of the theorem.

Case (ii.2.2.b). (k+ ma)ay + (k+ 2m? — ma)a, = 0. In this case, we have
(k+ma)ay

51 = — -

(351) YT —k—2m?

Thus, system (3.46) becomes

_mam(Lm + Ly) B oes+Vk+2ma—aoey

Laa = 2(k+ma) k + mao
I maog(Ly + Ly)
2k 4+ 2m2 — ma)’
I — ~m(k 4+ ma)oy(Ly + Ly) (a—2m)es+Vk+2ma—aey

w 2(k+2m2—ma)? k4 2m? — ma ’
(k +m?)azey
(k 4+ 2m? — ma)Vk + 2ma — a2’

(k +m?)azey

(352) Vaoes=—al,+

Q
8

es =(a—2m)L, — ,

i ( Ly (k +2m2 — ma)Vk + 2ma — o?
~ k 2

Voes=—Vk+2ma—a2L, — (k +m7)azes

% (k4 2m2 — ma)Vk + 2ma — a?’

2
VEk+2ma—ao?L, + (k+ m7)ases :
Yk +2m2 — ma)VEk + 2ma — o2

Now, from L, = Ly, we find (k+ma)a, = 0. Also, we find from L,,,, = Ly,
that £ =0. Thus, « is a constant and £=0. Hence, this case reduces to (ii.2.a). =

Vie4
dy

4. SpaceELIKE MINIMAL SURFACES WITH CONSTANT GAuss CURVATURE

From the equation of Gauss, we have

Lemma 4.1. Let M be a space-like minimal surface in R3(c). Then K > c.
In particular, if K = ¢ holds identically, then M is totally geodesic.

For space-like minimal surfaces in R3(c), Theorem 1 of [12] implies that M
has constant Gauss curvature if and only if it has constant normal curvature.
We recall the following result of Sasaki from [12].
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Theorem 4.2. Let M be a space-like minimal surface in R3(c). If M has
constant Gauss curvature, then either

(1) K = cand M is a totally geodesic surface in R3(c);

(2) ¢ < 0, K =0 and M is congruent to an open part of the minimal surface
defined by \% (coshu, coshw, 0, sinhu, sinhv), or

(3) ¢c< 0, K =c¢/3 and M is isotropic.
Let R? be a plane with coordinates s, ¢. Consider a map B : R* — E3 given

by
2 2 4 2s 3 25
B<s,t):<smh(7;)_%_<g+;_8) ﬁ,H(%_g)e@

1, t? 2 B t) 2 25 t2 1 4\ 2=
S levs i) evasi h(—)——— S evm ).
2 T3¢ ’t+<3+4>e B T <8+18>e

The first author proved in [4] that B defines a full isometric parallel immersion

(4.2) Vg H*(—%) — Hy(-1)

(4.1)

of the hyperbolic plane H?(—3) of curvature —% into H3(—1).
The following result was also obtained in [4].

Theorem 4.3. Let vy : M — Hy(—1) be a parallel full immersion of a space-
like surface M into H3(—1). Then M is minimal in H3(—1) if and only if M is
congruent to an open part of the surface defined by

2s t? 7t 2 RAYE
()9 (10 5) s (59
(Sm 3/ 3 <8+18>e ’t+<3 4)6 ’

1 2 2 B3t 2= 2s t? 1\ 2
Lo 8% (20 t) eBsinn (22) - £ - (1L 2)e5).
2T 2¢ ’+<3+4>e O ) A B T T

Combining Theorem 4.2 and Theorem 4.3, we obtain the following.

Theorem 4.4. Let M be a non-totally geodesic space-like minimal surface in
HZ(—1). If M has constant Gauss curvature K, then either

(1) K =0 and M is congruent to an open part of the surface defined by

1 . .
— (coshu, coshv, 0, sinhu, sinhv) ,

V2

2s t? 7t 2= AT
o (3)- 5 - (B 1) Ao (5-1)
<sm 7 3 <8+18> ,—|—<3 4>e ,
2 2 B\ 2 25\ 2 (1 '\ 2
—eV3 — 4 - V3 ’h<_>___ — 4+ — 3.
t e ’t+<3+4>e SBT3 <8+18>e )
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5. WINTGEN IDEAL SURFACES SATISFYING KP = —2K

In 1979, P. Wintgen [13] proved a basic relationship between Gauss curvature K,
normal curvature K2, and mean curvature vector H of a surface M in a Euclidean
4-space E*; namely,

(5.1) K +|KP| < (H,H),

with the equality holding if and only if the curvature ellipse is a circle.
The following Wintgen type inequality for space-like surfaces in R3(c) can be
found in [7].

Theorem 5.1. Let M be a space-like surface in a 4-dimensional indefinite
space form R3(c) of constant sectional curvature ¢ and index two. Then we have

(5.2) K+ KP>(H,H)+c

at every point. Moreover, the equality sign of (5.2) holds at a point p € M if and
only if, with respect to some suitable orthonormal frame {e 1, e2, e3, €4}, the shape
operator at p satisfies

_(+2v O _ (0~
(5.3) Aeg_< 0 M),Ae4_<7 0]

Following [6, 9, 11], we call a surface in R3(c) Wintgen ideal if it satisfies the
equality case of (5.2) identically. Wintgen ideal surfaces in E3 satisfying |K| =
| KP| are classified by the first author in [7] (see [6] for the classification of Wintgen
ideal surfaces in E* satisfying | K| = |K?)).

We need the following existence result.

Theorem 5.2. Let ¢ be a real number and v with 372 > —c be a positive
solution of the second order elliptic differential equation

9 (3vv/c + 392 — ¢) (67 + 2/3¢ + 972 ) V3,
2v(c + 37?)

B Q( By + 32— o)y

9y \27(c + 312) (6 + 21/3c + 972 )V3

defined on a simply-connected domain D ¢ R2 Then M, = (D, g,) with the
metric

Vet 392 2 2/3 ;2
55 = dz® + (6 + 2+/3c+ 992 d
59) I ey +2 30+9’72)\/§< (6 ") y)

admits a non-minimal Wintgen ideal immersion 1, : M., — Rj3(c) into a complete
simply-connected indefinite space form Rj5(c) satisfying K = 2K identically.

(5.4)

)z”y ¢+ 32
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Proof. Let c be a real number and ~ be positive solution of (5.4) with 3v2 > —c
defined on a simply-connected domain D. Consider the surface M, = (D, g,) with
metric g, given by (5.5). Then the Levi-Civita connection of g, satisfies

Vo 9 _ B3P ton 0 (3yy/c+372+c)y, K
9z O 29(c+372) O 29(c+342)(674+2+/3c+972)2V3 Iy’
vagz_(?ry\/c-i-?rﬁ—i-c)%i (37\/c+372—c)fyw£
(5.6) 9z Oy 2v(c + 372) ox 2v(c + 342) oy’
v, 0 _ (6y+2y/3c+9y? )2V3(c = 3yy/c+ 3707 O
ay 0Y 29(c+3+2) Ox

n (Brve+3y* =)y 0

29(c+3+%) Oy
Let us define a bilinear map: h: TM — NM by

h(g g)z_(v+¢c+372>¢c+3726
or’ Ox 7(674—2 /3C+9’72)\/§ 3>

(5.7) h < 0 9 ) = —v/c+ 372ey,

3 3y
h(g ﬂ) — (’7_\/C+3’72)\/C+372(6fy+2\/m)\/§e
oy’ dy) 5 3,

where N M is the plane bundle over M spanned by an orthonormal time-like frame
{es, e4}. Define a linear metric connection D on NM by

D 9 63 — _37’7:1/64
9z (¢4 372) (67 + 21/3c + 992) V3’

37(67 + 2¢/3c + 972) V34,
o€ = b)
dy c+ 3y
377yes3

964 = )
9z (¢4 372) (6 + 21/3c + 972)V3
C39(67+2v/3c+992) VP,

23" c+ 372
Then it follows from a very long direct computation that (AZ,, g, D, h) satisfies
the equations of Gauss, Codazzi and Ricci. Hence, the fundamental existence and
unigueness theorem of submanifolds implies that, up to rigid motions, there exists a
unigue isometric immersion from M, into R3(c) whose second fundamental form
and normal connection are given by h and D, respectively. By applying (5.5), (5.7)
and ¢+ 3y* >0 we see that M is a non-minimal Wintgen ideal surface in R3(c). m

€4,
(5.8)

D €3.

Now, we classify Wintgen ideal surfaces in R3(c) which satisfy KP = 2K.
2
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Theorem 5.3. Let M be a Wintgen ideal surface in a complete simply-connected
indefinite space form R3(c) with ¢ = 1,0 or —1. If M satisfies K? = 2K
identically, then one of following three cases occurs:

(1) ¢=0and M is a totally geodesic surface in E3;

(2) ¢ = —1and M is a minimal surface in H3(—1) congruent to an open part
of ¢ : H*(—%) — H3(—1) C E3 defined by

2s t? 7T tt\ 2 B3t 2=
o (35) -5 (Frie) e (5-5)
(Sm 373 <8+18>e ’+<3 4)6 ’

1, 2 2 B t) 2 25 12 1 4\ 2
— —eV3 _ — V3 ’h<_>___ -4 — V3 -
2+26 ,t—|—<3+4>e ,sin 73 3 <8+18>e )7

(3) M is a non-minimal surface in R3(c) which is congruent to an open part
of ¢, : M, — Rj(c) associated with a positive solution ~ of the elliptic
differential equation (5.4) as described in Theorem 5.2.

Proof. Let M be a Wintgen surface in R3(c). Then, according to Theorem 5.1,
there exist an orthonormal frame {ey, e2, e3, €4} such that shape operator satisfies
(5.3) for some functions ~, . Thus, the Gauss and normal curvatures are given by

(5.9) K=c+~%—p?—2yu, KP=—-2¢2

It follows from the condition KP = 2K that u = —y + \/c + 3v2. Without loss
of generality, we may assume ~ > 0.

Case (i). pu= —v+ \/c+ 372 We divide this into two subcases.

Case (i.1). ¢+ 372 =0. We have n = —y and ¢ < 0. Thus, M is a minimal
surface.

If ¢ =0, we get v = p = 0, which implies that M is totally geodesic. So, we
get case (1) of the theorem.

Ifc=—1,wehavey=—pu= % Thus, by (5.9) M is a minimal surface with

curvature —%. Hence, we obtain case (2) of the theorem according to Theorem 4.4.
Case (i.2). ¢+ 3+% 0. From (5.3) we obtain

h(er,e1) = —(v+ Ve + 37 )es,
(510) h(elv 62) == _7647
h(ea, e2) = (v — Ve + 392 )es.

Thus, it follows from Codazzi’s equation that

3 3~2 3 3v2 —
(611)  wier) = Iy wh(eg) = TV 2
2v(c+37%) 2v(c+37%)

€17,
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3yey 3yery
4 4
(5.12) ws(er) = o3 ws(e2) = 13

After applying (5.11) we derive that

(c + 372)/4 o (c+37v)Y4(6y + 2 30—1—972)\/5/262 _o.
V(67 +24/3c + 972 ) V3/2 7 Nal

Hence there exist coordinates {z, y} such that

o B (C+3’72)1/4 .
0r /(67 +2v/3c 1992 )VE2

D _ (e+39)4(6y +2\/Bc+997) Y5/
oy v

(5.13)

€9.

By using (5.13) we know that the metric tensor is given by

(5.14) g— Vet 32 da? + \/c+372(6'y+2\/3c+972)\/§dy2
(67 + 21/3c+ 992 )V3 Y 7

which implies that the Levi-Civita connection satisfies

Vo iz ByVet+3 + e 9 (Bvv/c+3v2+o)yy K
9z O 29(c+39%) 0z 2y(c+ 342)(67+2+/3c+972)2V3 Oy’
v, 0 _ _Bnet3r?+dn 0 Br/etd?— o 0
35 0y 2y(c+3y?) O 29(c+372) 9y’
(5.15)
8 (67 +2y3ct992)2V3(c - 3y/c+ 37%)y, D
Vo—= 9
oy 0y 2y(c +372) o

(Brve+3y? =)y 0

+ .
2v(c + 37?) Oy

From (5.12) and (5.13) we find

(8) - o
SN0z ) (c+3y2) (67 +21/3c+ 992)VE’
o ( a) 3v(67 + 21/3c + 972)V3

Ay c+3v2

(5.16)

ay ’.)/m .
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Also, it follows from (5.10) and (5.13) that

(5.17)

h(ﬂ ﬂ) _ _(7+\/C+372)\/C+37263
(67 + 2¢/3c+ 992 )V3

ox’ Ox

o 0\ _ 3

h(%v@) - \/C+37 €4,

h<8 8) (fy—\/c+372)\/c+372(6'y+2\/30+972)\/ge
— — | = 3.
dy" dy Y

Moreover, from (5.10), (5.15) and the equation of Gauss we know that ~ satisfies
the elliptic differential equation (5.4). Consequently, after applying Theorem 5.2 we
obtain case (3) of the theorem.

Case (ii). p = —v — +/c+ 32 After replacing e3, e4 by —e3, —ey, respec-
tively, this reduces to (i). |

10.

11.
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