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CLASSIFICATION THEOREMS FOR SPACE-LIKE SURFACES IN
4-DIMENSIONAL INDEFINITE SPACE FORMS WITH INDEX 2

Bang-Yen Chen and Bogdan D. Suceavǎ

Abstract. Surfaces in 4D Riemannian space forms have been investigated
extensively. In contrast, only few results are known for surfaces in 4D neutral
indefinite space forms R4

2(c). Thus, in this paper we study space-like surfaces
in R4

2(c) satisfying certain simple geometric properties. In particular, we
classify space-like surfaces in E

4
2 with constant mean and Gauss curvatures

and null normal curvature. We also classify Wintgen ideal surfaces in R4
2(c)

whose Gauss and normal curvatures satisfy KD = 2K.

1. INTRODUCTION

Let E
m
t denote the pseudo-Euclidean m-space equipped with pseudo-Euclidean

metric of index t given by

gt = −
t∑

i=1

dx2
i +

n∑
j=t+1

dx2
j ,(1.1)

where (x1, . . . , xm) is a rectangular coordinate system of E
m
t . We put

Sk
s (c) =

{
x ∈ E

k+1
s : 〈x, x〉 = c−1 > 0

}
,(1.2)

Hk
s (c) =

{
x ∈ E

k+1
s+1 : 〈x, x〉 = c−1 < 0

}
,(1.3)

where 〈 , 〉 is the associated inner product. Then Sk
s (c) and Hk

s (c) are pseudo-
Riemannian manifolds of constant curvature c and with index s, which are known as
pseudo-Riemannian k-sphere and the pseudo-hyperbolic k-space, respectively. The
pseudo-Riemannian manifolds E

k
s , S

k
s (c) and Hk

s (−c) are called indefinite space
forms, denoted by Rk

s .
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Surfaces in 4-dimensional Riemannian space forms have been investigated very
extensively (see, for instance, [1, 2, 3]). In contrast, only few results are known for
surfaces in 4-dimensional neutral indefinite space forms R4

2(c) of constant curvature
c and index 2. Thus, we study in this paper space-like surfaces in R4

2(c) satisfying
some simple geometric properties.

In Section 2 of this paper we provide basic definitions and formulas. In Section
3 we completely classify space-like surfaces in E

4
2 with constant mean and Gauss

curvatures and null normal curvature. In Section 4, we present a result of Sasaki and
the precise expression of a minimal immersion ψB of the hyperbolic plane H2(−1

3 )
of curvature −1

3 into the unit pseudo-hyperbolic 4-space H4
2 (−1) discovered by the

first author in [4]. It is known that the immersion ψB is a Wintgen ideal surfaces
in H4

2 (−1) whose Gauss and normal curvatures satisfy KD = 2K . In the last
section, we classify Wintgen ideal surfaces in R4

2(c) whose Gauss and normal cur-
vatures satisfy the condition KD = 2K . The later result provides us another simple
geometric characterization of the minimal immersion ψB : H2(−1

3) → H4
2 (−1).

2. PRELIMINARIES

A vector v is called space-like (resp., time-like) if 〈v, v〉 > 0 (resp., 〈v, v〉< 0).
A surface M in a pseudo-Riemannian manifold is called space-like if each nonzero
tangent vector is space-like.

Let R4
2(c) denote an indefinite space form of constant curvature c and with

index 2. The curvature tensor R̃ of R4
2(c) is given by

R̃(X, Y )Z = c{〈Y, Z〉X − 〈X,Z〉Y }(2.1)

for vectors X, Y, Z tangent to R4
2(c). Let ψ : M → R4

2(c) be an isometric immer-
sion of a space-like surface M into R4

2(c). Denote by ∇ and ∇̃ the Levi-Civita
connections on M and R4

2(c), respectively. For vector fields X, Y tangent to M
and ξ normal to M , the formulas of Gauss and Weingarten are given respectively
by (cf. [1, 2, 10]):

∇̃XY = ∇XY + h(X, Y ),(2.2)

∇̃Xξ = −AξX +DXξ,(2.3)

where ∇XY and AξX are the tangential components and h(X, Y ) and DXξ the
normal components of ∇̃XY and ∇̃Xξ, respectively.

The shape operator A and the second fundamental form h are related by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉 .(2.4)

The mean curvature vector H of M in H4
2 (−1) is defined by H = 1

2 traceh.
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The equations of Gauss, Codazzi and Ricci are given respectively by

(2.5) R(X, Y )Z = c{〈Y, Z〉X − 〈X,Z〉Y }+ Ah(Y,Z)X −Ah(X,Z)Y,

(2.6) (∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z),

(2.7)
〈
RD(X, Y )ξ, η

〉
= 〈[Aξ, Aη]X, Y 〉

for vector fields X, Y, Z tangent to M , and ξ, η normal to M , where ∇̄h is defined
by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ),

and RD is the curvature tensor associated with the normal connection D, i.e.,

RD(X, Y )ξ = DXDY ξ −DYDXξ −D[X,Y ]ξ.(2.8)

The normal curvature KD is given by

KD =
〈
RD(e1, e2)e3, e4

〉
.(2.9)

A surface M in R4
2(c) is called parallel (resp., minimal) if ∇̄h = 0 (resp.,

H = 0) holds identically. An immersion ψ : M → R4
2(c) is called full if the image

ψ(M) does not lies in any totally geodesic submanifold of R4
2(c). A surface M in

R4
2(c) is called isotropic if, at each point p ∈ M , |h(u, u)| is independent of the

choice of the unit vector u ∈ TpM .
For an immersion ψ : M → H4

2 (−1), let L = ι ◦ ψ : M → E
5
3 be the

composition of ψ with the standard inclusion ι : H 4
2 (−1) → E

5
3 via (1.2). Since

H4
2 (−1) is totally umbilical with mean curvature one in E

5
3, we have

∇̂XY = ∇XY + h(X, Y ) + 〈X, Y 〉L(2.10)

for X, Y tangent to M , where h is the second fundamental form of ψ and ∇̂ denotes
the Levi-Civita connection of E

5
3.

3. SURFACES WITH NULL NORMAL CURVATURE IN E
4
2

Theorem 3.1. Let M be a space-like surface in the pseudo-Euclidean 4-space
E

4
2. If M has constant mean and Gauss curvatures and null normal curvature, then

M is congruent to an open part of one of the following six types of surfaces:

(1) A totally geodesic plane in E
4
2 defined by (0, 0, x, y);

(2) a totally umbilical hyperbolic plane H 2(− 1
a2 ) ⊂ E

3
1 ⊂ E

4
2 given by(

0, a coshu, a sinhu cos v, a sinhu sin v
)
,

where a is a positive number;
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(3) A flat surface in E
4
2 defined by

1√
2m

(
cosh(

√
2mx), cosh(

√
2my), sinh(

√
2mx), sinh(

√
2my)

)
,

where m is a positive number;
(4) A flat surface in E

4
2 defined by(

0,
1
a

cosh(ax),
1
a

sinh(ax), y
)
,

where a is a positive number;
(5) A flat surface in E

4
2 defined by(

cosh(
√

2x)√
2mr

,
cosh(

√
2y)√

2m(2m− r)
,
sinh(

√
2x)√

2mr
,

sinh(
√

2y)√
2m(2m− r)

)
,

where m and r are positive numbers satisfying 2m > r > 0;
(6) A surface of negative curvature −b2 in E

4
2 defined by(

1
b

cosh(bx) cosh(by),
∫ y

0
cosh(by) sinh

(
4
√
m2−b2
b

tan−1
(

tanh
by

2

))
dy,

1
b

sinh(bx) cosh(by),
∫ y

0
cosh(by) cosh

(
4
√
m2−b2
b

tan−1
(
tanh

by

2

))
dy

)
,

where b and m are real numbers satisfying 0 < b < m.

Proof. Assume that L : M → E
4
2 is an isometric immersion of a space-like

surface M into E
4
2. If M is totally geodesic in E

4
2, we obtain case (1). Thus, from

now on, we assume that M is non-totally geodesic in E
4
2.

Let us choose an orthonormal tangent frame {e1, e2} of the tangent bundle and
an orthonormal normal frame {e3, e4} of the normal bundle of M which satisfy

〈e1, e1〉 = 〈e2, e2〉 = 1, 〈e1, e2〉 = 0,(3.1)

〈e3, e3〉 = 〈e4, e4〉 = −1, 〈e3, e4〉 = 0.(3.2)

We may also choose e1, e2 which diagonalizeAe3 so that the shape operator satisfies

Ae3 =
(
α 0
0 µ

)
, Ae4 =

(
δ γ

γ −δ

)
(3.3)

for some functions α, γ, δ, µ.
By definition, the normal curvature KD of M is defined by

KD = 〈[Ae3 , Ae4]e1, e2〉 .(3.4)
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For the orthonormal frame {e1, e2, e3, e4}, we put

∇Xe1 = ω2
1(X)e2, DXe3 = ω4

3(X)e4.(3.5)

From (2.3), (3.2) and (3.3) we have

h(e1, e1) = −αe3 − δe4, h(e1, e2) = −γe4, h(e2, e2) = −µe3 + δe4.(3.6)

Thus, the mean curvature vector, the Gauss curvature and the normal curvature are
given respectively by

H = −α + µ

2
e3, K = γ2 + δ2 − αµ, KD = γ(µ− α).(3.7)

It follows from (3.5), (3.6) and the equation of Codazzi that

e1γ − e2δ = αω4
3(e2) − 2γω2

1(e2)− 2δω2
1(e1),(3.8)

e2α = −γω4
3(e1) + δω4

3(e2) + (α− µ)ω2
1(e1),(3.9)

e2γ + e1δ = µω4
3(e1)− 2δω2

1(e2) + 2γω2
1(e1),(3.10)

e1µ = −δω4
3(e1) − γω4

3(e2) + (α− µ)ω2
1(e2).(3.11)

Since M has null normal curvature, we may also assume that γ = 0. Thus, by
the constancy of mean and Gauss curvatures, we obtain from (3.7) that

µ = 2m− α, k = δ2 + α2 − 2mα(3.12)

for some constants k,m. Without loss of generality, we may assume m ≥ 0.

Case (i). µ = α. In this case, µ = α = m is a constant, which gives
Ae3 = mI . Moreover, (3.12) gives

δ2 = m2 + k ≥ 0.(3.13)

Case (i.1). m2 = −k. From (3.13), we get δ = 0. Hence, M is a totally
umbilical surfaces in E

4
2. Such a surface has parallel second fundamental form.

Therefore, after applying Proposition 4.3 of [5], we obtain case (2) of the theorem,
Case (i.2). m2 > −k. Without loss of generality, we may put δ =

√
m2 + k,

which is a nonzero constant. Thus, we find from (3.8)-(3.11) that ω2
1 = ω4

3 = 0.
Hence, M must be flat. So, we have k = 0. Because ω2

1 = 0, we may choose
coordinates {x, y} such that e1 = ∂/∂x, e2 = ∂/∂y. The metric tensor is then
given by g = dx2 + dy2. Moreover, we know that the second fundamental form
satisfies

(3.14) h(e1, e1) = −me3 −me4, h(e1, e2) = 0, h(e2, e2) = −me3 +me4.
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Now, it follows from (2.1), (3.14) that the immersion L : M → E
4
2 satisfies

(3.15)
Lxx = −me3 −me4, Lxy = 0, Lyy = −me3 +me4,

∇̃ ∂
∂x
e3 = −mLx, ∇̃ ∂

∂y
e3 = −mLy, ∇̃ ∂

∂x
e4 = −mLx, ∇̃ ∂

∂y
e4 = mLy.

After solving this system and choosing suitable initial conditions, we get case (3).

Case (ii). µ 
= α. It follows from (3.12) that

(3.16) µ = 2m− α, δ =
√
k + 2mα− α2.

Case (ii.1). δ = 0. In this case, we have k = α2 − 2mα which is constant.
Hence, α is also a constant. Thus, we derive from (3.8)-(3.11) that

ω2
1 = 0, αω4

3(e2) = µω4
3(e1) = 0.(3.17)

Therefore, M is flat and αµ = 0. Since M is non-totally geodesic, without loss of
generality we may assume that α 
= 0 and µ = 0. Since ω2

1 = 0, we may choose
coordinates {x, y} such that e1 = ∂/∂x, e2 = ∂/∂y. So, we obtain

(3.18) h(e1, e1) = −αe3, h(e1, e2) = h(e2, e2) = 0.

It follows from (3.17) and (3.18) that immersion L : M → E
4
2 satisfies

(3.19)
Lxx = −αe3, Lxy = Lyy = 0,

∇̃ ∂
∂x
e3 = −αLx, ∇̃ ∂

∂y
e3 = 0.

After solving this system and choosing suitable initial conditions, we get case (4).
Case (ii.2). δ 
= 0. We have

µ = 2m− α, γ = 0, δ =
√
k + 2mα− α2 
= 0.(3.20)

Case (ii.2.1). mα = −k. In this case, α and δ are constant. Moreover, we
have

α = − k

m
, δ =

√−k(k +m2)
m

, µ = 2m+
k

m
, γ = 0.(3.21)

Because δ is a real nonzero number, we must have −m2 < k < 0. Thus, we may
put k = −b2 with 0 < b < m. Substituting (3.21) into (3.8)-(3.11) yields

ω2
1(e2) = ω4

3(e1) = 0, ω4
3(e2) =

2
√
m2 − b2

b
ω2

1(e1)(3.22)
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Thus, if f is a function satisfying e2(ln f) = ω2
1(e1), then we get [fe1, e2] = 0,

which implies that there exist coordinates {x, y} such that

∂

∂x
= fe1,

∂

∂y
= e2.(3.23)

Therefore, the metric tensor is given by

g = f2dx2 + dy2.(3.24)

Consequently, the Levi-Civita connection satisfies

(3.25) ∇ ∂
∂x

∂

∂x
=
fx

f

∂

∂x
− ffy

∂

∂y
, ∇ ∂

∂x
∂

∂y
=
fy

f

∂

∂x
, ∇ ∂

∂y

∂

∂y
= 0.

From (3.22), (3.23) and (3.25), we derive that

ω2
1(e1) = −fy

f
, ω2

1(e2) = ω4
3(e1) = 0, ω4

3(e2) = −2fy

√
m2 − b2

bf
.(3.26)

Moreover, it follow from (3.24) and K = −b2 that f satisfies

fyy = b2f.(3.27)

By solving (3.27) we obtain f = u(x) cosh(by+v(x)) for some functions u(x), v(x).
After replacing x by an anti-derivative of u(x), we find from (3.24) and (3.25) that

(3.28) g = cosh2(by + v(x))dx2 + dy2,

(3.29)
∇ ∂

∂x

∂

∂x
= v′ tanh(by + v)

∂

∂x
− b

2
sinh(2by + 2v)

∂

∂y
,

∇ ∂
∂x

∂

∂y
= b tanh(by + v)

∂

∂x
, ∇ ∂

∂y

∂

∂y
= 0.

Also, it follows from (3.6), (3.21), and (3.28) that

(3.30)

h

(
∂

∂x
,
∂

∂x

)
= −cosh2(by + v)

m
{b2e3 + b

√
m2 − b2e4},

h

(
∂

∂x
,
∂

∂y

)
= 0,

h

(
∂

∂y
,
∂

∂y

)
=

(b2 − 2m2)e3 + b
√
m2 − b2e4

m
.
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Therefore, the immersion L : M → E
4
2 satisfies

(3.31)

Lxx = v′ tan(by + v)Lx − b

2
sinh(2by + 2v)Ly

− cosh2(by + v)
m

{b2e3 + b
√
m2 − b2e4},

Lxy = b tanh(by + v)Lx,

Lyy =
(b2 − 2m2)e3 + b

√
m2 − b2e4

m
,

∇̃ ∂
∂x
e3 = −b

2

m
Lx, ∇̃ ∂

∂x
e4 = −b

√
m2 − b2

m
Lx,

∇̃ ∂
∂y
e3 =

b2 − 2m2

m
Ly − 2

√
m2 − b2 tanh(by + v)e4,

∇̃ ∂
∂y
e4 =

b
√
m2 − b2

m
Ly + 2

√
m2 − b2 tanh(by+v)e3.

The compatibility condition of (3.31) is given by v′(x) = 0. Then, after applying a
suitable translation in y, we may put v = 0. Therefore, system (3.31) reduces to

(3.32)

Lxx = − b
2

sinh(2by)Ly − cosh2(by)
m

{b2e3 + b
√
m2 − b2e4},

Lxy = b tanh(by)Lx,

Lyy =
(b2 − 2m2)e3 + b

√
m2 − b2e4

m
,

∇̃ ∂
∂x
e3 = −b

2

m
Lx, ∇̃ ∂

∂x
e4 = −b

√
m2 − b2

m
Lx,

∇̃ ∂
∂y
e3 =

b2 − 2m2

m
Ly − 2

√
m2 − b2 tanh(by)e4,

∇̃ ∂
∂y
e4 =

b
√
m2 − b2

m
Ly + 2

√
m2 − b2 tanh(by)e3.

Solving the second equation in (3.32) gives

L = A(x) coshby +B(y)(3.33)

for some vector-valued functions A(x), B(y). Substituting this into the first, third
and fourth equations in (3.32) gives A′′′(x) = b2A′(x). Thus, we get

A(x) = c5 + c1 cosh(bx) + c2 sinh(bx)(3.34)

for some vectors c5, c1, c2. Combining this with (3.33) gives

L = (c5 + c1 cosh(bx) + c2 sinh(bx)) coshby + B(y).(3.35)



Space-like Surfaces 531

By substituting (3.35) into the first, third and fifth equations in (3.32), we find

cosh2(by)B′′′ − b

2
sinh(2by)B′′ + (3b2−4m2)B′

= c5b(3b2−4m2) sinh(by).
(3.36)

A direct computation shows that Bp = −c5 cosh(by) is a particular solution of
(3.36). Thus, it follows from (3.35) and (3.36) that

L = (c1 cosh(bx) + c2 sinh(bx)) coshby +C(y),(3.37)

where C(y) satisfies the homogeneous differential equation:

cosh2(by)C′′′(y) − b

2
sinh(2by)C′′(y) + (3b2−4m2)C′(y) = 0.(3.38)

After solving this differential equation, we have

(3.39)
C(y) = c3

∫ y

0

cosh(by) cosh
(

4
√
m2 − b2

b
tan−1

(
tanh

by

2

))
dy

+ c4

∫ y

0
cosh(by) sinh

(
4
√
m2 − b2

b
tan−1

(
tanh

by

2

))
dy + c0

for some vectors c3, c4, c5 ∈ E
4
2. Combining this with (3.37) yields

L = c0 + (c1 cosh(bx) + c2 sinh(bx)) coshby

+ c3

∫ y

0
cosh(by) cosh

(
4
√
m2 − b2

b
tan−1

(
tanh

by

2

))
dy

+ c4

∫ y

0

cosh(by) sinh
(

4
√
m2 − b2

b
tan−1

(
tanh

by

2

))
dy.

Therefore, after choosing suitable initial conditions, we obtain case (6).
Case (ii.2.2). mα 
= −k. By substituting (3.20) into (3.8)-(3.11) we obtain

ω4
3(e1) =

2(k +m2)ω2
1(e2)

m
√
k + 2mα− α2

, ω4
3(e2) =

2(k +m2)ω2
1(e1)

m
√
k + 2mα− α2

,(3.40)

ω2
1(e1) = e2(ln

√
k +mα), ω1

2(e2) = e1(ln
√
k + 2m2 −mα).(3.41)

It follows from (3.41) that
[
e1/

√
k +mα, e2/

√
k + 2m2 −mα

]
= 0. Thus, there

exist coordinates {x, y} such that

∂

∂x
=

e1√
k +mα

,
∂

∂y
=

e2√
k +2m2−mα.(3.42)
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Hence, the metric tensor is given by

g =
dx2

k +mα
+

dy2

k + 2m2 −mα
.(3.43)

From (3.43) we have

(3.44)

∇ ∂
∂x

∂

∂x
=

−mαx

2(k+mα)
∂

∂x
+
m(k + 2m2 −mα)αy

2(k+mα)2
∂

∂y
,

∇ ∂
∂y

∂

∂y
=

−mαy

2(k+mα)
∂

∂x
+

mαx

2(k + 2m2 −mα)
∂

∂y
,

∇ ∂
∂y

∂

∂y
=

−m(k +mα)αx

2(k+ 2m2 −mα)2
∂

∂x
+

mαy

2(k+ 2m2 −mα)
∂

∂y
.

It follows from (3.6), (3.20) and (3.23) that the second fundamental form satisfies

(3.45)
h

(
∂

∂x
,
∂

∂x

)
=

−αe3 −
√
k + 2mα− α2e4
k +mα

, h

(
∂

∂x
,
∂

∂y

)
= 0,

h

(
∂

∂y
,
∂

∂y

)
=

(α− 2m)e3 +
√
k + 2mα− α2e4

k + 2m2 −mα
.

By applying (2.1), (3.24), (3.25) and (3.26) we obtain

(3.46)

Lxx =
−mαxLx

2(k+mα)
+
m(k+2m2−mα)αyLy

2(k +mα)2
− αe3+

√
k+2mα−α2e4
k +mα

,

Lxy =
−mαyLx

2(k+mα)
+

mαxLy

2(k + 2m2 −mα)
,

Lyy =
−m(k +mα)αxLx

2(k+2m2−mα)2
+

mαyLy

2(k+2m2−mα)

+
(α−2m)e3+

√
k+2mα−α2e4

k + 2m2 −mα
,

∇̃ ∂
∂x
e3 = −αLx +

(k +m2)αx

(k + 2m2 −mα)
√
k + 2mα− α2

e4,

∇̃ ∂
∂y
e3 = (α− 2m)Ly +

(k+m2)αy

(k +mα)
√
k + 2mα− α2

e4,

∇̃ ∂
∂x
e4 = −

√
k + 2mα− α2Lx − (k +m2)αx

(k + 2m2 −mα)
√
k + 2mα− α2

e3,

∇̃ ∂
∂y
e4 =

√
k + 2mα− α2Ly − (k +m2)αy

(k +mα)
√
k + 2mα− α2

e3.



Space-like Surfaces 533

After applying (3.46) and a long computation, we find from 〈Lxxy, Ly〉 =
〈Lxyx, Ly〉 and from 〈Lxyy, Lx〉 = 〈Lyyx, Lx〉 that

αy{(k +mα)αx + (k + 2m2 −mα)αy} = 0.(3.47)

Hence, we have either
(1) αy = 0 or
(2) (k +mα)αx + (k + 2m2 −mα)αy = 0.

Case (ii.2.2.a). αy = 0. In this case, system (3.46) reduces to

(3.48)

Lxx =
−mαxLx

2(k+mα)
− αe3+

√
k+2mα−α2e4
k +mα

,

Lxy =
mαxLy

2(k+ 2m2 −mα)
,

Lyy =
−m(k +mα)αxLx

2(k+2m2−mα)2
+

(α−2m)e3+
√
k+2mα−α2e4

k + 2m2 −mα
,

∇̃ ∂
∂x
e3 = −αLx +

(k +m2)αx

(k + 2m2 −mα)
√
k + 2mα− α2

e4,

∇̃ ∂
∂y
e3 = (α− 2m)Ly,

∇̃ ∂
∂x
e4 = −

√
k + 2mα− α2Lx − (k +m2)αx

(k + 2m2 −mα)
√
k + 2mα− α2

e3,

∇̃ ∂
∂y
e4 =

√
k + 2mα− α2Ly.

Now, after applying (3.48), 〈Lxxy, Ly〉 = 〈Lxyx, Ly〉 and 〈Lxyy, Ly〉 = 〈Lyyx, Ly〉,
we obtain that

axx = −2k(k + 2m2 −mα)2 −m2(2k+m2 +mα)α2
x

m(k + 2m2 −mα)(k +mα)
(3.49)

α2
x =

2k(k + 2m2 −mα)2

m2(k +m2)
.(3.50)

Next, by differentiating (3.50) and by applying (3.49), we find αx = 0. Thus, α
is a constant, say α = r. Because δ 
= 0, (3.50) gives k = 0. Therefore, system
(3.48) becomes

Lxx = −re3+
√

2mr − r2e4
mr

,

Lxy = 0,

Lyy =
(r − 2m)e3 +

√
2mr− r2e4

2m2 −mr
,
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∇̃ ∂
∂x
e3 = −αLx, ∇̃ ∂

∂y
e3 = (α− 2m)Ly,

∇̃ ∂
∂x
e4 = −

√
2mr− r2Lx, ∇̃ ∂

∂y
e4 =

√
2mr− r2Ly.

After solving this system and choosing suitable initial conditions, we have case (5)
of the theorem.

Case (ii.2.2.b). (k+mα)αx + (k+ 2m2 −mα)αy = 0. In this case, we have

αy =
(k+mα)αx

mα− k − 2m2
.(3.51)

Thus, system (3.46) becomes

(3.52)

Lxx = −mαx(Lx + Ly)
2(k+mα)

− αe3+
√
k+2mα−α2e4
k +mα

,

Lxy =
mαx(Lx + Ly)

2(k + 2m2 −mα)
,

Lyy = −m(k +mα)αx(Lx + Ly)
2(k+2m2−mα)2

+
(α−2m)e3+

√
k+2mα−α2e4

k + 2m2 −mα
,

∇̃ ∂
∂x
e3 = −αLx +

(k +m2)αxe4

(k + 2m2 −mα)
√
k + 2mα− α2

,

∇̃ ∂
∂y
e3 = (α− 2m)Ly − (k +m2)αxe4

(k + 2m2 −mα)
√
k + 2mα− α2

,

∇̃ ∂
∂x
e4 = −

√
k + 2mα− α2Lx − (k +m2)αxe3

(k + 2m2 −mα)
√
k + 2mα− α2

,

∇̃ ∂
∂y
e4 =

√
k + 2mα− α2Ly +

(k+m2)αxe4

(k + 2m2 −mα)
√
k + 2mα− α2

.

Now, from Lxxy = Lxyx we find (k+mα)αx = 0. Also, we find from Lxyy = Lyyx

that k=0. Thus, α is a constant and k=0. Hence, this case reduces to (ii.2.a).

4. SPACELIKE MINIMAL SURFACES WITH CONSTANT GAUSS CURVATURE

From the equation of Gauss, we have

Lemma 4.1. Let M be a space-like minimal surface in R4
2(c). Then K ≥ c.

In particular, if K = c holds identically, then M is totally geodesic.

For space-like minimal surfaces in R4
2(c), Theorem 1 of [12] implies that M

has constant Gauss curvature if and only if it has constant normal curvature.
We recall the following result of Sasaki from [12].
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Theorem 4.2. Let M be a space-like minimal surface in R4
2(c). If M has

constant Gauss curvature, then either
(1) K = c and M is a totally geodesic surface in R 4

2(c);
(2) c < 0, K = 0 and M is congruent to an open part of the minimal surface

defined by 1√
2
(coshu, cosh v, 0, sinhu, sinh v), or

(3) c < 0, K = c/3 and M is isotropic.

Let R2 be a plane with coordinates s, t. Consider a map B : R2 → E
5
3 given

by

(4.1)
B(s, t) =

(
sinh

( 2s√
3

)
− t2

3
−
(

7
8

+
t4

18

)
e

2s√
3 , t+

(
t3

3
− t

4

)
e

2s√
3 ,

1
2

+
t2

2
e

2s√
3 , t+

(
t3

3
+
t

4

)
e

2s√
3 , sinh

( 2s√
3

)
− t2

3
−
(

1
8

+
t4

18

)
e

2s√
3

)
.

The first author proved in [4] that B defines a full isometric parallel immersion

ψB : H2(−1
3) → H4

2 (−1)(4.2)

of the hyperbolic plane H2(−1
3 ) of curvature −1

3 into H4
2 (−1).

The following result was also obtained in [4].

Theorem 4.3. Let ψ : M → H4
2 (−1) be a parallel full immersion of a space-

like surface M into H 4
2 (−1). Then M is minimal in H 4

2 (−1) if and only if M is
congruent to an open part of the surface defined by(

sinh
( 2s√

3

)
− t2

3
−
(

7
8

+
t4

18

)
e

2s√
3 , t+

(
t3

3
− t

4

)
e

2s√
3 ,

1
2

+
t2

2
e

2s√
3 , t+

(
t3

3
+
t

4

)
e

2s√
3 , sinh

( 2s√
3

)
− t2

3
−
(

1
8

+
t4

18

)
e

2s√
3

)
.

Combining Theorem 4.2 and Theorem 4.3, we obtain the following.

Theorem 4.4. Let M be a non-totally geodesic space-like minimal surface in
H4

2 (−1). If M has constant Gauss curvature K, then either
(1) K = 0 and M is congruent to an open part of the surface defined by

1√
2

(coshu, cosh v, 0, sinhu, sinhv) ,
or

(2) K = −1
3 and M is is congruent to an open part of the surface defined by(

sinh
( 2s√

3

)
− t2

3
−
(

7
8

+
t4

18

)
e

2s√
3 , t+

(
t3

3
− t

4

)
e

2s√
3 ,

1
2

+
t2

2
e

2s√
3 , t+

(
t3

3
+
t

4

)
e

2s√
3 , sinh

( 2s√
3

)
− t2

3
−
(

1
8

+
t4

18

)
e

2s√
3

)
.
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5. WINTGEN IDEAL SURFACES SATISFYING KD = −2K

In 1979, P. Wintgen [13] proved a basic relationship between Gauss curvatureK,
normal curvature KD, and mean curvature vector H of a surface M in a Euclidean
4-space E

4; namely,

K + |KD| ≤ 〈H,H〉 ,(5.1)

with the equality holding if and only if the curvature ellipse is a circle.
The following Wintgen type inequality for space-like surfaces in R4

2(c) can be
found in [7].

Theorem 5.1. Let M be a space-like surface in a 4-dimensional indefinite
space form R4

2(c) of constant sectional curvature c and index two. Then we have

K +KD ≥ 〈H,H〉+ c(5.2)

at every point. Moreover, the equality sign of (5.2) holds at a point p ∈ M if and
only if, with respect to some suitable orthonormal frame {e 1, e2, e3, e4}, the shape
operator at p satisfies

Ae3 =
(
µ+ 2γ 0

0 µ

)
, Ae4 =

(
0 γ
γ 0

)
.(5.3)

Following [6, 9, 11], we call a surface in R4
2(c) Wintgen ideal if it satisfies the

equality case of (5.2) identically. Wintgen ideal surfaces in E
4
2 satisfying |K| =

|KD| are classified by the first author in [7] (see [6] for the classification of Wintgen
ideal surfaces in E

4 satisfying |K| = |KD|).
We need the following existence result.

Theorem 5.2. Let c be a real number and γ with 3γ 2 > −c be a positive
solution of the second order elliptic differential equation

(5.4)

∂

∂x

(
(3γ
√
c+ 3γ2 − c)(6γ + 2

√
3c+ 9γ2 )

√
3γx

2γ(c + 3γ2)

)

− ∂

∂y

(
(3γ
√
c+ 3γ2 − c)γy

2γ(c + 3γ2)(6γ + 2
√

3c+ 9γ2 )
√

3

)
= γ

√
c+ 3γ2

defined on a simply-connected domain D ⊂ R 2. Then Mγ = (D, gγ) with the
metric

gγ =
√
c+ 3γ2

γ(6γ + 2
√

3c+ 9γ2 )
√

3

(
dx2 + (6γ + 2

√
3c+ 9γ2 )2

√
3dy2

)
(5.5)

admits a non-minimal Wintgen ideal immersion ψ γ : Mγ → R4
2(c) into a complete

simply-connected indefinite space form R 4
2(c) satisfying KD = 2K identically.
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Proof. Let c be a real number and γ be positive solution of (5.4) with 3γ 2 > −c
defined on a simply-connected domain D. Consider the surface Mγ = (D, gγ) with
metric gγ given by (5.5). Then the Levi-Civita connection of gγ satisfies

(5.6)

∇ ∂
∂x

∂

∂x
= −(3γ

√
c+3γ2+c)γx

2γ(c+3γ2)
∂

∂x
+

(3γ
√
c+3γ2+c)γy

2γ(c+3γ2)(6γ+2
√

3c+9γ2)2
√

3

∂

∂y
,

∇ ∂
∂x

∂

∂y
= −(3γ

√
c+ 3γ2 + c)γx

2γ(c + 3γ2)
∂

∂x
+

(3γ
√
c+ 3γ2 − c)γx

2γ(c + 3γ2)
∂

∂y
,

∇ ∂
∂y

∂

∂y
=

(6γ + 2
√

3c+ 9γ2 )2
√

3(c− 3γ
√
c+ 3γ2)γx

2γ(c+ 3γ2)
∂

∂x

+
(3γ
√
c+ 3γ2 − c)γy

2γ(c + 3γ2)
∂

∂y
.

Let us define a bilinear map: h : TM → NM by

(5.7)

h

(
∂

∂x
,
∂

∂x

)
= −(γ +

√
c+ 3γ2 )

√
c + 3γ2

γ(6γ + 2
√

3c+ 9γ2 )
√

3
e3,

h

(
∂

∂x
,
∂

∂y

)
= −

√
c+ 3γ2e4,

h

(
∂

∂y
,
∂

∂y

)
=

(γ −√c+ 3γ2 )
√
c+ 3γ2(6γ + 2

√
3c+ 9γ2 )

√
3

γ
e3,

where NM is the plane bundle over M spanned by an orthonormal time-like frame
{e3, e4}. Define a linear metric connection D on NM by

(5.8)

D ∂
∂x
e3 =

−3γγye4

(c+ 3γ2)(6γ + 2
√

3c+ 9γ2)
√

3
,

D ∂
∂y
e3 =

3γ(6γ+ 2
√

3c+ 9γ2)
√

3γx

c+ 3γ2
e4,

D ∂
∂x
e4 =

3γγye3

(c+ 3γ2)(6γ + 2
√

3c+ 9γ2)
√

3
,

D ∂
∂y
e3 = −3γ(6γ+ 2

√
3c+ 9γ2)

√
3γx

c+ 3γ2
e3.

Then it follows from a very long direct computation that (Mγ , gγ, D, h) satisfies
the equations of Gauss, Codazzi and Ricci. Hence, the fundamental existence and
uniqueness theorem of submanifolds implies that, up to rigid motions, there exists a
unique isometric immersion from Mγ into R4

2(c) whose second fundamental form
and normal connection are given by h and D, respectively. By applying (5.5), (5.7)
and c+ 3γ2>0 we see that M is a non-minimal Wintgen ideal surface in R4

2(c).

Now, we classify Wintgen ideal surfaces in R4
2(c) which satisfy KD = 2K.
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Theorem 5.3. LetM be a Wintgen ideal surface in a complete simply-connected
indefinite space form R4

2(c) with c = 1, 0 or −1. If M satisfies KD = 2K
identically, then one of following three cases occurs:

(1) c = 0 and M is a totally geodesic surface in E
4
2;

(2) c = −1 and M is a minimal surface in H 4
2 (−1) congruent to an open part

of ψB : H2(−1
3 ) → H4

2 (−1) ⊂ E
5
3 defined by(

sinh
( 2s√

3

)
− t2

3
−
(

7
8

+
t4

18

)
e

2s√
3 , t+

(
t3

3
− t

4

)
e

2s√
3 ,

1
2

+
t2

2
e

2s√
3 , t+

(
t3

3
+
t

4

)
e

2s√
3 , sinh

( 2s√
3

)
− t2

3
−
(

1
8

+
t4

18

)
e

2s√
3

)
;

(3) M is a non-minimal surface in R 4
2(c) which is congruent to an open part

of ψγ : Mγ → R4
2(c) associated with a positive solution γ of the elliptic

differential equation (5.4) as described in Theorem 5.2.

Proof. LetM be a Wintgen surface inR4
2(c). Then, according to Theorem 5.1,

there exist an orthonormal frame {e1, e2, e3, e4} such that shape operator satisfies
(5.3) for some functions γ, µ. Thus, the Gauss and normal curvatures are given by

K = c+ γ2 − µ2 − 2γµ, KD = −2γ2.(5.9)

It follows from the condition KD = 2K that µ = −γ ±
√
c+ 3γ2. Without loss

of generality, we may assume γ ≥ 0.

Case (i). µ = −γ +
√
c+ 3γ2. We divide this into two subcases.

Case (i.1). c+ 3γ2 = 0. We have µ = −γ and c ≤ 0. Thus, M is a minimal
surface.

If c = 0, we get γ = µ = 0, which implies that M is totally geodesic. So, we
get case (1) of the theorem.

If c = −1, we have γ = −µ = 1√
3
. Thus, by (5.9) M is a minimal surface with

curvature −1
3 . Hence, we obtain case (2) of the theorem according to Theorem 4.4.

Case (i.2). c+ 3γ2 
= 0. From (5.3) we obtain

(5.10)

h(e1, e1) = −(γ +
√
c+ 3γ2 )e3,

h(e1, e2) = −γe4,
h(e2, e2) = (γ −

√
c+ 3γ2 )e3.

Thus, it follows from Codazzi’s equation that

ω2
1(e1) =

3γ
√
c+ 3γ2 + c

2γ(c+ 3γ2)
e2γ, ω

2
1(e2) =

3γ
√
c+ 3γ2 − c

2γ(c+ 3γ2)
e1γ,(5.11)
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ω4
3(e1) = − 3γe2γ

c+ 3γ2
, ω4

3(e2) =
3γe1γ
c+ 3γ2

.(5.12)

After applying (5.11) we derive that

[
(c + 3γ2)1/4

√
γ(6γ + 2

√
3c+ 9γ2 )

√
3/2
e1,

(c + 3γ2)1/4(6γ + 2
√

3c+ 9γ2 )
√

3/2

√
γ

e2

]
= 0.

Hence there exist coordinates {x, y} such that

(5.13)

∂

∂x
=

(c + 3γ2)1/4

√
γ(6γ + 2

√
3c+ 9γ2 )

√
3/2
e1,

∂

∂y
=

(c+ 3γ2)1/4(6γ + 2
√

3c+ 9γ2 )
√

3/2

√
γ

e2.

By using (5.13) we know that the metric tensor is given by

g =
√
c+ 3γ2

γ(6γ + 2
√

3c+ 9γ2 )
√

3
dx2 +

√
c+ 3γ2(6γ + 2

√
3c+ 9γ2 )

√
3

γ
dy2,(5.14)

which implies that the Levi-Civita connection satisfies

(5.15)

∇ ∂
∂x

∂

∂x
=−(3γ

√
c+3γ2 + c)γx

2γ(c+3γ2)
∂

∂x
+

(3γ
√
c+3γ2+c)γy

2γ(c + 3γ2)(6γ+2
√

3c+9γ2)2
√

3

∂

∂y
,

∇ ∂
∂x

∂

∂y
= −(3γ

√
c+ 3γ2 + c)γx

2γ(c + 3γ2)
∂

∂x
+

(3γ
√
c+ 3γ2 − c)γx

2γ(c + 3γ2)
∂

∂y
,

∇ ∂
∂y

∂

∂y
=

(6γ + 2
√

3c+ 9γ2 )2
√

3(c− 3γ
√
c + 3γ2)γx

2γ(c + 3γ2)
∂

∂x

+
(3γ
√
c + 3γ2 − c)γy

2γ(c + 3γ2)
∂

∂y
.

From (5.12) and (5.13) we find

(5.16)
ω4

3

(
∂

∂x

)
=

−3γγy

(c+ 3γ2)(6γ + 2
√

3c+ 9γ2)
√

3
,

ω4
3

(
∂

∂y

)
=

3γ(6γ+ 2
√

3c+ 9γ2)
√

3

c+ 3γ2
γx.
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Also, it follows from (5.10) and (5.13) that

(5.17)

h

(
∂

∂x
,
∂

∂x

)
= −(γ +

√
c+ 3γ2 )

√
c+ 3γ2

γ(6γ + 2
√

3c+ 9γ2 )
√

3
e3,

h

(
∂

∂x
,
∂

∂y

)
= −

√
c+ 3γ2e4,

h

(
∂

∂y
,
∂

∂y

)
=

(γ −√c+ 3γ2 )
√
c + 3γ2(6γ + 2

√
3c+ 9γ2 )

√
3

γ
e3.

Moreover, from (5.10), (5.15) and the equation of Gauss we know that γ satisfies
the elliptic differential equation (5.4). Consequently, after applying Theorem 5.2 we
obtain case (3) of the theorem.

Case (ii). µ = −γ −
√
c+ 3γ2. After replacing e3, e4 by −e3,−e4, respec-

tively, this reduces to (i).
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