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OPTIMALITY CONDITIONS FOR SEMI-PREINVEX
PROGRAMMING∗

Hang-Chin Lai†

Abstract. We consider a semi-preinvex programming as follows:

(P)
{

inf f(x)
subject to x ∈ K ⊆ X, g(x) ∈ −D,

where K is a semi-connected subset; f : K → (Y,C) and g : K → (Z,D)
are semi-preinvex maps; while (Y,C) and (Z,D) are ordered vector spaces
with order cones C and D, respectively. If f and g are arc-directionally
differentiable semi-preinvex maps with respect to a continuous map:
γ : [0, 1] → K ⊆ X with γ(0) = 0 and γ′(0+) = u, then the necessary
and sufficient conditions for optimality of (P) is established. It is also es-
tablished that a solution of an unconstrained semi-preinvex optimization
problem is related to a solution of a semi-prevariational inequality .

1. Introduction

In general, an optimization problem or mathematical programming prob-
lem is considered as the following form:

(P)

{
inf f(x)
subject to g(x) ≤ 0 and x ∈ K ⊂ X
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390 Hang-Chin Lai

where f : K → Y and g : K → Z are either differentiable, convex, or non-
smooth and nonconvex functions. Here Y, Z are ordered vector lattices with
some order cones. Many authors investigated the optimality conditions for
problem (P). Kuhn and Tucker first established the necessary condition for
programming problem (P) concerning the differentiable functions with Y = R
and Z = Rm. Henceforth, results for more general cases are often referred
to as Kuhn-Tucker type theorems. Theorems on multiobjective programming
problems are offen referred to as Fritz John type theorems. For example, in
Lai and Ho [8, Theorem 3.1], the Pareto optimality condition for convex con-
tinuous functions f : X → Rn and g : X → Rm is investigated. Moreover, one
can consider X to be a measure space (X,Γ, µ) and replace f and g by the
convex set functions or set mappings, like

f : S ⊂ Γ→ Rn (or Y ) and g : S ⊂ Γ→ Rm (or Z)

where S is a convex family of measurable subsets in X. In Lai and Lin [9,
Theorems 11 and 12], the Pareto optimality conditions are established (cf also
[10, Theorem 4.1] for weak minimum). In [11, Theorem 3.1 and Corollary
3.1], Lai and Szilagyi studied the programming with convex set functions and
proved that the alternative theorem is valid for convex set functions defined on
convex subfamily S of measurable subsets in X, and shows that if the system{

f(Ω) <<C θ,
g(Ω) <D θ

has no solution where θ stands for zero vector in a topological vector space ,
then there exists a nonzero continuous linear function (y∗, z∗) ∈ C∗×D∗ such
that

〈f(Ω), y∗〉+ 〈g(Ω), z∗〉 ≥ 0 for all Ω ∈ S.

Generalized convexity of functions are investigated by many mathematician,
see [2-7] and [12-17]. For example, functions are invex, d-invex, preinvex, arc-
connected convex, or convex like etc. These nonconvex functions also have
good behavior like the convex case.

The purpose of this paper is studying such class of noncovex functions for
constrained semi-preinvex programming problems. In Section 2, we give some
definitions of generalized convexity, and show some elementary results and
theorem of alternatives. In Section 3, the necessary and sufficient optimality
conditions for semi-preinvex programming problems are established. Finally,
the semi-prevariational inequality is discussed. It is related to the optimality
for semi-preinvex programming problem.
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2. Preliminaries, Semi-preinvex Mapping

Throughout the paper we let X,Y and Z be locally convex topological
vector spaces over real field R. Let C ⊂ Y and D ⊂ Z be pointed closed
convex cones with nonempty interior (C◦ 6= Ø, D◦ 6= Ø) which determine the
order complete vector lattice for Y and Z, respectively. In order to connect the
order structure and topological structure, it requires furthermore that there
be a neighborhood system {V } of the origin θ in a topological vector space
with an order cone such that

V = (V + C) ∩ (V − C).(2.1)

A cone C with condition (2.1) is called normal. We assume throughout
that C and D are normal cones in the order-complete vector lattices Y and
Z, respectively. The dual cone C∗ of a cone C is given by

C∗ = {y∗ ∈ Y ∗| < y∗, y >≥ 0 for all y ∈ C}.

We employ the convention of partial order in a topological vector space.
For y1, y2 ∈ Y , we write

y1 ≤C y2 if y2 − y1 ∈ C;
y1 <C

y2 if y2 − y1 ∈ C − {θ};
y1 <<C

y2 if y2 − y1 ∈ C◦.

A point y0 ∈ B ⊂ Y is called a minimal [resp. weakly minimal] element
(point) of B, denoted by y0 ∈ minB [resp. y0 ∈ w-min B], if there does not
exist y ∈ B such that y <

C
y0 [resp. y <<

C
y0].

Let f : K ⊂ X → Y be differentiable at x0 ∈ K. Then there is a linear
operator A = f ′(x0) ∈ L(X,Y ), the space of all linear operators from X into
Y , such that

lim
α→0

f((1− α)x0 + αx)− f(x0)
α

= f ′(x0)(x− x0).(2.2)

Let f : K ⊂ X → (Y,C) be also C-convex on a convex set K ⊂ X, i.e., if
for any x0, x ∈ K and α ∈ [0, 1] ⊂ R, we have

f((1− α)x0 + αx) ≤C (1− α)f(x0) + αf(x).(2.3)

or
f((1− α)x0 + αx)− f(x0)

α
≤C f(x)− f(x0).(2.4)

It follows from (2.2) and (2.4) that
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f ′(x0)(x− x0) ≤C f(x)− f(x0).(2.5)

In 1981, Hanson [5] introduced a generalized convexity on Rn, namely invex,
that is, x− x0 is replaced by a vector τ(x0, x) ∈ X in (2.5), or

f ′(x0)τ(x0,, x) ≤C f(x)− (x0).(2.6)

Thus an invex function is something a generalization of a convex differen-
tiable function.

In the following context we do not assume f : X → Y to be differentiable.
We need more definition as follows.

Definition 2.1. (1) A subset K ⊂ X → Y is said to be vector τ -connected
if for any x, y ∈ K and α ∈ [0,1], there is a vector τ(x, y) ∈ X such that

x+ ατ(x, y) ∈ K.(2.7)

(2) A map f : K ⊂ X → Y is said to be preinvex on a vector τ -connected
subset K if for any x, y ∈ K, there is a vector τ(x, y) ∈ X such that for
α ∈ [0, 1],

f(x+ ατ(x, y)) ≤C (1− α)f(x) + αf(y).(2.8)

Definition 2.2. (1) A set K ⊂ X is said to be arcwise-connected (or
arc-connected for brevity) if for any x, y ∈ K, there is a continuous map

γ(x, y; ·) : [0, 1]→ K

such that 
γ(x, y; 0) = x,
γ(x, y, 1) = y,
γ(x, y;α) ∈ K for all α ∈ [0, 1].

(2.9)

(2) A map f : X → Y is said to be arcwise connected convex (or arc-
connected convex for brevity) on an arc-connected set K ⊂ X if for any x, y ∈
K and α ∈ [0, 1], we have

f(γ(x, y;α)) ≤C (1− α)f(γ(x, y; 0)) + αf(γ(x, y; 1)),

that is,

f(γ(x, y;α)) ≤C (1− α)f(x) + αf(y).(2.10)
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Definition 2.3. (1) A set K ⊂ X is said to be semi-connected if for any
x, y ∈ K and α ∈ [0, 1], there is a vector τ(x, y, α) ∈ X such that

x+ ατ(x, y, α) ∈ K.(2.11)

(2) A map f : X → Y is said to be semi-preinvex on a semi-connected
subset K ⊂ X if each (x, y, α) ∈ K×K×[0, 1] corresponds a vector τ(x, y, α) ∈
X such that {

f(x+ ατ(x, y, α)) ≤C (1− α)f(x) + αf(y)
and lim

α↓0
ατ(x, y, α) = θ(2.12)

where θ stands for the zero vector (of X).

Remark. By (2.12), it is obvious that a semi-preinvex mapping is up-
per semi-continuous (u.s.c.). Note that an arc-connected set need not be a
vector τ -connected and vice versa. So an arc-connected convex map is not
a preinvex map. But both arc-connected convex map and preinvex map are
semi-preinvex.

Theorem 2.1. (1) A preinvex map is semi-preinvex. (2) An arc-connected
convex map is semi-preinvex.

Proof. (1) Let K be a vector t-connected set. Then for any x, y ∈ K, we
put

τ(x, y, α) = τ(x, y) for all α ∈ [0, 1],

so that x + ατ(x, y, α) ∈ K. It follows that K is also a semi-connected set.
Therefore, a preinvex map is also a semi-preinvex.

(2) Let K be an arc-connected subset of X. That is, for any x, y ∈ K,
there is a continuous vector value mapping :

γ(x, y, ·) : [0, 1]→ K

with boundary conditions γ(x, y, 0) = x, γ(x, y, 1) = y. If f is arc-connected
convex on K, then

f(γ(x, y, α)) ≤C (1− α)f(x) + αf(y), α ∈ [0, 1].

Taking τ(x, y, α) = (1/α)[γ(x, y, α)− x], we have

lim
α↓0

ατ(x, y, α) = lim
α↓0

[γ(x, y, α)− x] = γ(x, y, 0)− x = 0.
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Hence for any α ∈ [0, 1],

f(x+ ατ(x, y, α))= f(γ(x, y, α))

≤C (1− α)f(γ(x, y, 0)) + αf(γ(x, y, 1))

= (1− α)f(x) + αf(y).

This shows that f is a semi-preinvex map. 2

Like a convex function, any locally minimum is also global minimum. We
state this property with respect to a semi-preinvex map as follows.

Theorem 2.2. Let K ⊂ X be a semi-connected subset and f : K → Y a
semi-preinvex map. Then any local minimum of f is also a global minimum
of f over K.

Proof. Let x0 be a local minimum of f on K. Then there is a neighborhood
N(x0) of x0 such that

f(x) 6<C f(x0) for all x ∈ N(x0)− {x0}.

We want to show that there is no x ∈ K which satisfies the inequality

f(x) <C f(x0).(1)

For if there were a point y ∈ K satisfying (1), then it would deduce a contra-
diction.

Indeed if f is a semi-preinvex map on a semi-connected set K, we can find
a vector τ(x0, y, α) ∈ X for any a ∈ [0, 1] such that

f(x0 + ατ(x0, y, α)) ≤C (1− α)f(x0) + αf(y).

It follows that

f(x0 + ατ(x0, y, α))− f(x0) ≤C α[f(y)− f(x0)] <C θ.(2)

As α is near 0, we see that x̃ = x0 + ατ(x0, y, α) ∈ N(x0). Thus if x0 is a
local minimum for f , then the inequality (2) implies that

f(x̃) <C f(x0).

This contradicts the fact of x0 minimizing f locally in K. Therefore a local
minimum point x0 is also a global minimum point. 2
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Definition 2.4. A mapping f : X → Y is said to be convex-like on
an arbitrary nonempty subset K of X if for any x1, x2 ∈ K and a constant
α ∈ [0, 1] there exists a vector

x = x(x1, x2, α) ∈ K such that f(x) ≤C (1− α)f(x1) + αf(x2).

Jeyakumar [7] proved that the theorem of alternatives is valid for the
convex-like function f : Rn → R. We see easily that a semi-preinvex map
f : X → Y is also a convex-like. It follows that the theorem of alternatives is
valid for the case of semi-preinvex mapping which we state as follows.

Theorem 2.3. (Theorem of alternatives) Let h : X → Y be a semi-
preinvex map on a semi-connected subset K in X. Then exactly one of the
following two systems of inequality is solvable.

(a) There exists x ∈ K and h(x) <<C θ,
(b) There exists a nonzero y∗ ∈ C∗ such that 〈h(x), y∗〉 > 0 for all x ∈ K.

3. Mathematical Programming with Semi-Preinvex Mappings

Let f : X → (Y,C) and g : X → (Z,D) be semi-preinvex maps on a
semi-connected subset K in X. Consider a constrained programming problem
as follows

(P)


inf f(x)
subject to x ∈ K ⊂ X
and g(x) ∈ −D.

Definition 3.1. A mapping f : K ⊂ X → Y is said to be arcwise
(arc) directionally differentiable at x0 ∈ K with respect to a continuous arc
β : [0, 1]→ K ⊂ X if x0 + β(t) ∈ K for t ∈ [0, 1] with

β(0) = θ and β′(0+) = u (in X),(3.1)

that is, the continuous function β is differentiable from right at 0, and the
limit

lim
t↓0

f(x0 + β(t))− f(x0)
t

∼= f ′(x0;u) exists.(3.2)

Note that the arc directional derivative f ′(x0; ·) is a mapping from X into
Y . If for any x, y ∈ K and t ∈ [0, 1], we choose a vector

τ(x, y, t) =
β(t)
t

=
β(t)− β(0)

t− 0
,(3.3)
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then

lim
t↓0

τ(x, y, t) = β′(0+) = u(3.4)

and

d

dt
[tτ(x, y, t)] |t=0+ = β′(0+) = u.(3.5)

The following Fritz John type theorem is essential in this section for pro-
gramming problem (P).

Theorem 3.1. (Necessary optimality condition). Suppose that f and g
are arc-directionally differentiable with respect to a continuous arc β defined as
in Definition 3.1. If x0 minimizes locally for the semi-preinvex programming
problem (P), then there exist y* y∗ ∈ C∗ such that

〈f ′(x0;u), y∗〉+ 〈g′(x;u), z∗〉 ≥ 0,(3.6)

where u = β′(0+) and

< g(x0), z∗ >= 0.(3.7)

Proof. Since f is a semi-preinvex map in (P), the local minimal solution
to (P) is also a global minimal solution to (P) (see Theorem 2.2). It follows
that the system {

f(x)− f(x0) <C θ,
g(x) <D θ

(3.8)

has no solution in K. By the Theorem of alternatives (Theorem 2.3), there
exists a nonzero element (y∗, z∗) ∈ C∗ ×D∗ such that

〈f(x)− f(x0), y∗〉+ 〈g(x), z∗〉 ≥ 0(3.9)

for all x ∈ K. Putting x = x0 in (3.9), we get

〈g(x0), z∗〉 ≥ 0.

Since z∗ ∈ D∗ and g(x0) ∈ −D, it follows that

〈g(x0), z∗〉 = 0.

This proves (3.7).
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As K is a semi-connected set, for any x ∈ K and t ∈ [0, 1], we have

x0 + tτ(x0, x, t) ∈ K.

For t 6= 0, the point x̃ = x0 + tτ(x0, x, t) 6= x0 does not solve the system (3.8).
So substituting x̃ in (3.9) and using the result (3.7), we obtain

〈f(x0 + tτ(x0, x, t))− f(x0), y∗〉+ 〈g(x0 + tτ(x0, x, t))− g(x0), z∗〉 ≥ 0.(3.10)

Since f and g are arc-directionally differentiable with respect to β, choose a
vector τ(x, y, t) as (3.3), so that (3.4) and (3.5) hold. It follows that if we
divide (3.10) by t 6= 0 and take the limit as t ↓ 0, then we have

〈f ′(x0;u), y∗〉+ 〈g′(x0;u), z∗〉 ≥ 0.

This proves (3.6), and the proof of theorem is complete. 2

If the mappings f and g are preinvex on a τ -connected set K ⊂ X, then
by setting τ(x, y, t) = τ(x, y) for all t ∈ [0, 1], we have

d

dt
[tτ(x, y, t)] |t=0+ = τ(x, y) = u.

Hence the following corollary holds.

Corollary 3.2. Let the mappings f and g in (P) be preinvex on a τ -
connected set K ⊂ X. Then the Fritz John type Theorem 3.1 becomes to the
result in the case of preinvex programming problem.

If the mappings f and g are arc-connected convex on an arc-connected set
K ⊂ X, that is, for x, y ∈ K, there is a continuous arc-connected map

γ(x, y, ·) : [0, 1] ⊂ R→ K with γ(x, y, 0) = x and γ(x, y, 1) = y,

we can choose β(t) = γ(x, y, t)− x for any x, y ∈ K, then

d

dt
[γ(x, y, t)] |τ=0+ = β′(0+) = u.

Hence we also have the Fritz John type Theorem in the case of arc-connected
convex programming problem. That is,

Corollary 3.3. Let the mappings f and g be arc-connected convex on an
arc-connected subset K ⊂ X. Then the Fritz John type Theorem 3.1 reduces
to the result in the case of arc-connected convex programming problem.

397



398 Hang-Chin Lai

Remark. If Y = Rp, Z = Rm and the functions f and g in the program-
ming problem (P) are d-invex, then the Fritz John type Theorem 3.1 extends
the results of Ye [17, Theorems 3.2 and 3.3]. A function f : X → Rp is said to
be d-invex on an open set K ⊂ X at a point x0 ∈ K if for any x ∈ K, there
exists a vector τ = τ(x, x0) ∈ X such that

f+(x0; τ) ≤ f(x)− f(x0),

where f+(x0; τ) is the directional derivative defined by

f+(x0; τ) = lim
t↓0+

f(x0 + tτ(x, x0))− f(x0)
t

.

Evidently, if f is differentiable (in the Gateaux sense), then a d-invex function
is invex. So the d-invex map is regarded as a generalization of invex map as
well as an arc-directional derivative.

The converse of Theorem 3.1 is also valid. That we state as follows:

Theorem 3.4. (Sufficient optimality condition) Let f and g be arc-
directionally differentiable at x0 ∈ K with respect to a continuous arc β defined
in Definition 3.1. If there exist y∗ ∈ C∗ and z∗ ∈ D∗ satisfying

〈f ′(x0;u), y∗〉+ 〈g′(x0;u), z∗〉 ≥ 0(3.11)

with u = β′(0+), and

〈g(x0), z∗〉 = 0.(3.12)

Then x0 is an optimal solution for problem (P).

Proof. Suppose to the contrary that x0 were not optimal for problem
(P). Then there is an x ∈ F , the feasible solutions of (P) satisfying (3.11) and
(3.12) such that

f(x) <C f(x0) and g(x) ≤D θ.

It then have

〈f(x)− f(x0), y∗〉 < 0,
〈g(x)− g(x0), z∗〉 ≤ 0 since 〈g(x0), z∗〉 = 0

for any y∗ ∈ C∗ and z∗ ∈ D∗, thus

〈f(x)− f(x0), y∗〉+ 〈g(x)− g(x0), z∗〉 < 0.(3.13)
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Since the semi-preinvex maps f and g are arc-directionally differentiable, it
follows that for (x, x0, t) ∈ K×K×[0, 1] there corresponds a vector τ(x, x0, t) ∈
X such that {

f(x0 + tτ(x, x0, t)) ≤C (1− t)f(x0) + tf(x)
g(x0 + tτ(x, x0, t)) ≤D (1− t)g(x0) + tg(x)

with lim
t↓0

τ(x, x0, t) = β′(0+) = u, and so


f(x0 + tτ(x, x0, t))− f(x0)

t
≤C f(x)− f(x0),

g(x0 + tτ(x, x0, t))− g(x0)
t

≤D g(x)− g(x0).

Letting t ↓ 0+, the above inequalities imply

(a)

{
f ′(x0;u) ≤C f(x)− f(x0),
g′(x0 + u) ≤D g(x)− g(x0).

Hence for any y∗ ∈ C∗ and z∗ ∈ D∗, (a) implies

(b)

{
〈f ′(x0;u), y∗〉 ≤ 〈f(x)− f(x0), y∗〉 ,
〈g′(x0;u), z∗〉 ≤ 〈g(x)− g(x0), z∗〉 .

Consequently, from (3.13) and (b), we obtain

〈f ′(x0;u), y∗〉+ 〈g′(x0;u), z∗〉 < 0.

This contradicts the fact of (3.11). Therefore x0 is an optimal solution of
problem (P). 2

4. Applications in Semi-prevariational Inequality

Consider an operator (not linear) mapping

T : X → L(X,Y ).

where L(X,Y ) stands for the space of continuous linear operators from X into
Y . Then a variational inequality problem is given by

(VI) To find an x0 ∈ K such that there does not exist x ∈ K satisfying

T (x0)(x− x0) <C θ.(4.1)
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Note that (4.1) is different from

T (x0)(x− x0) ≥C θ for all x ∈ K

except when Y is totally ordered.
If Y = R, then L(X,Y ) = X∗ and T : X → X∗ is a conjugate map. It

follows that no x ∈ K to satisfy (4.1) is equivalent to

〈x− x0, T (x0)〉 ≥ 0 for all x ∈ K.

This concept is extended to a prevariational inequality problem as follows

(PVI) To find a vector x0 ∈ K, a vector τ -connected set in X, such that there
does not exist an x ∈ K which satisfies the inequality

T (x0)τ(x0, x) <C f(x0)− f(x),(4.2)

where τ(x0, x) is a vector in X and f : K → (Y, C) is any preinvex
mapping.

If f ∼= 0, then (PVI) becomes to find x0 ∈ K such that there does not exist
an x ∈ K which satisfies the inequality

T (x0)τ(x0, x) <C θ.(4.3)

In particular, if τ(x0, x) = x − x0, then (4.3) becomes a variational problem
related to (4.1).

Now if we consider a preinvex programming problem (P) of differentiable
maps f and g with respect to a continuous vector map β(t) = tτ(x, y), and
when x0 ∈ K is a solution of the preinvex problem (P), then the Fritz John
type Theorem 3.1 shows that there exists a nonzero element (y∗, z∗) ∈ C∗×D∗
satisfying the inequality

〈f ′(x0; τ(x0, x)), y∗〉+ 〈g′(x0; τ(x0, x)), z∗〉 ≥ 0.(4.4)

Since f and g are assumed to be differentiable,

f ′(x0; τ(x0, x)) = (f ′x0)τ(x0, x)

and
g′(x0; τ(x0, x)) = g′(x0)τ(x0, x).

It follows from (4.4) that

(y∗ ◦ f ′(x0) + z∗ ◦ g′(x0))τ(x0, x) ≥ 0.
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Define
T (x0) = y∗ ◦ f ′(x0) + z∗ ◦ g′(x0).

Since f ′(x0) ∈ L(X,Y ) and g′(x0) ∈ L(X,Z), we see that T (x0) is a continuous
linear functional on X, so that the optimal solution x0 of (P) is related to the
solution of the variational inequality :

T (x0)τ(x0, x) ≥ 0 for all x ∈ K.

The question arises from the above concept that whether the solution of a
semi-preinvex programming problem (P) is related to a variational inequality
by a nonlinear operator map. At first we consider an unconstraint semi-
preinvex optimization problem

(P̃ )

{
inf f(x)
subject to x ∈ K ⊂ X.

whereK ⊂ X is a semi-connected subset and f : K → (Y,C) is a semi-preinvex
map.

For x0 ∈ K, we consider a continuous arc β : [0, 1] → K ⊂ X such that
x0 + β(t) ∈ K for t ∈ [0, 1] with

β(t)
t

=
β(t)− β(0)

t
= τ(x0, x, t) ∈ X,x ∈ K;

β(0) = θ and β′(0+) = u(x0, x) in X.

We formally formulate a variational inequality problem as follows:

(SPVI) To find a vector x0 ∈ K, a semi-connected set in X, such that there
does not exist x ∈ K which satisfies the inequality

T (x0)u(x0, x) <C f(x0)− f(x).(4.5)

where f : K → (Y,C) is a semi-preinvex map.
The essential task of this section is to establish an optimal solution of (P̃ )

related to the solution of (SPVI). It is equivalent to say that the inequality

T (x0)u(x0, x) <C θ(4.6)

can not hold for all x ∈ K. We state the result as the following theorem.

Theorem 4.1. Let K ⊂ X be a semi-connected subset, f : K → (Y,C)
an arc-directional differentiable semi-preinvex map. Then the following two
statements hold.
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(1) If x0 solves (P̃ ), then x0 solves problem (SPVI) related to the inequality
(4.6).

(2) If x0 solves problem (SPVI) related to the inequality (4.6), then x0 solves
the problem (P̃ ).

Proof. (1) Let x0 be an optimal solution of (P̃ ). For any x ∈ K, t ∈ [0, 1],
we have x0 + tτ(x0, x, t) ∈ K. Then there is no y ∈ K which satisfies

f(x0 + tτ(x0, y, t))− f(x0) <C θ.(4.7)

Dividing the above expression (4.7) by t > 0, and then letting t ↓ O+, we have

f ′ (x0; u(x0, y)) ≤C θ(4.8)

since f is arc-directional differentiable. That is, the inequality

T (x0, u(x0, y)) = f ′ (x0; u(x0, y)) ≤C θ(4.9)

can not hold for any y ∈ K. Therefore x0 solves problem (SPVI) related to
the inequality (4.8).

(2) If f is a semi-preinvex map on K , then for any x ∈ K, there is a vector

u(x0, x) = lim
t↓0+

τ(x0, x, t) =
d

dt
tτ(x0, x, t) |t=0 in X

such that

f ′(x0;u(x0, x)) ≤C f(x)− f(x0), f ′(x0;u(x0, x)) + f(x0) ≤C f(x) or

T ′(x0)u(x0, x) + f(x0) ≤C f(x).(a)

Since x0 solves problem (SPVI) related to the inequality (4.8), there does not
exist y ∈ K satisfing

T (x0)u(x0, y) <C θ.(b)

It follows from (a) and (b) that there does not exist y ∈ K satisfying

f(y) <C f(x0).

Hence x0 solves the problem (P̃). 2

If f is preinvex and differentiable at x0, then for 0 < α < 1,

f(x0 + αu(x0, x)) ≤C (1− α)f(x0) + αf(x),
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f(x0 + αu(x0, x))− f(x0)
α

≤C f(x)− f(x0).

Letting α ↓ 0+ we then have

f ′(x0)u(x0, x) ≤C f(x)− f(x0)

where f ′(x0) = T (x0) ∈ L(X,Y ). Hence from Theorem 4.1 we conclude that

Corollary 4.2. If f is a differentiable preinvex map of K ⊂ X into
(Y,C), then f satisfies the inequality

f ′(x0)u(x) ≤C f(x)− f(x0)

with u(x) = u(x0, x) if and only if x0 solves problem (PVI) related to the
inequality (4.3).
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